Корреляционная функция сигнала. Спектральные и корреляционные свойства сигнала

  • 11.05.2019

Понятие “корреляция” отражает степень сходства некоторых объектов или явлений. Применительно к сигналам корреляционная функция есть количественная мера сходства двух копий сигнала сдвинутых друг относительно друга по времени на некоторую величину t - чем больше значение корреляционной функции, тем больше похожи сигналы друг на друга.

Корреляционная функция задается следующим выражением:

R ss (t) = s(t) s(t - t)dt (1.24)

- ∞

Здесь индекс R ss означает, что вычисляется автокорреляционная функция (АКФ) корреляция сигнала s(t) с его сдвинутой копией.

Корреляционная функция (АКФ) сигнала обладает следующими свойствами:

1. Значение АКФ при t = 0 равно энергии сигнала:

R ss (0) = s(t) 2 dt. (1.25)

2. АКФ является четной и невозрастающей функцией

R ss (t) = R ss (-t), R ss (t) ≤ R ss (0). (1.26)

3. АКФ сигнала с конечной энергией при t → стримится к нулю.

4. АКФ периодического сигнала периодична с периодом, равным периоду самого сигнала.

Если АКФ показывает степень сходства между сдвинутыми копиями одного и того же сигнала, то аналогичная ей взаимная корреляционная функция (ВКФ) позволяет оценить степень подобия двух различных сигналов

R 12 (t) = s 1 (t) s 2 (t - t)dt (1.27)

Вычисление АКФ и ВКФ сигналов является одними из основных алгоритмов обработки сигналов при их приеме на фоне помех. В связи с этим понимание физического смыслакорреляции ” и знание свойств корреляционных функций различных сигналов является важным элементом образования специалиста в области передачи информации и связи.


Целью данной работы является изучение простейших радиотехнических сигналов, разложение их в ряд Фурье, создание в среде программирования Matlab соответствующих программ.

Ход работы:

1 . Создать программу построения следующих простейших радиотехнических сигналов и представить их графики:

1.1. прямоугольный импульс;

1.2. сумма синусов;

1.3. радиоимпульс с прямоугольной огибающей;

1.5. радиоимпульс с гауссовской огибающей;

1.6. последовательность импульсов типа «меандр»;

1.7. фазоманипулированная последовательность;

1.8. радиоимпульс с экспоненциальной огибающей.

2 . Создать подпрограмму разложения сигнала в ряд Фурье.

3. Определить автокорреляционную функцию Rxx(k) для сформированных моделей сигналов.

5. Оценить коэффициент корреляции исходного сигнала и его разложения в ряд Фурье.

Отчет о выполненной работе должен содержать:

Краткое описание цели работы;

Тексты *.mat программ моделирования;

Графическое представление сформированных полезных сигналов;

Выводы о проделанной работе.

Контрольные вопросы :

1. Что такое “детерминированный сигнал”? Приведите примеры.

2. Что такое “система ортогональных функций”. Как определяются коэффициенты ряда Фурье.

3. Что такое “спектр сигнала”?

4. Запишите выражения для ряда Фурье на основе тригонометрических и комплексных экспоненциальных функций.

5. Что такое “преобразование Фурье”?

6. Запишите выражения для прямого и обратного преобразований Фурье.

7. Как выглядит спектр одиночного прямоугольного импульса?

8. Как выглядит спектр функции вида sin(x)/x?

9. Как изменится форма спектра прямоугольного (гауссовского) импульса при изменении (увеличении, уменьшении) его длительности?

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

B su () =s(t) u(t+) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|B su ()|  ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t- в формуле (6.2.1), получаем:

B su () =s(t-) u(t) dt = u(t) s(t-) dt = B us (-).

Отсюда следует, что для ВКФ не выполняется условие четности, B su ()  B su (-), и значения ВКФ не обязаны иметь максимум при  = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал  сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что и фиксируется функцией B su . Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака  при увеличения значения  от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция B sv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv .

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

B su () =s(t) u(t+) dt. B us () =u(t) s(t+) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении . При больших интервалах задания сигналов выражение может быть записано в следующей форме:

B uv () = B s 1 s 2 () +
+
+
. (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

B uv () → B s 1 s 2 ().

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при t = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

B xy (n) =
x k y k-n . (6.2.4)

При нормировании в единицах мощности:

B xy (n) = x k y k-n 
. (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

B up (k) = B sp (k) + B qp (k) = B sp (k) + .

А поскольку → 0 при увеличении N, тоB up (k) → B sp (k). Очевидно, что функция B up (k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции B up (k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

 su () = C su ()/ s  v . (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах  может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах , на которых наблюдаются нулевые значения  su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений  su (n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

  • 5 Спектральный анализ периодических сигналов. Условия Дирихле. Ряд Фурье.
  • 6 Спектральный анализ непериодических сигналов. Преобразование Фурье. Равенство Парсеваля.
  • 7 Представление непрерывных сигналов выборками. Теорема Котельникова. Влияние частоты дискретизации на возможность восстановления сигнала с помощью фильтра.
  • 8 Процесс интерполяции непрерывного сообщения. Простейшие виды интерполяции алгебраическими полиномами.
  • 9 Корреляционный анализ. Корреляционная функция, ее свойства. Вычисление корреляционной функции одиночного импульса и периодического сигнала
  • 10 Взаимная корреляционная функция, ее свойства. Вычисление взаимной корреляционной функции сигналов
  • 11 Случайные процессы. Реализация случайного процесса. Законы распределения случайных процессов
  • 13 Помехоустойчивое кодирование. Повышение верности в одностороннем и двустороннем каналах передачи
  • 14 Блочные систематические коды, свойства и способы представления
  • 15 Коды Хэмминга, свойства. Структурная схема кодера и декодера, принцип работы
  • 16 Общие свойства и способы представления циклических кодов.
  • 18 Аналоговые виды модуляции. Амплитудная модуляция. Амплитудно-модулированное колебание, временная и спектральная характеристики
  • 19 Аналоговые виды модуляции. Амплитудный модулятор.
  • 20 Аналоговые виды модуляции. Демодулятор ам-сигналов.
  • 21. Аналоговые виды модуляции. Балансная модуляция. Балансно-модулированное колебание, временная и спектральная характеристики. Модулятор и демодулятор бмк.
  • 22 Аналоговые виды модуляции. Однополосная модуляция. Методы формирования одной боковой полосы частот ам-колебания.
  • 24 Спектры фазо-модулированных и частотно-модулированных колебаний.
  • 25 Аналого-импульсные виды модуляции. Амплитудно-импульсная модуляция: аим-1 и аим-2. Модуляторы и демодуляторы аим сигналов.
  • 26 Широтно-импульсная модуляция: шим-1 и шим-2. Спектральное представление шим-сигнала. Модуляторы шим-сигналов.
  • 27 Фазо-импульсная модуляция. Модуляторы фим-сигналов.
  • 28 Частотно-импульсная модуляция. Детекторы чим-сигналов.
  • 29 Цифровые виды модуляции. Импульсно-кодовая модуляция. Дискретизация, квантование и кодирование.
  • 30 Дифференциальная икм. Структурная схема системы передачи с предсказанием. Структурная схема линейного предсказателя, принцип работы. Адаптивная дифференциальная икм.
  • 31 Дельта-модуляция. Принцип формирования сигнала дельта-модуляции. Адаптивная дельта-модуляция.
  • 32 Дискретные виды модуляции. Способы двухпозиционной (однократной) модуляции. Позиционность сигнала, кратность модуляции.
  • 33 Однократная абсолютная фазовая манипуляция. Фазовый манипулятор.
  • 34 Детектор фмн-сигналов.
  • 35 Манипулятор однократной относительной фазовой манипуляции.
  • 35 Манипулятор однократной относительной фазовой манипуляции.
  • 36 Демодулятор сигналов с однократной офмн.
  • 38 Принципы построения многоканальных систем передачи. Теоретические предпосылки разделения каналов. Частотное разделение каналов.
  • 39 Фазовое разделение каналов. Модулятор и демодулятор сигналов дофмн.
  • 40 Временное разделение каналов. Структурная схема многоканальной системы передачи с временным разделением каналов.
  • 41 Оптимальный прием сигналов. Задачи и критерии оптимального приема.
  • 42 Структурная схема приемника при полностью известных сигналах, принцип работы.
  • 9 Корреляционный анализ. Корреляционная функция, ее свойства. Вычисление корреляционной функции одиночного импульса и периодического сигнала

    Наряду со спектральным анализом корреляционный анализ играет большую роль в теории сигналов. Его смысл состоит в измерении степени сходства (различия) сигналов. Для этого служит корреляционная ф-ция.

    КФ представляет собой интеграл от произведения двух копий сигнала, сдвинутых друг отн. друга на время .

    Чем больше значение КФ, тем сильнее сходство. КФ обладает следующими свойствами:

    1. Значение КФ при
    равно энергии сигнала (интегралу от его квадрата)

    2. Является четной функцией

    3. Значение КФ при

    4. С ростом абс. значения КФ сигнала с конечной энергией затухает

    5. Если сигнал является ф-цией напряжения от времени, то размерность его КФ [
    ]

    В случае периодического сигнала (с периодом Т) КФ вычисляют, усредняя произведение сдвинутых копий в пределах одного периода:

    Набор свойств такой КФ изменяется:

    1. Значение КФ при
    равно средней мощности сигнала

    2. Свойство четности сохраняется.

    3. Значение КФ при
    является максимально возможным.

    4. КФ является периодической ф-цией (с тем же периодом, что и сигнал)

    5. Если сигнал не содержит дельта-функций, то его КФ непрерывна.

    6. Если сигнал является зависимостью U(t), то размерность КФ [
    ]

    КФ гармонического сигнала является гармонической ф-цией, которая не зависит от начальной фазы сигнала.

    10 Взаимная корреляционная функция, ее свойства. Вычисление взаимной корреляционной функции сигналов

    Взаимная корреляционная функция (ВКФ)- функция, показывающая степень сходства для сдвинутых во времени 2-ух различных сигналов.

    Общий вид:

    Для примера вычислим ВКФ 2-ух функций:


    При

    При

    При

    Объединяя результаты, можно записать:

    Свойства ВКФ:

    1)

    2)

    3)

    4) Если функции S 1 (t ) и S 2 (t ) не содержат дельта-функций, то их ВКФ не может иметь разрывов.

    5) Если в качестве сигнала выступает функция U (t ) , то размерность ВКФ

    11 Случайные процессы. Реализация случайного процесса. Законы распределения случайных процессов

    Иногда на практике приходится иметь дело с явлениями, протекание которых во времени непредсказуемо и в каждый момент времени описывается случайной величиной. Такие явления называются случайными процессами. Случайным процессом называется функция ζ(t ) неслучайного аргумента t (как правило, времени), которая при каждом фиксированном значении аргумента является случайной величиной. Например, температура в течение суток, регистрируемая самописцем. Значения, принимаемые процессом ζ(t ) в определенные моменты времени называются состояниями , а множество всех состояний – фазовым пространством случайного процесса. В зависимости от количества возможных состояний случайного процесса его фазовое пространство может быть дискретным или непрерывным. Если случайный процесс может изменять свое состояние лишь в определенные моменты времени, то такой процесс называется случайным процессом с дискретным временем ; а если в произвольные, то – процессом с непрерывным временем .

    Случайный процесс ζ(t ) называется стационарным , если распределение вероятностей его возможных состояний не изменяется во времени. Например, при ежесекундном подбрасывании игральной кости распределение вероятностей состояний соответствующего случайного процесса (рис.44, б ) не зависит (не изменяется) от времени (при этом все состояния ζ(t ) равновозможны). В противоположность этому, случайный процесс, характеризующий температуру окружающей среды, не является стационарным, т.к. для лета характерны более высокие температуры, чем для зимы.

    Распределение вероятностей состояний стационарного случайного процесса называется стационарным распределением .

    Существуют различные законы распределения среди них Равномерное, Гаусовское (нормальное)

    Равномерное : пусть некторая случ величина х может принимать значения х 1 <=x<=x 2 тогда плотность вероятности

    P(x)=система(0 при xх 2)

    Функцию распределения найдем путем интегрирования

    F(x)= система(0 при xx 2)

    Гауссово (нормальное) распределение . В теории случайных сигналов фундаментальное значение имеет гауссова плотность вероятности

    Signals and linear systems. Correlation of signals

    Тема 6. Корреляция сигналов

    Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

    Мишель Монтень. Французский юрист-мыслитель, XVI в.

    Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

    Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

    1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

    2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов.Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

    3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

    Введение

    Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

    Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

    В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

    В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

    Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

    Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.