Проектирование радиопередающих устройств - Шахгильдян В.В. Проектирование радиовещательного передатчика с амплитудной модуляцией

  • 21.06.2019

Передатчик с амплитудной модуляцией

Простейшая схема передатчика с амплитудной модуляцией несущего коле­бания (рис. 8.1) содержит возбудитель, каскады умножения частоты (УЧ), уси­ления мощности (УМ), усилитель низкой частоты (УНЧ), на который подается передаваемый сигнал u вх) и амплитудный модулятор (AM).

Рис. 8.1. Структурная схема передатчика с амплитудной модуляцией

Возбудитель представляет собой маломощный задающий автогенератор, стабилизированный кварцевым резонатором. Малая мощность задающего ав­тогенератора позволяет использовать при его разработке более высокочас­тотные полупроводниковые приборы, обладающие меньшей инерционно­стью, обеспечивает облегченный тепловой режим работы усилительного при­бора и кварцевого резонатора, что повышает стабильность частоты. Кварце­вые автогенераторы пока работают на сравнительно невысоких (до сотен МГц на гармониках кварца) частотах. Поэтому после задающего генератора включают каскады умножителей частоты, которые повышают частоту коле­баний до величины несущей. Часто в умножителях частоты осуществляется еще и увеличение мощности колебаний. Для создания требуемой мощности на выходе передатчика в схеме применяются усилители мощности. Как пра­вило, усилители мощности радиосигнала включены между каскадами умно­жителей частоты, и весь такой тракт называют усилительно-умножительной цепочкой. Выходной усилитель мощности передатчика нагружен на фидер (волновод, кабель и т. п.), соединенный с антенной.

Амплитудная модуляция осуществляется обычно в выходном усилителе мощности. Часто такой усилитель мощности является оконечным каскадом передатчика.

Литература: В.И. Нефедов, “Основы радиоэлектроники и связи”, Издательство «Высшая школа», Москва, 2002.

ПЕРЕДАТЧИКИ С АМПЛИТУДНОЙ МОДУЛЯЦИЕЙ

6.1. ОБЩИЕ СВЕДЕНИЯ

Как известно, в соответствии с ГОСТом на термины в радиосвязи модуляцией называется процесс изменения одного или нескольких пара­метров несущего радиочастотного колебания в соответствии с измене­нием параметров передаваемого (модулирующего) сигнала. Несущая или несущее колебание - электрическое или электромагнитное колеба­ние, предназначенное для образования радиочастотного сигнала с по­мощью модуляции. Модулирующий сигнал содержит в себе подлежа­щую передаче информацию. В случае амплитудной модуляции (AM) изменяемым (модулируемым) параметром гармонической несущей яв­ляется амплитуда колебаний I =I (t ), изменяющаяся пропорционально подлежащему передаче сигналу U Ω (t ); в результате модуляции получа­ется сложное негармоническое колебание.

В настоящее время основными областями применения AM являются: звуковое радиовещание на «длинных», «средних» и «коротких» волнах (диапазоны частот НЧ, СЧ и ВЧ) и телевизионное вещание в метровом и дециметровом диапазонах (ОВЧ и УВЧ) - передатчики изображения (см. табл. 1.1). Для целей радиосвязи AM применяется в авиации в диапазонах 118... 136 МГц (ближняя радиосвязь). В отечественной прак­тике AM применяется также в трехпрограммном проводном вещании.

Наметилась тенденция постепенного перехода в радиовещании от AM к однополосной (см. гл. 7). В первую очередь на систему однопо­лосной модуляции (ОМ) планируется перевести вещание в диапазоне ВЧ. Прорабатывается применение варианта ОМ, совместимого с ис­пользуемой в настоящее время и сохраняющейся на ближайшее будущее AM .

Для создания информационных и художественных программ звуко­вого радиовещания существуют специальные предприятия - радиове­щательные студии, радиодома. Студии центрального вещания расположены в Москве. Во многих крупных городах есть студии мест­ного радиовещания .

Подлежащее передаче сообщение в форме человеческой речи, музы­ки и т. п. с помощью микрофона преобразуется в электрический сигнал со сложным спектром в области тональных (звуковых) частот. Этот сигнал по специальным каналам электросвязи (кабельным, радиорелей­ным или др.) передается на радиовещательные передатчики, распола­гающиеся обычно за городом на так называемых радиопередающих центрах (станциях).

Звуковой сигнал характеризуется шириной занимаемой полосы час­тот (Ω min …Ω max) и интенсивностью (напряжением U Ω). В соответствии с передаваемой речью, музыкой или их сочетанием меняются составляю­щие спектра и их величины; звуковой сигнал вещания является случай­ным процессом . Для передатчика этот сигнал является модулирующим.

Распределение мощности сигнала в полосе звуковых частот характе­ризуется спектральной плотностью S (Ω) [или S (F )]. На рис. 6.1 показа­на спектральная плотность русской речи, отнесенная к максимальной спектральной плотности, наблюдающейся на частоте вблизи F = 300 Гц. Как видно, спектральная плотность весьма неравномерна. Весь спектр акустических колебаний, воспринимаемый человеческим ухом, занима­ет широкую полосу частот - примерно 20...20 000 Гц; максимум чувст­вительности уха около 1000 Гц. Наиболее «мощные» спектральные составляющие человеческого голоса сосредоточены в узкой полосе 200...600 Гц.

Для обеспечения разборчивого восприятия речи при радиотелефон­ной связи (так называемая коммерческая радиотелефония) достаточно равномерно пропускать через передатчик полосу модулирующих частот 300...3400 Гц (в некоторых случаях 300...3000 или др.) с допустимой неравномерностью в этой полосе примерно ±(2...3) дБ. Для обеспечения эстетического восприятия в радиовещании необходимо с заданной до­пустимой неравномерностью передавать существенно более широкую полосу частот: для высшего класса (MB ЧМ вещание, см. гл. 8) 30... 15 000 Гц, для первого класса (звуковое сопровождение телевиде­ния) 50...10 000 Гц, для второго класса (вещание с AM на длинных, средних и коротких волнах) 100...6300 Гц при допустимой неравномер­ности около ±(0,7... 1,5) дБ. Требова­ния к показателям качества передат­чика того или иного назначения приводятся в соответствующих ГОСТах .

Рис. 6.1. Спектр речевого сигнала

Большинство подлежащих пере­даче по радиоканалам сигналов u (t ) (речевой, музыкальный и т. п.) име­ют среднее значение u 0 = 0. Исклю­чение составляет телевизионный сигнал изображения, содержащий в себе информацию о средней освещенности передаваемого изображения (подробнее см. гл. 9).

Стандарты предусматривают определенные энергетические и каче­ственные показатели (параметры качества) передатчиков, измеряемые при подаче испытательных сигналов в форме гармонических звуковых сигналов. Анализ режима работы каскада передатчика при модуляции в первом приближении также лучше (нагляднее) провести в предполо­жении гармонического модулирующего сигнала. Поэтому в дальней­шем основные соотношения для AM определим при гармоническом (косинусоидальном) модулирующем сигнале

. (6.3)

В ряде случаев учтем также статистику реального звукового сигнала.

При амплитудной модуляции, т. е. при воздействии модулирующего (звукового) напряжения вида (6.3) на анодный ток ГВВ, составляющие спектра тока вблизи первой гармоники изменяются по закону

На рис. 6.2 показано модулированное колебание вида (6.4). Огибаю­щая модулированного колебания воспроизводит форму напряжения звуковой частоты. Колебание (6.4) может быть представлено как сумма трех синусоидальных колебаний:

. (6.5)

Рис 6.2. Временная диаграмма AM сигнала

Рис. 6.3. Спектр AM колебания при модуляции одним (а) и

тремя (б ) гармоническими колебаниями

Рис. 6.4. Векторная диаграм­ма AM колебания при

моду­ляции одним гармоническим колебанием

Средняя мощность амплитудно-модулированного колебания обыч­но определяется для среднестатистических значений коэффициентов модуляции:

где m ср − среднее значение коэффициента модуляции на длительное время.

Для получения большей дальности связи и (или) улучшения отноше­ния сигнал/шум в месте приема необходимо увеличивать мощность боковых составляющих AM колебания. Следовательно, нужно стре­миться к большей глубине модуляции т → m max 1, т. е. токи антенны I А и анодной цепи I а1 лампы (транзистора) должны линейно меняться от некоторого максимума до нуля. Учитывая, что
, имеем
.

Передатчики с AM проектируются как т тах = 1. Полагая р = 3,5...4, получаем т ср = 0,35...0,4. Это означает, что доля боковых полос при модуляции составляет 1,5...2,2 % Р 1 max и номинальная мощность ламп (или транзисторов) используется крайне незначительно. Информация содержится именно в боковых полосах. Следовательно, важная энерге­тическая особенность AM (независимо от способа реализации) состоит в следующем: для передачи сравнительно малой мощности бо­ковых полос требуется пиковая мощность передатчика Р 1 max . И это несмотря на то, что пиковые значения модулирующего сигнала появля­ются сравнительно редко. При высокохудожественной передаче предъ­являют очень жесткие требования к нелинейным искажениям, и поэтому приходится мириться с плохим использованием ламп.

При передаче речевых сигналов на вход модуляционного устройства передатчика подаются ограниченные по амплитуде звуковые сигналы; допустимый уровень искажений достигается использованием сложных устройств ограничения . Степень ограничения обычно не превосхо­дит 12 дБ: C огр = 20·log(U m /U огр) ≤ 12 дБ, где U огр - напряжение, соответ­ствующее началу ограничения; U m - амплитудное значение напряже­ния, подаваемого на ограничитель. Этим достигается уменьшение пик-фактора (так как возрастает среднее значение сигнала), увеличение громкости, а следовательно, и мощности боковых полос. Такая модуля­ция называется трапецеидальной, ибо форма огибающей сходна с трапе­цией (рис. 6.5). Средний коэффициент модуляции получается равным 0,7...0,8. Однако увеличение степени ограничения более чем на 12 дБ нежелательно из-за роста искажений.

Рис. 6.5. Временная диаграмма при мо­дуляции

реальным сигналом с учетом ограничения

Существует много различных методов получения AM. В подавляю­щем большинстве модуляция достигается изменением (модуляцией) на­пряжения на каком-то электроде лампы или транзистора; иногда одновременно меняются два или три напряжения - так называемая комбинированная модуляция. Зависимость режима ГВВ от питающих напряжений изложена в § 2.12.

Рис. 6.6. График зависимости коэффициента глубины амп­литудной

модуляции и коэф­фициента нелинейных искажений от напряжения

гармонического модулирую­щего сигнала

Судить о пригодности генератора для AM можно по его так называ­емым статическим модуляционным характеристикам (СМХ), т. е. по зависимости I а1 , I а0 , I А, Р 1 , Р 0 , η от какого-то одного питающего напря­жения Е а, Е с, Е с1 , U c при простой AM или от совместного одновремен­ного изменения двух или трех напряжений при комбинированной AM. Статическими эти характеристики называются потому, что они снима­ются за счет изменения постоянного напряжения (или Е а, или Е с1 ,) или за счет изменения амплитуды напряжения возбуждения ГВВ U с; моду­лирующее напряжение звуковой частоты при этом отсутствует: U Ω = 0.

Статическая модуляционная характеристика каскада ГВВ с AM не учитывает зависимости его качественных и энергетических показателей от нелинейности входного сопротивления модулируемого ГВВ и часто­ты модулирующего сигнала Ω. Для выявления этих важных зависимос­тей исследуется динамическая модуляционная характеристика модули­руемого ГВВ, т. е. зависимость коэффициента глубины амплитудной модуляции и других показателей режима от амплитуды модулирующего (звукового) напряжения U Ω . Измерения проводятся на частотах, пред­усмотренных ГОСТом; в простейших случаях это либо 400, либо 1000 Гц. С помощью специальных измерительных (или грубо по осциллографу) измеряется глубина модуляции для положительного и отрица­тельного полупериодов огибающей AM колебания:

и
,

где ; (см. рис. 6.2 и 6.6). Совпадение этих зависимостей (
) и их линейность говорят о симметричности модуляции и малых нелинейных искажениях, харак­теризуемых коэффициентом гармоник .

Для радиовещательного передатчика с AM по ГОСТу в полосе час­тот 100...4000 Гц и при глубине модуляции т ≈ 50 % коэффициент гармоник K г 1 %, а при т = 90 % K г 2 %.

Полоса модулирующих частот Ω min … Ω max и допустимая неравномер­ность модуляции т = f (Ω) при U Ω = 0,5·U а. max = const характеризуют амплитудно-частотную характеристику передатчика (АЧХ), иначе го­воря - частотные искажения (рис. 6.7).

В соответствии с международным «Регламентом радиосвязи» (М.: Радио и связь, 1985) AM для целей звукового радиовещания или для радиотелефонной связи имеет условное обозначение АЗЕ (устаревшее и отмененное обозначение A3).

Модулятором (модулируемым каскадом) радиопередатчика называ­ется устройство (каскад), в котором осуществляется процесс модуля­ции (ГОСТ 24375-80). Это каскад усиления радиочастоты (см. рис. 1.2) между возбудителем и выходом передатчика (антенной), т. е. либо вы­ходной (оконечный), либо какой-то промежуточный каскад.

Модулирующее (звуковое) напряжение (сигнал) поступает на пере­датчик от источника информации, например от микрофона в радиове­щательной студии. Для обеспечения работы модулятора, как правило, необходимо предварительное усиление модулирующего сигнала. В передатчике для этого предусматривается тракт усиления звуковой час­тоты (модуляционное устройство), выходной каскад которого условно назовем мощным усилителем звуковой частоты (МУЗЧ) - модулирую­щим каскадом. Структурные схемы передатчиков с AM показаны на рис. 6.8.

Рис. 6.7. Амплитудно-частотная характеристика

Рис. 6.8. Структурные схемы пере­датчиков с амплитудной

модуля­цией в выходном каскаде (а ), промежуточном каскаде (б )

и при использовании сложения мощнос­тей (в )

Как уже говорилось в гл. 1, электромагнитная совместимость (ЭМС) является важнейшим условием, предъявляемым к современным радио­электронным устройствам и к радиопередатчикам в том числе.

Наряду с допустимыми нестабильностью рабочей частоты, уровнем побочных и шумового излучений к передатчику предъявляется требова­ние допустимого уровня внеполосного излучения.

Спектр частот излучения передатчика на присвоенной (рабочей) час­тоте, образовавшийся в процессе модуляции (манипуляции), состоит из основного и внеполосного излучений.

Рис. 6.9. Шаблон требований к уровню подавления

внеполосных излучений передатчика

Основное излучение содержит полезную информацию и занимает так называемую необходимую ширину полосы, т. е. полосу частот, достаточ­ную для данного класса излучения (вида модуляции, назначения), для обеспечения передачи сообщений с необходимыми скоростью и качест­вом при определенных условиях .

Внеполосным называется излучение передатчика на частотах, непо­средственно примыкающих к необходимой ширине полосы частот и являющихся результатом процесса модуляции. (Регламент радиосвязи, ГОСТ «Совместимость радиоэлектронных средств электромагнитная. Термины и определения».) Внеполосное излучение не требуется для работы данного передатчика и создает помехи для систем связи, рабо­тающих на частотах, непосредственно примыкающих к необходимой полосе частот данного передатчика.

Внеполосные излучения возникают при модуляции передатчика из­лишне широким спектром, за счет высших гармоник модулирующего сигнала, возникающих как при усилении модулирующего сигнала, так и в процессе модуляции, перемодуляции и т.д.

Внеполосные излучения возникают также при квантовании переда­ваемого сигнала, например, в усилителях класса D (см. § 6.8).

В радиовещании с AM при номинальном диапазоне модулирующих частот 50... 10 000 Гц достаточная степень подавления внеполосных из­лучений обеспечивается:

    ограничением спектра звуковых частот на выходе модуляционного устройства (на выходе МУЗЧ) специальными ограничителями верхних частот, иначе говоря, фильтрами нижних частот;

    небольшим допустимым уровнем нелинейных искажений передатчи­ка, т. е. высокой линейностью модуляции и модуляционного устройства (см. § 6.2 и 6.3).

В ГОСТ допустимый уровень внеполосных излучений устанавлива­ется указанием минимально необходимого подавления уровня излуче­ния на краях определенной полосы частот (рис. 6.9):

    подавление внеполосного излучения на 40 дБ по сравнению с мощ­ностью несущей на границах полосы 27 кГц, т. е. при отклонении от несущей частоты на ±13,5 кГц;

    подавление на 45 дБ на границах полосы шириной 28 кГц (± 14 кГц);

    подавление на 50 дБ для полосы 38 кГц;

    подавление на 60 дБ для полосы 66 кГц.

    В ламповых и транзисторных ГВВ возможны следующие способы получения AM:

    на входной электрод (сетку, базу) с помощью изменения напряжений смещения (E c , E б) или возбуждения (U c , U б);

    на выходной электрод (анод, коллектор) изменением питающего на­пряжения (Е а, Е к);

    комбинированные способы.

Литература: В. В. Шахгильдян, “Радиопередающие устройства”, Издательство «Радио и связь», Москва, 2003.

Под радиопередающим устройством (РПдУ) понимают комплекс оборудования, предназначенный для формирования и излучения радиосигналов. Основными узлами РПдУ являются генератор несущей частоты и модулятор. В современных системах связи РПдУ содержит и другое оборудование, обеспечивающее совместную работу средств связи: источники питания, системы синхронизации, автоматического управления, контроля и сигнализации, защиты и т.д.

Обобщенная структурная схема радиопередающего устройства с амплитудной либо фазовой модуляцией сигналов приведена на рисунке 7.9.

Первичный сигнал, подлежащий передаче, поступает на входную цепь. Входная цепь обеспечивает согласование этого сигнала с РПдУ, в конечном итоге, это определяется параметрами модулированного радиосигнала, передаваемого в линию.

Генератор несущей частоты формирует колебания несущей частоты, которые и являются переносчиками сообщения. В современных системах связи генератор несущей частоты выполняют в виде синтезатора частот. Синтезатор частот - устройство, предназначенное для формирования в заданном диапазоне частот высоко стабильных колебаний, определяемых стабильностью параметров задающего генератора.

Модулятор - узел, в котором на параметры несущего колебания накладывается передаваемое сообщение. При формировании в РпдУ радиосигналов с амплитудной или фазовой модуляцией синтезатор частоты вырабатывает колебания с постоянной частотой. При дополнительном воздействии модулирующим сигналом на частоту выходного колебания синтезатора частот можно получить радиосигналы с частотной модуляцией.

Рис. 7.9 Обобщенная структурная схема радиопередающего устройства

Усилитель мощности предназначен для увеличения уровня радиосигнала до величины, определяемой мощностью излучаемого сигнала в системе связи. Необходимое согласование РПдУ с антенной обеспечивает выходная цепь.

Преимущества цифровых методов обработки информации (передача, хранение, преобразование) способствовали широкому распространению цифровых систем связи. Достоинством представления сигналов в цифровом виде является также ее универсальность, то есть независимость от природы передаваемых сообщений. Современные системы связи способны передавать не только дискретные сообщения, но и непрерывные (как по времени, так и по уровню). Для преобразования непрерывных сигналов в цифровые служат специальные устройства - аналого-цифровые преобразователи (АЦП).

В аналого-цифровом преобразователе из сигнала, непрерывного по времени, сначала выбирают значения сигнала в определенные моменты времени. Чаще всего такие отсчеты берут через одинаковые промежутки времени. Выбранные значения сигнала называют выборками, а операцию получения отсчетов называют дискретизацией по времени.

На следующем этапе обработки весь диапазон возможных значений сигнала разбивают на определенное количество интервалов и выясняют, к какому из этих интервалов относится значение текущей выборки. На этом этапе обработки за значение сигнала принимается не действительное значение выборки, а ближайшее к нему округленное значение сигнала. Это значение может соответствовать середине того интервала, в который попадает данный отсчет, либо другому значению из этого интервала (начало или конец этого интервала). Операция замены действительного значения сигнала ближайшим к нему округленным значением называется квантованием, а ширину этого интервала называют шагом квантования. Если все интервалы, на которые разбиваются возможные значения сигнала, одинаковые, то такое квантование называется равномерным. В некоторых случаях, например, при передаче речи, оказывается выгодным такие интервалы делать неодинаковыми. В таком случае говорят о неравномерном квантовании.

На последнем этапе аналого-цифровой преобразователь заменяет действительное значение выборки номером того интервала, в пределах которого находится значение данного отсчета. Операция замены значения отсчета номером (кодом) называется кодированием. Наибольшее распространение в современных системах получило представление отсчетов в виде двоичных кодов. Затем полученные коды передаются по системе связи.

Упрощенная структурная схема приемопередатчика цифровой системы связи приведена на рисунке 7.10. Рассмотрим работу этого устройства.


Рис. 7.10 Приемопередатчик цифровой системы связи

Непрерывное сообщение от источника сообщений поступает на устройство, называемое кодером. Под кодированием в широком смысле понимают операцию преобразования отсчетов непрерывных сигналов в последовательность кодовых символов. В результате, на выходе кодера формируются электрические сигналы, соответствующие кодовой последовательности и определяемой передаваемым сообщением.

Кодовые сигналы в виде последовательности импульсов затем поступают на модулятор, на второй вход которого подается колебание несущей частоты с выхода синтезатора частоты. В модуляторе выполняется соответствующая модуляция (амплитудная, фазовая, частотная и т.д.) колебания несущей частоты в соответствии с поступающей кодовой последовательностью. Затем модулированные сигналы усиливаются до необходимого уровня с помощью усилителя мощности и излучаются передающей антенной.

Наведенные в приемной антенне электромагнитные излучения поступают на вход усилителя и преобразователя частоты, где выделяются и усиливаются колебания несущей частоты полезного сигнала. В демодуляторе выполняется демодуляция принимаемого сообщения, и на выходе демодулятора формируется последовательность импульсов, соответствующая последовательности импульсов передаваемого сообщения (на выходе кодера), которая поступает на декодер. В декодере выполняется операция, обратная кодированию, и восстановленное сообщение направляется получателю сообщений.

В одном приемопередающем устройстве кодер и декодер обычно объединяют в единый конструктивный узел (чаще - это одна микросхема) и объединенный блок кодер-декодер по первым буквам составляющих называют кодеком. Аналогично, объединенный блок модулятор-демодулятор называют модемом.

Радиопередающие устройства отличаются по назначению, условиям эксплуатации, виду модуляции радиосигналов и другим характеристикам.

К основным энергетическим показателям РПдУ относят величину мощности сигнала, подводимого к антенне, и коэффициент полезного действия. Различают пиковую мощность полезного сигнала РпдУ и усредненное значение мощности за определенный интервал времени. Коэффициент полезного действия - это отношение полезной мощности, подводимой к антенне, к мощности, потребляемой РпдУ от источника электропитания.

Под диапазоном частот, в котором работает данное РПдУ, понимают такую полосу частот, которая необходима для передачи полезных сигналов в системе связи и выделена данному РПдУ для формирования радиосигналов. К сожалению, кроме полезных сигналов, радиопередающие устройства излучают и побочные колебания.

Внеполосными излучениями называют такие сигналы, формируемые РПдУ, спектры которых расположены вне полосы, отведенной для данной системы связи. Внеполосные излучения являются источниками дополнительных помех для систем связи, работающих в других полосах частот.

Важной характеристикой систем связи является стабильность частоты излучаемых колебаний. Под нестабильностью частоты РПдУ понимают отклонение частоты излучаемых колебаний относительно номинального значения. Недостаточная стабильность частоты ухудшает качество связи и может являться причиной помех для радиотехнических устройств, работающих в смежных диапазонах частот.

По назначению радиопередающие устройства делят на связные и радиовещательные. По условиям эксплуатации РПдУ разделяют на стационарные и мобильные (устанавливаемые на подвижных объектах: самолетные, автомобильные, носимые и т.д.). РПдУ различаются также диапазоном рабочих частот, мощностью излучаемых колебаний и т.д.

Возбудители передатчиков - это достаточно сложные устройства. В их состав могут входить синтезаторы частот, блок формирования видов работ, блок переноса, буферный усилитель. На рис. 2.1 представлена обобщенная структурная схема возбудителя, включающая в себя все перечисленные блоки.

В задачу возбудителя входят формирование высокочастотного сигнала в определенном диапазоне частот, обеспечение требуемого характера перестройки частоты по рабочему диапазону, требуемой стабильности частоты колебаний, формирование различных видов работ. На практике имеет место большое разнообразие способов построения возбудителя. Существенное влияние на выбор способа построения возбудителя могут оказать требования по быстродействию переключения рабочей частоты, уровню побочных продуктов в спектре выходного сигнала, видам работ, которые формируются в возбудителе.

Рис. 2.1. Структурная схема возбудителя

Под видами работ, которые формируются в возбудителе, подразумеваются различные виды модуляции (манипуляции) высокочастотного сигнала. Их достаточно много. Прежде всего, это угловая модуляция, однополосная модуляция, амплитудная модуляция и другие. Некоторые из них являются основными, другие – вспомогательными для определенных видов радиопередатчиков. Модуляция осуществляется на фиксированных поднесущих частотах в специальном блоке, включенном в состав возбудителя, который именуется блоком формирования видов работ (БФВР). Высокочастотные сигналы, сформированные на фиксированных поднесущих, с помощью специального блока, называемого блоком переноса (БП), перемещают в рабочую область частот.

Выходным устройством возбудителя является буферный усилитель (БУ). Отличительной особенностью БУ от других типов усилителей является высокое входное сопротивление. Высокое входное сопротивление БУ обеспечивает развязку возбудителя с последующим трактом усиления ВЧ сигнала.

Главной частью возбудителя в современных передатчиках является синтезатор частоты. Синтезатор частоты формирует сетку высокостабильных частот. Сетка частот заменяет непрерывный рабочий диапазон частот дискретными частотами с шагом F, который называется шагом сетки. Шаг сетки может быть от долей Гц до десятков МГц. В некоторых системах связи УКВ диапазона за шаг сетки принята величина 25 кГц. Такой шаг позволяет на соседних частотах сетки организовать независимые каналы связи без взаимных помех друг другу (принцип частотного разделения каналов).

Любую частоту сетки можно представить в виде

где - коэффициент, который можно менять. Требуемая частота сетки устанавливается командой управления (КУ), поступающей с внешнего устройства, которая устанавливает требуемое значение коэффициента .

Кроме того, синтезатор может вырабатывать дополнительно одну или несколько фиксированных поднесущих частот для БФВР, на которых осуществляется модуляция.

Рабочая частота формируется на выходе блока переноса возбудителя. В передатчиках под блоком переноса понимают смеситель, снабженный полосовым фильтром. Смеситель - это нелинейное устройство. При поступлении на входы смесителя сигналов с разными частотами и на его выходе появляется сигнал, спектр которого содержит гармоники вида

где и - произвольные целые числа. Основными комбинационными частотами является частоты, когда и : - при переносе сигнала вверх и - при переносе сигнала вниз. В передатчиках чаще используется первый вариант, в приемниках - второй вариант. Рабочая частота передатчика образуется путем суммирования сигнала с частотой сетки и сигнала с одной из фиксированных частот , поступающего с БФВР:

Полосовой фильтр блока переноса очищает выходной сигнал от гармоник и других комбинационных спектральных составляющих. Отфильтрованный сигнал поступает на вход БУ и далее на вход усилителя мощности ВЧ сигнала.

В передатчиках систем связи относительно малой мощности чаще всего используется один вид модуляции, например угловая модуляция. При этом БФВР получается достаточно простым. Для его работы в синтезаторе формируется только одна дополнительная поднесущая частота. Ниже рассматривается именно такой случай. Однако в целом предлагаемая методика разработки возбудителя приемлема для любых передатчиков.


Разработка возбудителя заключается в выборе и расчете его отдельных составных частей.

2.1. Синтезаторы частоты

Если передатчик разрабатывается для работы в диапазоне частот, а требуемое значение нестабильности рабочей частоты находится на уровне кварцевых автогенераторов (АГ), то в возбудителе передатчика наиболее целесообразно использовать синтезатор частоты.

Основные параметры синтезаторов

1. Диапазон рабочих частот синтезатора………………...

2. Общее число частот, вырабатываемое синтезатором,…………..

3. Число дополнительных фиксированных частот

Мощность колебаний на выходе синтезатора составляет обычно доли мВт. В настоящее время формирование сетки частот в синтезаторах осуществляется двумя основными методами:

1. Методом прямого синтеза.

2. Методом обратного (косвенного) синтеза.

Метод прямого синтеза

Метод прямого синтеза базируется на формировании сетки частот за счет использования простейших арифметических операций – умножения, деления, суммирования, вычитания. По виду использованной элементной базы синтезаторы прямого метода синтеза могут быть аналоговыми, цифровыми и комбинированными.

Название : Проектирование радиопередающих устройств.

Рассмотрены вопросы проектирования радиопередающих устройств различного диапазона волн и мощностей. Дана методика расчета связных радиовещательных и телевизионных радиопередатчиков, а также радиопередатчиков радиорелейной и космической связи Изложены особенности проектирования транзисторных каскадов радиопередающих устройств и возбудителей различного диапазона частот. Книга рассчитана на студентов ВУЗов связи, а также может быть полезна для разработчиков радиотехнической аппаратуры.



Предисловие. 6
Глава 1. Введение
1.1. Общие сведения. 7
1.2. Электровакуумные приборы для радиопередающих устройств. 8
1.3. Общие рекомендации по построению структурной схемы тракта высокой частоты передатчика. 16
Список литературы. 19
Глава 2. Радиопередатчики длинных и средних волн
2.1. Типы и назначение передатчиков. 21
2.2. Основные требования к передатчикам. 22
2.3. Структурные схемы. 25
2.4. Расчет системы выходных контуров. 33
2.5. Особенности принципиальных схем выходной ступени. 36
Список литературы. 41
Глава 3. Проектирование передатчиков коротковолнового диапазона
3.1. Типы передатчиков и требования к ним. 42
3.2. Структурные схемы. 45
3.3. Выбор режима и расчет лампового резонансного усилителя. 52
3.4. Расчет условий устойчивости и коэффициента усиления по мощности резонансных каскадов. 56
3.5. Ступени широкополосного усиления. 62
3.6. Проектирование широкополосных трансформаторов KB диапазона. 70
3.7. Колебательные системы. 84
3.8. Фильтрация гармоник. 94
Список литературы. 106
Глава 4. Расчет режимов генераторов с амплитудной модуляцией
4.1. Краткие сведения об амплитудной модуляции. 109
4.2. Модуляция на управляющую сетку смещением. 110
4.3. Расчет усилителей модулированных колебаний. 113
4.4. Модуляция на пентодную сетку. 114
4.5. Анодная модуляция. 115
Список литературы. 121
Глава 5. Модуляторы связных и радиовещательных передатчиков
5.1. Модуляторы связных передатчиков. 122
5.2. Модуляторы радиовещательных передатчиков. 127
5.3. Отрицательная обратная связь в модуляторах. 140
Список литературы. 143
Глава 6. Однополосные передатчики коротковолнового диапазона
6.1. Общие сведения. 144
6.2. Структурные схемы однополосных передатчиков. 148
6.3. Групповой сигнал в тракте однополосного передатчика. 149
6.4. Порядок проектирования передатчика с ОМ. 151
6.5. Технический расчет выходного каскада. 156
6.6. Расчет промышленного КПД передатчика с ОМ. 164
Список литературы. 165
Глава 7. Проектирование оконечных каскадов транзисторных передатчиков
7.1. Введение. 167
7.2. Генераторный транзистор и его параметры. 168
7.3. Классификация транзисторных генераторов. 174
7.4. Генераторы в недонапряженном и критическом режимах. 178
7.5. Генераторы в ключевом и перенапряженном режимах. 194
7.6. Особенности проектирования промежуточных каскадов. 208
7.7. Особенности проектирования генераторов при коллекторной амплитудной модуляции. 209
7.8. Проектирование цепей связи. 212
7.9. Расчет теплового режима. 213
Список литературы. 216
Глава 8. Возбудители
8.1. Вводные замечания. 218
8.2. Выбор и обоснование функциональной схемы датчика опорных частот. 219
8.3. Формирование видов работ в возбудителе. 226
8.4. Выбор частот возбудителя. 230
Список литературы. 232
Глава 9. Проектирование и расчет колебательных систем усилителей метрового, дециметрового и сантиметрового диапазонов
9.1. Особенности конструкций усилительных приборов. 234
9.2. Принципы построения колебательных систем усилителей. 242
9.3. Колебательные системы с использованием однородных линий. 249
9.4. Колебательные системы с использованием неоднородных линий. 266
9.5. Цепи связи. 274
9.6. Цепи питания усилителя. 292
Список литературы. 294
Глава 10. Вещательные передатчики изображения диапазонов ОВЧ и УВЧ
10.1. Общие сведения. 296
10.2. Составление общей структурной схемы. 297
10.3. Построение и расчет тетрадных каскадов УМК. 310
10.4. Построение и расчет тракта широкополосного транзисторного УМК. 320
10.5. Построение и расчет тракта модулированных колебаний на промежуточной частоте. 325
Список литературы. 333
Глава 11. Передатчики ЧМ вещания и звукового сопровождения телевизионных программ
11.1. Основные технические характеристики передатчиков ЧМ вещания и звукового сопровождения. 334
11.2. Составление структурных схем передатчиков. 334
11.3. Проектирование каскадов тракта усиления ВЧ. 341
11.4. Проектирование частотных модуляторов на варикапах. 345
Список литературы. 349
Глава 12. Передатчики на клистронах для тропосферной и космической вязи и телевидения
12.1. Основные технические характеристики передатчиков тропосферных и космических линий связи. 350
12.2. Составление структурных схем. 351
12.3. Выбор типа клистрона. 353
12.4. Расчет электрических и геометрических параметров клистрона. 355
12.5. Расчет режима усилителя. 363
12.6. Поверочный расчет частотных характеристик. 369
12.7. Коэффициент усиления. Мощность возбудителя. 370
12.8. Составление принципиальной схемы клистронного усилителя. 371
12.9. Проектирование клистронных усилителей телевизионной радиостанции. 373
12.10. Расчет режимов клистронного усилителя передатчика, изображения. 377
12.11. Расчет режима клистронного усилителя передатчика звукового сопровождения. 382
12.12. Построение схемы оконечных каскадов телевизионных клистронных усилителей. 384
Список литературы. 386
Глава 13. Усилители и автогенераторы УВЧ и СВЧ на металлокерамических лампах
13.1. Вводные замечания. 387
13.2. Схемы усилителей и автогенераторов. 387
13.3. Расчет режима усилителя мощности. 389
13.4. Пример расчета режима и колебательной системы усилителя. 395
13.5. Усиление модулированных колебаний. 406
13.6. Расчет режима автогенератора. 408
Список литературы. 410
Глава 14. Передатчики радиорелейной связи
14.1. Вводные замечания. 411
14.2. Основные требования к передатчикам РРЛ с частотной модуляцией. 412
14.3. Построение структурных схем ЧМ РРЛ передатчиков. 415
14.4. Проектирование частотных модуляторов на варикапах. 419
14.5. Проектирование частотных модуляторов на отражательных клистронах. 422
14.6. Проектирование СВЧ смесителей передатчиков. 423
14.7. Расчет полосовых СВЧ фильтров. 426
Список литературы. 426
Приложение 1. 427
Приложение 2.

Электровакуумные приборы для передающих устройств .

В радиопередающих устройствах используются разнообразные электронные, полупроводниковые и ионные приборы. Ассортимент их постоянно обновляется: разрабатываются принципиально новые, совершенствуются существующие, изымаются из практики устаревшие.

Целесообразность применения ламп или транзисторов и их конкретные типы для каждого каскада определяются технико-экономическим расчетом. Общая тенденция в настоящее время такова.

В мощных каскадах передатчиков (за исключением самых длинноволновых) в основном применяются электронные радиолампы и специальные электронные приборы СВЧ. В маломощных каскадах все более широко применяются полупроводниковые приборы.
Использование в передающих устройствах маломощных генераторных и приемно-усилительных ламп оправдано только в том случае, если доказана невозможность или явная нецелесообразность использования транзисторов, полупроводниковых диодов и т. п. Например, применение приемно-усилительных ламп оказывается неизбежным в условиях высокой температуры окружающей среды, при большой разнице максимальной и минимальной температуры, при наличии проникающей радиации и т. п.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Проектирование радиопередающих устройств - Шахгильдян В.В. - fileskachat.com, быстрое и бесплатное скачивание.

Курсовая работа на тему:

Связные радиопередающие устройства с частотной модуляцией

Техническое задание

В процессе проектирования радиопередающего устройства необходимо выполнить следующее:

составить и обосновать структурную схему ПРД;

сформировать требования к ИП, привести схемы.

Характеристики передатчика:

f = (160 ¸ 180) МГц

Df = 10 кГц

ПВИ = -50 дБ

F мод = (0,3 ¸ 3) кГц

питание сетевое - 220 В, 50 Гц

Введение

Связные радиопередающие устройства (РПУ) с частотной модуляцией (ЧМ) проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае рабочая частота стабилизируется кварцевым резонатором, а для генерации ЧМ колебаний могут быть использованы как прямой метод управления частотой, так и косвенный. Структурная схема передатчика с использованием прямого метода ЧМ изображена на рис.1.

Рис.1 Структурная схема передатчика с прямой ЧМ

Модулирующее напряжение U W подается на варикап, с помощью которого модулируется по частоте кварцевый автогенератор (КГ). Кварцевый генератор работает на частотах 10-15 МГц, затем его частота умножается в n раз до рабочего значения, сигнал подается на усилитель мощности (УМ) и через цепь связи в антенну.

Косвенный метод ЧМ основан на преобразовании фазовой модуляции (ФМ) в частотную при помощи введения в схему интегрирующего звена, т.е. фильтра низких частот (ФНЧ). Структурная схема передатчика с использованием косвенного метода получения ЧМ изображена на рис.2.

Рис.2 Структурная схема передатчика с использованием косвенного метода ЧМ.


В качестве возбудителя диапазонного передатчика с ЧМ используется синтезатор сетки дискретных частот, ведомый генератор которого управляется двумя варикапами (рис.3).


Рис.3 Структурная схема ЧМ передатчика с синтезатором частоты

Для построения нашего связного передатчика воспользуемся подобной схемой, но уточним состав и количество входящих в неё блоков.

В качестве возбудителя диапазонного передатчика с ЧМ используется синтезатор сетки дискретных частот, ведомый генератор которого управляется двумя варикапами (рис.3). На варикап VD1 подается модулирующее напряжение U W , на варикап VD2 - управляющее напряжение системы фазовой автоподстройки частоты (ФАПЧ). Разделение функций управления объясняется тем, что девиация частоты под влиянием модулирующего сигнала относительно невелика (3-5 кГц) в сравнении с диапазоном перестройки ведомого генератора (ГУН) управляющим сигналом с выхода системы ФАПЧ. Поэтому варикап VD1 связан с колебательным контуром ГУНа значительно слабее, чем VD2. Шаг сетки частот на выходе передатчика в зависимости от рабочего диапазона может быть 5; 10; 12,5; 25 кГц.

Для повышения устойчивости необходимо, чтобы оконечный усилитель как можно меньше влиял на работу ГУНа, поэтому производят их развязку по частоте введением в структуру передатчика умножителя частоты. В таком случае шаг сетки синтезатора уменьшается в n раз, где n - коэффициент умножения частоты умножителя.

В данном курсовом проекте проведен анализ диапазонного передатчика ЧМ. В пояснительной записке представлены электрические расчеты оконечного каскада, цепи связи с фидером, автогенератора и частотного модулятора, приведены конструктивные расчеты оконечного каскада и цепи связи с фидером. К пояснительной записке прилагаются чертежи с изображениями полной электрической схемы и конструкцией оконечного каскада передатчика.

1. Расчет оконечного каскада

1.1 Выбор транзистора

Мощность в фидере связного передатчика, работающего в диапазоне 160 - 180 МГц, равна 8 Вт. Примем величину КПД цепи связи: h ЦС = 0,7. Мощность, на которую следует рассчитывать оконечный каскад, равна:

Р 1макс = Р Ф /h ЦС = 8/0,7 = 11,43 Вт.

Справочная величина мощности, отдаваемой транзистором, должна быть не менее 10 Вт.

Как правило, для генерации заданной мощности в нагрузке в определенном диапазоне частот можно подобрать целый ряд транзисторов. Из группы транзисторов нужно выбрать тот, который обеспечивает наилучшие электрические характеристики усилителя мощности.

При выборе типа транзистора усилителя мощности (УМ) учтем следующее:

для снижения уровня нелинейных искажений транзистор должен удовлетворят условию 3 . f т / β о > f;

выходная мощность транзистора Р вых > Р 1макс.

Коэффициент полезного действия каскада связан с величиной сопротивления насыщения транзистора - r нас. Чем меньше его величина, тем меньше остаточное напряжение в граничном режиме и выше КПД генератора.

Исходя из этих условий, выбираем транзистор 2Т909А, имеющий следующие параметры:

1. Параметры идеализированных статических характеристик:

сопротивление насыщения транзистора на высокой частоте r нас » 0,39 Ом;

коэффициент усиления по току в схеме с ОЭ на низкой частоте (f →0) β о = 32;

сопротивление базы r б = 1,0 Ом;

сопротивление эмиттера r э = 2,0 Ом;

2. Высокочастотные характеристики:

граничная частота усиления по току в схеме с ОЭ f т =570 МГц;

емкость коллекторного перехода С к = 30 пФ;

емкость эмиттерного перехода С э = 244 пФ;

индуктивности выводов L Б = 2,5 нГн, L Э = 0,2 нГн, L К = 2 нГн;

3. Допустимые параметры:

предельное напряжение на коллекторе U кэ доп = 60 В;

обратное напряжение на эмиттерном переходе U бэ доп = 3,5 В;

постоянная составляющая коллекторного тока I ко. доп = 2 А;

максимально допустимое значение коллекторного тока I к. макс. доп = 4 А;

диапазон рабочих частот 100 - 500 МГц;

4. Тепловые параметры:

максимально допустимая температура переходов транзистора t п. доп = 160 ºС;

тепловое сопротивление переход - корпус R пк = 5 ºС/Вт;

5. Энергетические параметры

P вых = 17 Вт;

Режим работы - класс В.

Т.к. УМ должен усиливать сигнал с минимальными искажениями, т.е. иметь линейную амплитудную характеристику, и, кроме того, возможно больший КПД, примем угол отсечки коллекторного тока q = 90° (класс В). При этом

- коэффициенты Берга.

1.2 Расчет коллекторной цепи

1. Амплитуда первой гармоники напряжения на коллекторе в критическом режиме

В

2. Максимальное напряжение на коллекторе

В

Т.к. не выполняется условие

, необходимо уменьшить Е k , выберем стандартное постоянное питающее напряжение равным 24 В. А также, если Е k выбирать равным наибольшему предельно допустимому для данного типа транзистора, то следует ожидать существенного снижения его надежности из-за опасности пробоя. В В.

3. Амплитуда первой гармоники коллекторного тока

А

4. Постоянная составляющая коллекторного тока

А;

5. Максимальная мощность, потребляемая от источника коллекторного напряжения

Вт

6. КПД коллекторной цепи при номинальной нагрузке