Как выбирается ведущая строка симплекс таблицы. Симплексный метод решения задач линейного программирования

  • 20.04.2019

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6. Пример(1) решения задачи ЛП методом симплекс-таблиц
3.7. Пример(2) решения задачи ЛП методом симплекс-таблиц

Идея метода симплекс-таблиц заключается в целенаправленном переборе вершин симплекса. Для начало перебора необходимо выбрать опорную вершину с которой начнется перебор. Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, (перебирая симплекс вершины) при котором значение целевой функции возрастает (убывает). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Для составления такого плана необходимо произвести векторный анализ, на основе которого определить опорную вершину, с которой начнется перебор. Система неравенств приводится к каноническому виду:

x 1 + a 1,m+1* x m+1 + ... + a 1s* x s +...+ a 1n * x n = b 1 ;

x 2 + a 2,m +1* x m+1 + ... + a 2s * x s +...+ a 2n* x n = b 2 ;

x m + a m,m+1* x m+1 + ... + a ms* x s +...+ a mn* x n = b m .

Переменные x 1 , x 2 ,...,x m , входящие с единичными коэффициентами только в одно уравнение системы и с нулевыми - в остальные, называются базисными . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Остальные n-m переменных (x m+1 , ...,x n) называются небазисными переменными.

3.1. Приведение математической модели к каноническому виду

Приведем математическую модель задачи к каноническому виду. Для этого избавимся от знаков неравенств посредством ввода дополнительных переменных и замены знака неравенства на знак равенства. Дополнительная переменная добавляется для каждого неравенства эксклюзивно, причем эта переменная указывается в целевой функции с нулевым коэффициентом. Правило ввода дополнительных переменых: при ">=" - переменная вводится в неравенство с коэффициентом +1; при "<=" - с коэффициентом (-1).

Причем иногда, когда в уравнении нет базисной переменной, чтобы сделать отрицательную дополнительную переменную базисной можно умножить все уравнение на (-1).

Также можно переориентировать целевую функцию с минимума на максимум или наоборот умножив все коэффициенты при переменных в этой функции на (-1).

3.2. Векторный анализ

При векторном анализе строятся вектора для каждой переменной: составляющими координатами n-мерного (n-количество уравнений системы) вектора будут коэффициенты этой переменной в соответствующих уравнениях.

Как было сказано выше вектор в котором единичный коэффициент только в одном уравнении и нулеые коэффициенты в других - называется базисным. В канонической системе каждому уравнению соответствует ровно одна базисная переменная. После проверки всех ограничений получается система в каноническом виде и появляется возможность заполнить начальную симплексную таблицу.

3.3. Метод искусственных переменных

Зачастую случается так, что базисных векторов меньше чем количество уравнений, т.е. несколько уравнений не содерджат базисных переменных. В таком случае используют метод искусственных переменных для добавления базисных переменных.

Так как введенные переменные не имеют отношения к существу задачи ЛП в исходной постановке, то необходимо добиться обращения в нуль искусственных переменных. Этого можно сделать с помощью двухэтапного симплекс-метода.

Этап 1. Рассматривается искусственная целевая функция, равная сумме искусственных переменных, которая минимизируется при помощи симплекс-метода. Другими словами, производится исключение искусственных переменных. Если минимальное значение вспомогательной задачи равно нулю, то все искусственные переменные обращаются в нуль и получается допустимое базисное решение начальной задачи. Далее реализуется этап 2. Если минимальное значение вспомогательной задачи положительное, то по крайней мере одна из искусственных переменных также положительная, что свидетельствует о противоречивости начальной задачи, и вычисления прекращаются.

Этап 2. Допустимое базисное решение, найденное на первом этапе, улучшается в соответствии с целевой функцией исходной задачи ЛП на основе симплекс-метода, т.е. оптимальная таблица 1 этапа превращается в начальную таблицу этапа 2 и изменяется целевая функция.

3.4. Построение симплекс-таблицы

Выбираем начальное допустимое базисное решение. Базисным решением называется решение, полученное при нулевых значениях небазисных переменных, т.е. x i =0, i=m+1,...,n. Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных неотрицательны, т.е. x j = b j >=0, j=1,2,...,m. В этом случае целевая функция примет следующий вид: S = c b* x b = c 1* b 1 + c 2* b 2 +...+c m* b m . Заполняем первоначальную таблицу симплекс - метода:

Таблица 2.3

c b x b c 1 c 2 ... c m c m+1 ... c n b i
базис x 1 x 2 ... x m x m+1 ... x n
с 1 x 1 1 0 ... 0 a 1,m+1 ... a n b 1
с 2 x 2 0 1 ... 0 a 2,m+1 ... a 2 n b 2
... ... ... ... ... ... ... ... ... ...
c m x m 0 0 ... 1 a m,m+1 ... a m n b m
S

3.5. Анализ симплекс-таблицы

  1. Вычисляем вектор относительных оценок c при помощи правила скалярного произведения

c j = c j - c b* S j ,

где

с b - вектор оценок базисных переменных;

S j - j-тый столбец в канонической системе, соответствующей рассматриваемому базису.

Дополняем первоначальную таблицу c - строкой.

Таблица 2.4

базис x 1 x 2 ... x m x m+1 ... x n с 1 x 1 1 0 ... 0 a 1,m+1 ... a 1 n b 1 с 2 x 2 0 1 ... 0 a 2,m+1 ... a 2 n b 2 ... ... ... ... ... ... ... ... ... ... c m x m 0 0 ... 1 a m,m+1 ... a m n b m 0 0 ... 0 ... W
c b x b c 1 c 2 ... c m c m+1 ... c n b i
c- строка

3. Если все оценки c j <=0 (c j >= 0), i=1,...,n, то текущее допускаемое решение - максимальное (минимальное). Решение найдено.

4. Впротивном случае в базис необходимо ввести небазисную переменную x r с наибольшим значением c j вместо одной из базисных переменных (табл. 2.5).

  1. При помощи правила минимального отношения min(b i /a ir) определяем переменную x p , выводимую из базиса. Если коэффициент a ir отрицателен, то b i /a ir = бесконечность. В результате пересечение столбца, где находится вводимая небазисная переменная x r и строки, где находится выводимая базисная переменная x p определит положение ведущего элемента таблицы (табл. 2.6).

Таблица 2.5

c m+1

b i

базис

x m+1

с 1

a 1,m+1

a 1 r

a 1 n

с 2

a 2,m+1

a 2 r

a 2 n

a m,m+1

a m r

a m n

b m

c - строка

Таблица 2.6

c m+1

b i

b i /

a ir

x m+1

с 1

a 1,m+1

a 1 r

a 1 n

b 1 /a 1r

с 2

a 2,m+1

a 2 r

a 2 n

b 2 /a 2r

с p

a p,m+1

a pr

a pn

b p /a pr

a m,m+1

a m r

a m n

b m

b m /a nr

c - стро - ка

6. Применяем элементарные преобразования для получения нового допускаемого базового решения и новой таблицы. В результате ведущий элемент должен равняться 1, а остальные элементы столбца ведущего элемента принять нулевое значение.

  1. Вычисляем новые относительные оценки с использованием правила скалярного преобразования и переходим к шагу 4.

Рассмотрен пример решения задачи симплекс методом, а также пример решения двойственной задачи.

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

Он, как и первая строка, отводится для показателей критерия оптимальности. Отличие между первой строкой и первым столбцом состоит в следующем:

      Первая строка, в отличие от столбца, сохраняется лишь в первой симплексной таблице. Начиная со второй итерации верхняя строка перестает быть обязательной.

      В первой строке указываются все без исключения (и основные, и дополнительные) показатели критерия оптимальности, т.е. все коэффициенты, с которыми неизвестные входят в целевую функцию. В первый же столбец входит только часть коэффициентов при неизвестных в целевой функции, т.к. число строк в матрице равно числу дополнительных неизвестных. Эта часть состоит из показателей, номера которых указаны во втором столбце (р k).

    Второй столбец – р k (индеек k – номер итерации).

В этом столбце указываются номера неизвестных, входящих в базисное решение. Эти номера используют для нумерации соответствующих строк матрицы.

В первой симплексной таблице в столбце р 0 указываются номера всех дополнительных переменных.

3. Третий столбец – х 0 .

В первой симплексной таблице он заполняется свободными членами уравнений из системы ограничений. В процессе итеративного расчета эти показатели преобразуются в искомое решение. Поэтому данный столбец носит название итогового столбца .

4. Значение целевой функции F k .

На пересечении итогового столбца в целевой строке указывается значение функционала F k , соответствующее данному этапу решения, данной итерации k.

    Столбцы «основания матрицы».

Обычно сначала располагаются столбцы для основных неизвестных, а вслед за ними – для дополнительных неизвестных.

В этих столбцах в первой симплексной таблице приводятся коэффициенты при неизвестных из уравнений исходных условий.

6. Последующие три столбца таблицы (, , ) имеют вспомогательное значения. Без этих столбцов можно обойтись, но они существенно облегчают проведение расчетов. Более подробно содержание этих столбцов будет рассматриваться ниже.

Пример

Рассмотрим симплексную задачу, записанную в общем виде:

Приведем задачу к канонической форме. Для этого в каждое из неравенств системы введем по одному неизвестному (дополнительному) – х 4 , х 5 . х 6 . Тогда

F = 15x 1 + 20x 2 +5x 3  max.

Заполним первую симплексную таблицу.

Мы заполним все клетки, исходя из условий задачи.

Чтобы заполнить клетку F 0 в первой таблице, необходимо просуммировать произведения элементов столбца х 0 на элементы столбца с 0 , т.е.

F 0 = 600∙0 + 520∙0 +600∙0 =0.

Чтобы заполнить целевую строку в первой таблице, необходимо соответствующее значение с j вычесть из суммы произведений элементов столбца х j на элементы столбца с 0 .

Для столбца х 1 величина двойственной оценки будет определяться

(0∙80+0∙15+0∙5) – 15=-15;

Для х 2: (0 35+0 60+0 5) – 20=-20;

х 3: (0 10+0 0+0 90) – 5=-5 и т.д.

В итоге первая симплексная таблица будет выглядеть так:

Таблица 1

Прежде чем приступать к решению, необходимо проверить, является ли предложенный в таблице план (решение) оптимальным.

Определение

Решение считается оптимальным , если все значения чисел в целевой строке положительны.

Если полученное решение не является оптимальным, то его можно улучшить. Для этого нужно:

1. Выбрать максимальное по абсолютной величине отрицательное значение числа в целевой строке.

В нашем примере таким числом будет (-20), находящееся в столбце «х 2 ». Именно это значение задает ключевой столбец .

Обратите внимание:

Ключевой столбец показывает, какое из х j войдет в новое решение задачи. В нашем случае - неизвестное х 2 .

Обратите внимания:

Чтобы включить в новое решение неизвестное х j , улучшающее это решение, необходимо вывести из базисного решения одно из х j , входящее в него.

2. Выбрать минимальное значение частного от деления элементов столбца х 0 на элементы ключевого столбца. Результаты этих расчетов заносятся в столбец «» симплексной таблицы.

В нашем примере эти отношения равны:

Минимальное значение соответствует х 5 и равно 8,67. Это отношение задает ключевую строку .

    Выбрать элемент, находящийся на пересечении ключевого столбца и ключевой строки, который называется ключевым элементом .

В нашем примере ключевой элемент равен 60 и находится на пересечении столбца х 2 и строки х 5 .

Обратите внимание:

Ключевым не может быть столбец, все элементы которого оказались отрицательными или нулевыми.

    Просуммировать элементы матрицы по строкам (начиная от столбца х 0 и кончая столбцом х 6). Полученные суммы записываются в столбец «».

    Преобразовать ключевую строку . Для этого

    1. Каждый элемент ключевой строки делится на ключевой элемент, начиная с элемента столбца «х 0 »;

Фрагмент

      В столбце р 1 записывается х 2 вместо х 5 ;

      В столбце с j записывается значение критерия оптимальности при х 2 , т.е. 20.

    Все остальные элементы симплексной таблицы пересчитывают, подчиняясь основному правилу. Это правило получило название правила диагонали или правила треугольника .

.

При пересчете величины функции цели получаем:

.

Аналогичным образом поступаем со всеми другими элементами таблицы. В итоге получаем новую симплексную таблицу.

Таблица 2.

Как видно из табл. 2, оптимальное решение не получено, т.е. необходимо продолжить решение, используя все рассмотренные правила преобразования симплексных таблиц.

Примечание 1.

Столбец «» используется для проверки хода решения по строкам. Сумма новых значений элементов строки должна равняться величине элемента этой строки и столбца «», преобразованного по правилу диагонали.

Примечание 2.

Величина функции цели должна равняться сумме произведений элементов столбца с j на элементы столбца х 0 .

Самостоятельно дорешайте эту задачу. В результате должно получиться:

F=236.7; x 1 =3.31; x 2 =7.8; x 3 =6.05.

Примечание 3.

В столбце «» записываются частные от деления элемента в ключевом столбце и строке i на ключевой элемент.

Примечание 4.

В следующей таблице начинайте вычисления с помощью правила диагонали с целевой строки. Если все оценки положительны, то найдено оптимальное решение и остается заполнить столбец х 0 . В этом случае основание матрицы пересчитывать не обязательно.

Формируем следующую часть симплексной таблицы. Вместо переменной x6 в план 1 войдет переменная x2.

Строка, соответствующая переменной x2 в плане 1, получена в результате деления всех элементов строки x6 плана 0 на разрешающий элемент РЭ=1. На месте разрешающего элемента в плане 1 получаем 1. В остальных клетках столбца x2 плана 1 записываем нули.

Таким образом, в новом плане 1 заполнены строка x2 и столбец x2. Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника. Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент

РЭ. НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

(0)-(2 * (-2+2M)):1

(-1-M)-(-2 * (-2+2M)):1

(-2+2M)-(1 * (-2+2M)):1

(-M)-(-1 * (-2+2M)):1

(-M)-(0 * (-2+2M)):1

(0)-(0 * (-2+2M)):1

(0)-(1 * (-2+2M)):1

(0)-(0 * (-2+2M)):1

Получаем новую симплекс-таблицу

Итерация №1.

  • 1. Проверка критерия оптимальности. Текущий опорный план неоптимален, так как в индексной строке находятся положительные коэффициенты.
  • 2. Определение новой базисной переменной. В качестве ведущего выберем столбец, соответствующий переменной x1, так как это наибольший коэффициент.
  • 3. Определение новой свободной переменной. Вычислим значения Di по строкам как частное от деления: bi / ai1 и из них выберем наименьшее:

min (-, 1: 3, -) = 1/3

Следовательно, 2-ая строка является ведущей.

Разрешающий элемент равен (3) и находится на пересечении ведущего столбца и ведущей строки

Формируем следующую часть симплексной таблицы.

Вместо переменной x7 в план 2 войдет переменная x1. Строка, соответствующая переменной x1 в плане 2, получена в результате деления всех элементов строки x7 плана 1 на разрешающий элемент РЭ=3

На месте разрешающего элемента в плане 2 получаем 1. В остальных клетках столбца x1 плана 2 записываем нули.

Таким образом, в новом плане 2 заполнены строка x1 и столбец x1. Все остальные элементы нового плана 2, включая элементы индексной строки, определяются по правилу прямоугольника.

Представим расчет каждого элемента в виде таблицы

(0)-(1 * (-5+3M)):3

(-5+3M)-(3 * (-5+3M)):3

(0)-(0 * (-5+3M)):3

(-2+M)-(1 * (-5+3M)):3

(-M)-(-1 * (-5+3M)):3

(0)-(0 * (-5+3M)):3

(2-2M)-(-1 * (-5+3M)):3

(0)-(1 * (-5+3M)):3

Получаем новую симплекс-таблицу: