Цветовая модель rgb используется для. Цветовая модель RGB

  • 14.06.2019

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGBA задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.

Вы в детстве никогда не развлекались, разглядывая через увеличительное стекло окружающие предметы? Если нет, то попробуйте прямо сейчас — возьмите лупу и посмотрите вот на эту белую страницу. А те, кто были любознательными детьми, и так знают: картинка будет примерно такая.

И это именно белый цвет. Почему же мы видим цветные точки?

Дело в том, что передачи цветов в телевизорах, мониторах компьютеров и телефонов используется цветовая модель RGB . RGB — это аббревиатура английских слов Red, Green, Blue, то есть, «красный», «зеленый», «синий» — это и есть основные цвета в этой модели.

Но почему именно красный-зеленый-синий, кому это пришло в голову и почему при смешении они дают белый? Разберемся по порядку.

История вопроса

В конце 1850-х - начале 1860-х годов Джеймс Максвелл, ныне известный физик, а тогда — молодой выпускник Кембриджа, занимался изучением теории цвета. Теория цвета берет свое начало в работах Исаака Ньютона (мы вспоминали о его опытах с разложением света, когда говорили о цветах). Максвелл проводил эксперименты по смешению цвета, для которых использовал цветовой волчок — прикрепленный к оси диск, сектора которого были раскрашены разные цвета.

В своих работах Максвелл развивал идеи Томаса Юнга, который выдвинул предположение о существовании трех основных цветов: красного, зеленого и синего — в соответствии с тремя типами чувствительных волокон в сетчатке глаза. Как мы помним, в сетчатке есть два вида фоторецепторов: палочки и колбочки. Колбочки отвечают за цветовое зрение и, в свою очередь, делятся еще на три вида: одни чувствительны к красно-желтой, другие — к зелено-желтой, а третьи — к сине-фиолетовой части спектра.

Эту картинку вы уже где-то видели:) Обратите внимание на три вида колбочек.

Так вот, Максвелл с помощью своего волчка продемонстрировал, что белый цвет нельзя получить смешением синего, красного и желтого, как считалось ранее, а основными цветами являются красный, зеленый и синий.

Как монитор передает цвета

Хотя Максвелл проводил свои исследования еще в XIX веке, цветовая модель RGB на практике стала использоваться позже — когда появились телевизоры и мониторы, сначала с электронно-лучевой трубкой, а потом жидкокристаллические и плазменные.

В ЭЛТ изображение создается с помощью трех электронных прожекторов, каждый из которых излучает свет своего цвета. На экран нанесен люминофор — вещество, которое светится под воздействием этих прожекторов. Причем люминофор тоже трех видов: один светится от излучения красной пушки, второй — от зеленой, третий — от синей.

  1. Электронные пушки
  2. Электронные лучи
  3. Фокусирующая катушка
  4. Отклоняющие катушки
  5. Маска, благодаря которой красный луч попадает на красный люминофор, зеленый луч — на зеленый люминофор, синий — на синий.
  6. Красные, зелёные и синие зёрна люминофора
  7. Маска и зёрна люминофора (увеличено)

При всех конструктивных и технологических отличиях от ЭЛТ, жидкокристаллические и плазменные мониторы работают по тому же принципу: под воздействием энергии загорается красный, зеленый или синий люминофор.

Минимальная единица изображения, создаваемого монитором, называется пикселем . Цвет пикселя получается из комбинации входящих в него трех точек люминофора (эти три точки называются триадами).

Вот она, та самая картинка, которую можно увидеть, посмотрев на монитор в лупу. Пиксели не обязательно бывают прямоугольные, но чаще всего они выглядят именно так.

Посмотрите вот этот выпуск детской передачи «Галилео». Ведущий здесь повторяет опыт Максвелла с цветовым волчком и очень наглядно показывает, как различается смешение цветов от излученного и отраженного света.

В этом опыте показаны два метода смешения цветов: аддитивный и субтрактивный . В цветовой модели RGB используется аддитивный, поэтому сейчас нас интересует именно он.

Аддитивный метод основан на сложении цветов (addition означает «сложение»). Называется он так, потому что цвета получаются путем добавления к черному. Этот метод применяется для получения цветов от излученного света, в частности, в компьютерных мониторах.

Как на бумаге отсутствие цвета есть белый цвет, так на мониторе отсутствие цвета — черный. Цвета здесь получаются смешением трех основных цветов: красного (Red), зеленого (Green) и синего (Blue). Смешение красного и синего дают пурпурный (Magenta), синего и зеленого — голубой (Cyan), зеленого и красного — желтый (Yellow). А смешение всех трех основных цветов — белый.

Числовое представление модели RGB

Поскольку в модели RGB есть три основные составляющие цвета, ее можно представить в виде куба. Получается, что каждая точка в пространстве этого куба (которую можно задать с помощью трех координат) — определенный цвет.

В компьютерах каждая из координат задается целым числом — от 0 до 255.

В HTML используется шестнадцатеричная запись: каждая координата задается двумя шестнадцатеричными числами. Вот, например, показанный выше цвет с RGB-координатами (240, 103, 162) в шестнадцатеричной записи выглядит так: #f067a2.

А вот как выглядит смешение цветов в числовом представлении:

Ограничения модели RGB

В теории все выглядит довольно просто, но на практике при применении модели RGB не всегда удается точно передать нужный цвет.

Первая проблема связана с технологией изготовления мониторов. Как уже упоминалось, цвет, воспроизводимый монитором, зависит от типа нанесенного на него люминофора. Но разными производителями используются разные типы люминофора. Кроме того, по мере старения монитора меняются качества люминофора и характеристик электронных прожекторов или светодиодов. Другими словами, на разных мониторах цвета могут немного различаться — наверное, все с этим сталкивались.

Вторая проблема имеет уже не технический характер, она проистекает из ограничений самого метода смешения цветов. Дело в том, что с помощью аддитивного синтеза нельзя получить все цвета видимого спектра. Все, что может монитор — это смешивать красный, зеленый и синий. Если обозначить эти цвета на диаграмме точками, то все множество цветов, которые можно получить их смешением, окажутся внутри получившегося треугольника. И площадь его, как мы видим, гораздо меньше, чем диапазон цветов, которые может различать человек.

Зачем нужны разные цветовые модели и почему один и тот же цвет может выглядеть по-разному

Предоставляя услуги дизайна как в области веб, так и в сфере полиграфии, мы нередко сталкиваемся с вопросом Клиента: почему одни и те же фирменные цвета в дизайн-макете сайта и в дизайн-макете полиграфической продукции выглядят по-разному? Ответ на этот вопрос заключается в различиях цветовых моделей: цифровой и полиграфической.

Цвет компьютерного экрана изменяется от черного (отсутствие цвета) до белого (максимальная яркость всех составляющих цвета: красного, зеленого и синего). На бумаге, напротив, отсутствию цвета соответствует белый, а смешению максимального количества красок - темно-бурый, который воспринимается как черный.

Поэтому при подготовке к печати изображение должно быть переведено из аддитивной ("складывающей") модели цветов RGB в субтрактивную ("вычитающую") модель CMYK . Модель CMYK использует противоположные исходным цвета - противоположный красному голубой, противоположный зеленому пурпурный и противоположный синему желтый.

Цифровая цветовая модель RGB

Что такое RGB?

Аббревиатура RGB означает названия трех цветов, использующихся для вывода на экран цветного изображения: Red (красный), Green (зеленый), Blue (синий).

Как формируется цвет RGB?

Цвет на экране монитора формируется при объединении лучей трех основных цветов - красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет.

Таким образом, любой цвет, который мы видим на экране, можно описать тремя числами, обозначающими яркость красной, зеленой и синей цветовых составляющих в цифровом диапазоне от 0 до 255. Графические программы позволяют комбинировать требуемый RGB-цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Итого получается 256 х 256 х 256 = 16,7 миллионов цветов.

Где используются изображения в режиме RGB?

Изображения в RGB используются для показа на экране монитора. При создании цветов, предназначенных для просмотра в браузерах, как основа используется та же цветовая модель RGB.

Полиграфическая цветовая модель CMYK

Что такое CMYK?

Система CMYK создана и используется для типографической печати. Аббревиатура CMYK означает названия основных красок, использующихся для четырехцветной печати: голубой (Сyan), пурпурный (Мagenta) и желтый (Yellow). Буквой К обозначают черную краску (BlacK), позволяющую добиться насыщенного черного цвета при печати. Используется последняя, а не первая буква слова, чтобы не путать Black и Blue.

Как формируется цвет CMYK?

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию. Например, для получения тёмно-оранжевого цвета следует смешать 30 % голубой краски, 45 % пурпурной краски, 80 % жёлтой краски и 5 % чёрной. Это можно обозначить следующим образом: (30/45/80/5).

Где используются изображения в режиме CMYK?

Область применения цветовой модели CMYK - полноцветная печать. Именно с этой моделью работает большинство устройств печати. Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный).

В этом случае применяются краски Pantone (готовые смешанные краски множества цветов и оттенков), их также называют плашечными (поскольку эти краски не смешиваются при печати, а являются кроющими).

Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением. RGB охватывает больший цветовой диапазон, чем CMYK, и это необходимо учитывать при создании изображений, которые впоследствии планируется печатать на принтере или в типографии.

При просмотре CMYK-изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB-изображения. В модели CMYK невозможно отобразить очень яркие цвета модели RGB, модель RGB, в свою очередь, не способна передать темные густые оттенки модели CMYK, поскольку природа цвета разная.

Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.

Так, подготавливая логотип компании для публикации на сайте, мы используем RGB-модель. Подготавливая тот же логотип для печати в типографии (например, на визитках или фирменных бланках), мы используем CMYK-модель, и цвета этой модели на экране визуально могут немного отличаться от тех, которые мы видим в RGB. Не стоит этого опасаться: ведь на бумаге цвета логотипа будут максимально соответствовать тем цветам, которые мы видим на экране.

Цели урока:

  • Образовательные : Дать основополагающие знания о физических моделях восприятия цвета объекта RGB и CMY(K). Объяснить взаимодействие цветовых координат данных моделей.
  • Развивающие : развивать умение представлять результаты исследования в заданном формате
  • Воспитательные: развивать навыки самостоятельного выполнения задания, развивать эстетический вкус, проявлять творческое отношение к работе

Задачи урока:

  • Повторить: назначение и основные функции графического редактора, принципы формирования изображения в растровой и векторной графике
  • Научить определять основные цвета при помощи цветовых моделей
  • Проверить усвоение материала. Проанализировать выявленные ошибки.

В результате изучения темы учащиеся должны:

знать:

  • физические модели восприятия цвета объекта RGB и CMY(K)
  • соотношение моделей RGB и CMY

уметь:

  • определять цвета по заданной цветовой схеме

Оборудование: ПК, программа PowerPoint, мультимедийный проектор, интерактивная доска, раздаточный материал, презентация «Цветовые модели».

Ход урока

План урока

  1. Организационный момент (2 мин)
  2. Фронтальный опрос (3 мин)
  3. Объяснение нового материала (19 мин)
  4. Просмотр презентации (8 мин)
  5. Проверка усвоения материала (10 мин)
  6. Подведение итогов урока (1 мин).
  7. Домашнее задание (2 мин)

УРОК 45 мин

1. Организационный момент (2 мин ).

  • Проверка присутствующих
  • Оформление журнала
  • Ознакомление учащихся с темой урока

2. Фронтальный опрос (3 мин ).

Учащиеся с места должны ответить на вопросы:

а) назначение графического редактора

Графический редактор - программа (или пакет программ), позволяющая создавать и редактировать изображения с помощью компьютера.

б) принципы формирования изображения в растровой и векторной графике

В растровой графике изображение представляется двумерным массивом точек (элементов растра), цвет и яркость каждой из которых задается независимо. Пиксель - основной элемент всех растровых изображений. Векторная графика описывает изображение с помощью математических формул.

в) Объяснение нового материала (19 мин )

Преподаватель: Считается, что наш человеческий глаз способен различать около 16 млн. оттенков цвета. Возникает естественный вопрос, как объяснить компьютеру, что один объект красного цвета, а другой розового? В чем между ними разница, так хорошо различимая нами на глаз. Для формального описания цвета придумано несколько цветовых моделей и соответствующих им способов кодирования.

Запишем в тетрадь определение:

Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью.

Сегодня мы с вами рассмотрим модели RGB и CMY(K).

Перепишите это в тетрадь.

Цветовая модель RGB (аббревиатура английских слов R ed, G reen, B lue - красный, зелёный, синий) - аддитивная цветовая модель.

Используется для излучаемого света , т.е. при подготовке экранных документов.

Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза.

Любой цвет можно представить в виде комбинации 3 основных цветов R ed (красный), G reen (зелёный), B lue (синий). Эти цвета называют цветовыми составляющими.

Аддитивной модель называется потому, что цвета получаются путём добавления (англ. addition) к черному.

Запишите в тетрадь основные цвета. (Учащиеся переписывают материал с доски)

Преподаватель: Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 2563 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определенного цвета. Чем ярче цветная точка (красная, зеленая, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

Посмотрите на доску и на выданный материал.

На интерактивной доске выводится модель RGB (аналогичная схема в раздаточном материале у каждого учащегося). Преподаватель продолжает объяснять и показывает на схеме.

Изображение в данной цветовой модели состоит из трёх каналов.

  • Чистый красный может быть определён как как (255,0,0) - R ed
  • Чистый зеленый (0,255,0) - G reen
  • Чистый ярко-синий цвет (0,0,255) – B lue

На схеме вы видите, что при смешении основных цветов (основными цветами считаются красный, зелёный и синий) мы получаем

  • при смешении синего (B) и красного (R), мы получаем пурпурный или лиловый (M magenta)
  • при смешении зеленого (G) и красного (R) - жёлтый (Y yellow)
  • при смешении зеленого (G) и синего (B) - циановый (С cyan)
  • при смешении всех трёх цветовых компонентов мы получаем белый цвет (W)
  • Если яркость всех трех базовых цветов минимальна (равна нулю), получается черная точка (Черный - (0,0,0))
  • Если яркость всех трех цветов максимальна (255), при их сложении получается белая точка (Белый - (255,255,255)
  • Если яркость каждого базового цвета одинакова, получается серая точка (чем больше значение яркостей, тем светлее).

Точка какого-нибудь красивого, сочного цвета получается в том случае, если при смешении одного (или двух) цветов гораздо меньше, чем двух (одного) других. Например, сиреневый цвет получается, если мы возьмем по максимуму красного и синего цветов и не возьмем зеленого , а желтый цвет - достигается смешением красного и зеленого.

Устройства ввода графической информации (сканер, цифровая камера) и устройство вывода (монитор) работают именно в этой модели.

Цветовая модель RGB имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов CMYK, поэтому иногда изображения, замечательно выглядящие в RGB, значительно тускнеют и гаснут в модели CMYK, которую мы сейчас рассмотрим.

Цветовая модель CMY ( K)

Окрашенные несветящиеся объекты поглощают часть спектра белого света, освещающего их, и отражают оставшееся излучение. В зависимости от того, в какой области спектра происходит поглощение, объекты отражают разные цвета (окрашены в них).

На доске уже написано название модели и базовые цвета.

CMY ( K )
C yan M agenta Y ellow BlacK
Голубой Пурпурный Желтый Черный

Перепишите это в тетрадь.

Цвета, которые используют белый свет, вычитая из него определенные участки спектра, называются субтрактивными ("вычитательными") . Для их описания используется субтрактивная модель CMY (С - это Cyan (Голубой), М - это Magenta (Пурпурный), Y - Yellow (Желтый)). В этой модели основные цвета образуются путем вычитания из белого цвета основных аддитивных цветов модели RGB.

Если вычесть из белого три первичных цвета RGB, мы получим тройку дополнительных цветов CMY.

В этом случае и основных субтрактивных цветов будет три:

  • голубой (белый минус красный)
  • пурпурный (белый минус зеленый)
  • желтый (белый минус синий)

Цветовая модель CMY ( K ) используется при работе с отраженным цветом (при печати) .

При смешениях двух субтрактивных (вычитаемых) составляющих результирующий цвет затемняется (поглощено больше света, положено больше краски). Таким образом:

  • при смешении максимальных значений всех трех компонентов должен получиться черный цвет
  • при полном отсутствии краски (нулевые значения составляющих) получится белый цвет (белая бумага)
  • смещение равных значений трех компонентов даст оттенки серого.

Данная модель - основная модель полиграфии. Пурпурный, голубой, желтый цвета составляют так называемую полиграфическую триаду , и при печати этими красками большая часть видимого цветового спектра может быть воспроизведена на бумаге.

Однако реальные краски имеют примеси, их цвет может быть не идеальным, и смешение трех основных красок, которое должно давать черный цвет, дает вместо этого неопределенный грязно-коричневый (посмотрите на выданный материал). Кроме того, для получения интенсивного черного необходимо положить на бумагу большое количество краски каждого цвета. Это приведет к переувлажнению бумаги, качество печати при этом снизится. К тому же использование большого количества краски неэкономно.

Для улучшения качества отпечатка в число основных полиграфических красок (и в модель) внесена черная краска . Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. Черный компонент сокращается до буквы К, поскольку эта краска является главной, ключевой (K ey) в процессе цветной печати(или blacK ).

Как и для модели RGB, количество каждого компонента может быть выражено в процентах или градациях от 0 до 255.

Печать четырьмя красками, соответствующими CMYK, также называют печатью триадными красками .

Цвет в CMYK зависит не только от спектральных характеристик красителей и от способа их нанесения, но и их количества, характеристик бумаги и других факторов. Фактически, цифры CMYK являются лишь набором аппаратных данных для фотонаборного автомата и не определяют цвет однозначно.

Цветовой круг

При обработке изображений необходимо ясно понимать взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK. Без знания этих закономерностей трудно оценить качество цвета, назначить корректирующие операции, да и просто разумно использовать простейшие инструменты, предназначенные для работы с цветом.

Если эти две модели представить в виде единой модели , то по­лучится усеченный вариант цветового круга, в котором цвета располагаются и известном еще со школы порядке (только без производного оранжевого цвета): красный (R), желтый (Y), зеленый (G), голубой (C), синий (В) – пурпурный (лиловый, фиолетовый) М - Magenta

КАЖДЫЙ ОХОТНИК ЖЕЛАЕТ ЗНАТЬ, ГДЕ СИДИТ ФАЗАН
или
КАК ОДНАЖДЫ ЖАН - ЗВОНАРЬ ГОЛОВОЙ СВАЛИЛ ФОНАРЬ
или
КАЖДЫЙ ОФОРМИТЕЛЬ ЖЕЛАЕТ ЗНАТЬ, ГДЕ СКАЧАТЬ ФОТОШОП

Рассмотрим самую простую и востребованную модель, называемую цветовым кругом. В нем на одинаковом расстоянии друг от друга размещены координаты основных цветовых систем RGB и CMYK.

Пары цветов, расположенные на концах одного диаметра (под углом 180 градусов), называются
На цветовом круге основные цвета моделей RGB и CMY находятся в такой зависимости: каждый цвет расположен напротив дополняющего его (комплиментарного) цвета; при этом он находится на равном расстоянии между цветами, с помощью которых он получен.

Комплиментарными цветами являются:

  • зеленый и пурпурный,
  • синий и желтый,
  • голубой и красный.

Дополнительные цвета являются в некотором смысле взаимоисключающими. Добавление любой краски цветового круга компенсирует дополнительную краску, как бы разбавляет ее в результирующем цвете.

Например, чтобы изменить цветовое соотношение в сторону зеленых тонов, следует понизить содержание пурпурного цвета, который является дополнительным к зеленому.

Это утверждение можно выразить в виде следующих кратких формул:

Преподаватель пишет на доске:

А теперь самостоятельно запишите в тетрадь оставшиеся 5 формул:

100%Magenta = 0Green

100%Yellow = 0Blue

0%Magenta = 255Green

0%Yellow = 255Blue.

Прослушайте и запишите в тетрадь предложение:

Голубой цвет противоположен красному, потому что голубые красители поглощают красный цвет и отражают синий и зеленый. Голубой цвет - это отсутствие красного.

Преподаватель спрашивает 5 учащихся с целью изменить формулировку предложения для оставшихся 5 цветов.

Приведем сводку основных и производных правил цветового синтеза по круговой модели (смотрите раздаточный материал):

  • Каждый субтрактивный (аддитивный) цвет находится между двумя аддитивными (субтрактивными).
  • Сложение любых двух цветов RGB (CMY) дает цвет CMY (RGB), лежащий между ними. Например, смешивая зеленый и синий, получим голубой, а смесь желтого и пурпурного образует красный.

Запишите самостоятельно в тетради все возможные соотношения такого вида (6 формул)

Red + Green = Yellow

Blue + Green = Cyan

Red + Blue = Magenta

Cyan+ Magenta = Blue

Cyan + Yellow = Green

Magenta + Yellow = Red.

  • Наложение красного и зеленого с максимальной интенсивностью дает чистый желтый цвет. Уменьшение интенсивности красного смещает результирующий в сторону зеленых оттенков, а снижение вклада зеленого делает цвет оранжевым.
  • Смешение синего и красного в максимальной пропорции дает фиолетовый цвет. Уменьшение доли синего влечет за собой сдвиг в область розового цвета, а уменьшение красного сдвигает цвет в сторону пурпурного.
  • Зеленый и синий цвета образуют голубой. Существует около 65 тысяч различных оттенков голубого, которые можно синтезировать, смешивая в разных пропорциях данные цветовые координаты.
  • Наложение голубой и пурпурной краски максимальной плотности дает глубокий синий цвет.
  • Пурпурный и желтый красители порождают красный цвет. Чем выше плотность составляющих, тем выше его яркость. Уменьшение интенсивности пурпурного придает цвету оранжевый оттенок, снижение доли желтой составляющей дает розовый цвет; Желтый и голубой дают ярко-зеленый цвет. Уменьшение доли желтого порождает изумрудный, а снижение вклада голубого - салатовый.
  • Осветление или затемнение цвета предельной насыщенности влечет за собой снижение его насыщенности.

Запишем в тетради:

Вложение цвета можно увеличивать и уменьшать, регулируя вклады его комплиментарного цвета или смежных цветов.

4. Просмотр презентации (8 мин )

Сейчас мы просмотрим презентацию, чтобы закрепить пройденный материал и узнать, что нас ждет на следующих уроках.

5. Проверка усвоения материала (10 мин )

Прошу вас ответить на вопросы по новой теме:

1. Перечислите базовые цвета моделей RGB и CMY(К).

  • Цветовая модель RGB - Red, Green, Blue - красный, зелёный, синий
  • Цветовая модель CMY - С - это Cyan (Голубой), М - это Magenta (Пурпурный), Y - Yellow (Желтый)

2. Какая цветовая модель используется для излучаемого цвета?

3. Почему ее называют аддитивной?

Аддитивной модель называется потому, что цвета получаются путём добавления (англ. addition) к черному

4. Что означает буква К в цветовой модели CMYК?

Черный компонент, поскольку эта краска является главной, ключевой (K ey) в процессе цветной печати (или blacK ).

5. Для чего используется модель цветовой круг?

Чтобы понимать взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK.

6. Какие цвета называют комплиментарными?

Пары цветов, расположенные на концах одного диаметра на цветовом круге (под углом 180 градусов), называются комплиментарными или дополнительными.

  • Перечислить комплиментарные цвета.
  • зеленый и пурпурный
  • синий и желтый
  • голубой и красный.

6. Подведение итогов урока (1 мин ).

Наш урок подходит к концу. Сегодня вы узнали о цветовых моделях RGB и CMY(К), базовые цвета этих моделей, взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK. Знакомство с цветовыми моделями мы продолжим на следующем уроке.

7. Домашнее задание (2 мин )

Запишите домашнее задание:

  1. По модели Цветовой круг повторить основные формулы получения цвета
  2. Профильная школа «Технология обработки текстовой информации. Технология обработки графической и мультимедийной информации» А.В.Могилев, Л.В.Листратова СПб.: БХВ-Петербург, 2010 р.8.2.
  3. Уроки компьютерной графики. CorelDRAW. Учебный курс Л. Левковец СПб.: Питер, 2006 ур.2

История происхождения цветовой модели RGB

В середине XIX века английский физик Джеймс Кларк Максвелл выступил с предложением использовать способ получения цветного изображения, который известен как - аддитивное слияние цветов.

Аддитивная (суммирующая) система цветопередачи означает, что цвета в этой модели добавляются к черному (Black) цвету.

Аддитивное смещение цветов можно трактовать как, - процесс объединения световых потоков различных цветов до того, как они достигнут глаза.

Аддитивными моделями цвета (от англ. add - складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на рисунке 1.

Рисунок 1. Схема смешивания световых потоков в аддитивной модели цвета

Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.

Существуют две разновидности аддитивной модели цвета: аппаратно зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному. Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.

RGB применяется в мониторах компьютеров, в телевизорах, сканерах, цифровых фотоаппаратах и других излучающих свет технических устройствах.

С экрана монитора человек воспринимает цвет как сумму излучения трех базовых цветов: красного, зеленого и синего. Такая система цветопередачи называется RGB, по первым буквам английских названий цветов (Red - красный, Green - зеленый, Blue - синий).

Механизм формирования цветов модели RGB

При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых цветов в разных соотношениях. На рисунке 2 представлена цветовая модель RGB.

Рисунок 2 - Цветовая модель RGB

R+G=Y (Yellow - желтый);

G+B=C (Cyan - голубой);

B+R=M (Magenta - пурпурный).

Сумма всех трех основных цветов в равных долях дает белый (White) цвет

R+G+B=W (White - белый)

Например, на экране монитора с электронно-лучевой трубкой (а также аналогичного телевизора) изображение строится при помощи засветки люминофора пучком электронов. При таком воздействии люминофор начинает излучать свет. В зависимости от состава люминофора, этот свет имеет ту или иную окраску. Для формирования полноцветного изображения используется люминофор со свечением трех цветов - красным, зеленым и синим. Сами по себе зерна люминофора разных цветов позволяют получить только чистые цвета (чистый красный, чистый зеленый и чистый синий).

Промежуточные оттенки получаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанный оттенок. Регулируя яркость зерен, можно регулировать получающийся смешанный тон. Например, при максимальной яркости всех трех типов зерен будут получен белый цвет, при отсутствии засветки - черный, а при промежуточных значениях - различные оттенки серого. Если же зерна одного цвета засветить не так, как остальные, то смешанный цвет не будет оттенком серого, а приобретет окраску. Такой способ формирования цвета напоминает освещение белого экрана в полной темноте разноцветными прожекторами.

Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы RGB, 1 бит на каждый компонент RGB то мы получим все восемь различных цветов (таблица 1).

Таблица 1 - Присутствие цветов

На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей.

Таким образом, можно получить 256 х 256 х 256 = 16 777 216 цветов.

Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб (Рисунок 3).

Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие.

Возможность отобразить не менее 16,7 миллиона оттенков это полно цветные типы изображения которые иногда называют True Color (истинные или правдивые цвета). потому что человеческий глаз все равно не в силах различить большего разнообразия.


Рисунок 3 - Цветовой куб

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление - это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе - зеленой, третье - синей.

Шестнадцатеричное представление - это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара чисел) - зеленого, третье (третья пара чисел) - синего.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная - черному цвету. Поэтому белый цвет имеет в десятеричном представлении код (255,255,255), а в шестнадцатеричном - FFFFFF. Черный цвет кодирует соответственно (0,0,0) или 000000.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях (200,200,200) или C8C8C8 получается светло-серый цвет, а при значениях (100,100,100) или 646464 - темно-серый. Чем более темный оттенок серого нужно получить, тем меньшее число нужно вводить в каждое текстовое поле.

Черный цвет образуется, когда интенсивность всех трех составляющих равна нулю, а белый - когда их интенсивность максимальна.