Сигналы и линейные системы. Спектральные и корреляционные свойства сигнала

  • 28.06.2019

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

B su () =s(t) u(t+) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|B su ()|  ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t- в формуле (6.2.1), получаем:

B su () =s(t-) u(t) dt = u(t) s(t-) dt = B us (-).

Отсюда следует, что для ВКФ не выполняется условие четности, B su ()  B su (-), и значения ВКФ не обязаны иметь максимум при  = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал  сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что и фиксируется функцией B su . Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака  при увеличения значения  от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция B sv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv .

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

B su () =s(t) u(t+) dt. B us () =u(t) s(t+) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении . При больших интервалах задания сигналов выражение может быть записано в следующей форме:

B uv () = B s 1 s 2 () +
+
+
. (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

B uv () → B s 1 s 2 ().

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при t = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

B xy (n) =
x k y k-n . (6.2.4)

При нормировании в единицах мощности:

B xy (n) = x k y k-n 
. (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

B up (k) = B sp (k) + B qp (k) = B sp (k) + .

А поскольку → 0 при увеличении N, тоB up (k) → B sp (k). Очевидно, что функция B up (k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции B up (k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

 su () = C su ()/ s  v . (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах  может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах , на которых наблюдаются нулевые значения  su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений  su (n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

Распределения Релея и Райса характеризуют замирания сигнала не в полной мере. В частности, они не дают представление о том, как протекает процесс замирания сигнала во времени. Допустим, что процесс рассматривается в два момента времени t и t +t, где t - задержка. Тогда статистическая связь замираний дается функцией корреляции, которая определяется следующим образом.

Предположим, что рассматриваемый процесс является стационарным. Это значит, что его статистические параметры, такие как среднее, дисперсия и взаимная корреляция, не зависят от времени t . Для узкополосного процесса (2.3.37) получаем функцию корреляции в виде

Введем функции корреляции квадратурных сигналов:

Теперь выражение (2.3.61) преобразуем к виду

Для дальнейшего преобразования (2.3.63) воспользуемся тригонометрическими соотношениями.

(2.3.64)

В результате получим, что

Поскольку процесс является стационарным, функция корреляции не должна зависеть от времени. Это требование может быть выполнено, если второе и четвертое слагаемые в (2.3.65) равны нулю, что, в свою очередь, возможно, если функции корреляции квадратурных сигналов удовлетворяют следующим соотношениям:

Таким образом, функция корреляции стационарного нормального узкополосного сигнала равна

Покажем, что функция корреляции является нечетной функцией t. Для этого учтем, что

Подставим (2.3.68) во вторую формулу в (2.3.66) и находим, что

. (2.3.69)

Таким образом, функция взаимной корреляции квадратурных сигналов является нечетной. Отсюда следует важный результат, что в совпадающий момент времени квадратурные сигналы не коррелированны, то есть .

Рассмотрим теперь корреляцию комплексной амплитуды

По определению функции корреляции можно записать, что

. (2.3.71)

Функция комплексная и обладает свойством симметрии, т.е.

. (2.3.72)

Подставим (2.3.70) в (2.3.71) и учтем (2.3.62). Тогда (2.3.71) принимает вид

Если учесть (2.3.66), то эта формула существенно упрощается:

Функция корреляции (2.3.67) узкополосного сигнала и функция корреляции (2.3.74) его комплексной амплитуды взаимосвязаны. Эта связь легко выявляется из сравнения (2.3.67) и (2.3.74). В результате будем иметь



Корреляционные свойства сигнала тесно связаны с его спектральными свойствами. В частности, спектральная плотность мощности находится с помощью преобразования Фурье от корреляционной функции и равна

. (2.3.76)

Покажем, что - действительная функция, в то время как корреляционная функция является комплексной. Для этого возьмем комплексное сопряжение от выражения (2.3.76) и учтем свойство симметрии (2.3.72) функции корреляции. В результате получим, что

Сравнивая (2.3.77) с (2.3.76) имеем, что . Это доказывает, что спектр комплексной амплитуды является действительной функцией.

Далее будет показано, что спектр комплексной амплитуды сигнала, описывающего замирания в многолучевом канале, является четной действительной функцией частоты, т.е. . Тогда функция корреляции становится действительной. Чтобы это доказать, запишем функцию корреляции в виде обратного преобразования Фурье от спектральной плотности мощности в виде

. (2.3.78)

Возьмем комплексное сопряжение выражения (2.3.78) и учтем четность функции . Получим, что

Сравнивая (2.3.79) с (2.3.78) имеем, что . Это доказывает, что функция корреляции комплексной амплитуды с действительным спектром в виде четной функции является действительной функцией.

Учитывая действительность функции корреляции, из (2.3.74) находим, что

. (2.3.80)

С помощью (2.3.75) получим функцию корреляции узкополосного сигнала в виде

Теперь поставим задачу, найти в явном виде спектр и функцию корреляции, которые описывают замирания сигнала в многолучевом канале. Снова рассмотрим два момента времени t и t +t. Если за время t передатчик, приемник и переотражатели не изменяют свое местоположение и сохраняют свои параметры, то суммарный сигнал в приемнике не изменяется. Чтобы происходили замирания сигнала, необходимо взаимное перемещение передатчика, приемника и (или) переотражателей. Только в этом случае наблюдается изменение амплитуд и фаз сигналов, суммирующихся на входе приемной антенны. Чем быстрее происходит это движение, тем с большей скоростью происходят замирания сигнала и, следовательно, более широким должен быть его спектр.

Будем считать, что приемник движется со скоростью v , а передатчик остается неподвижным. Если антенна передатчика излучает гармонический сигнал некоторой частоты f , то из-за эффекта Доплера приемник регистрирует сигнал другой частоты. Разница между этими частотами называется доплеровским смещением частоты. Чтобы найти величину смещения частоты, рассмотрим рис. 2.16, где изображены передатчик, приемник, волновой вектор k плоской волны и вектор v скорости приемника.

Рис. 2.16. К определению доплеровского смещения частоты

Уравнение равномерного движения приемника запишем в виде

Тогда фаза принимаемого сигнала будет функцией времени

где q - угол между вектором скорости и волновым вектором.

Мгновенная частота определяется как производная от фазы. Поэтому, дифференцируя (2.3.83) и учитывая, что волновое число , будем иметь

. (2.3.84)

При равномерном движении приемника, как следует из (2.3.84), наблюдается смещение частоты, равное

Для примера предположим, что скорость v =72 км/ч = 20 м/с, частота передатчика f =900 МГц, а угол q=0. Длина волны l и частота f связаны через скорость света с соотношением с =fl . Отсюда имеем, что l=c /f =0.33 м. Теперь из (2.3.85) находим, что доплеровское смещение частоты f d =60 Гц.

Доплеровское смещение частоты (2.3.85) принимает как положительные, так и отрицательные значения, в зависимости от угла q между вектором скорости и волновым вектором. Величина доплеровского смещения не превышает максимального значения, равного f max =v /l. Формулу (2.3.85) удобно представить в виде

. (2.3.86)

Когда имеется много переотражателей, то естественно предположить, что они располагаются вокруг приемника равномерно, например, по окружности, как показано на рис. 2.17. Такая модель переотражателей называется моделью Кларка.

Рис. 2.17. Расположение переотражателей в моделе Кларка

Спектральная плотность мощности в случае модели Кларка определяется следующим путем. Выделим интервал частот df d вблизи частоты f d . Заключенная в этом интервале принимаемая мощность равна . Эта мощность обусловлена доплеровским смещением частоты (2.3.86). Рассеянная мощность, связанная с угловым интервалом d q, равна , где - угловая плотность рассеянной мощности. Заметим, что одинаковое доплеровское смещение f d наблюдается для переотражетелей с угловыми координатами ±q. Отсюда вытекает следующее равенство мощностей

Будем полагать, что полная рассеянная мощность равна единице и равномерно распределена в интервале .

Рис. 2.18. Доплеровским спектр Джейкса для f max =10 Гц

Чтобы определить функцию корреляции (2.3.71) комплексной амплитуды, необходимо полученное для спектральной плотности мощности выражение (2.3.90) подставить в (2.3.78). В результате получим, что

Модуль функции корреляции (2.3.91) комплексной амплитуды для двух максимальных частот Доплера f max =10 Гц (сплошная кривая) и f max =30 Гц (пунктирная кривая) показаны на рис. 2.19. Если оценить время корреляции замираний сигнала в канале по уровню 0.5, то оно равно . Это дает 24 мсек для f max =10 Гц и 8 мсек для f max =30 Гц.

Рис. 2.19. Модуль функции корреляции для f max =10 и 30 Гц (сплошная и пунктирная кривые,
соответственно).

В общем случае доплеровский спектр может отличаться от спектра Джейкса (2.3.90). Область значений Df d , в которой существенно отличается от нуля, называют допплеровским рассеянием в канале. Поскольку связана с преобразованием Фурье, то временем когерентности t coh канала является величина t coh »1/Df d , которая характеризует скорость изменения свойств канала.

При выводе (2.3.90) и (2.3.91) предполагалось, что средняя мощность рассеянного сигнала равна единице. Это следует также из (2.3.91) и (2.3.71), так как

Коэффициент корреляции равен отношению функции корреляции к средней мощности . Поэтому в данном случае выражение (2.3.91) дает также коэффициент корреляции .

Из (2.3.81) найдем функцию корреляции узкополосного сигнала равную

На практике могут представлять интерес корреляционные свойства таких случайных величин, как амплитуда А и мгновенная мощность P =А 2 . Эти величины обычно являются регистрируемыми, например, на выходе линейного или квадратичного детектора. Их корреляционные свойства определенным образом связаны с корреляционными свойствами комплексной амплитуды Z (t ).

Коэффициент корреляции мгновенной мощности связан с коэффициентом корреляции комплексной амплитуды простым соотношением вида:

. (2.3.94)

Приведем доказательство этой формулы. Исходя из определения коэффициента корреляции, можем записать, что

, (2.3.95)

где - функция корреляции мощности.

Предположим, что детерминированной компоненты сигнала нет и амплитуда А имеет релеевское распределение. Тогда <P >=<A 2 >=2σ 2 . Входящая в (2.3.95) величина . Используя релеевский закон распределения, находим, что

. (2.3.96)

Учитывая (2.3.96), найдем функцию корреляции мощности из (2.3.95) с помощью простых алгебраических преобразований. Получим, что

. (2.3.97)

Функцию корреляции мощности выразим также через квадратурные компоненты в виде

Выполняя перемножение и усреднение в правой части равенства (2.3.98), получаем слагаемые, которые представляют собой следующие моменты четвертого порядка:

Таким образом, нам необходимо вычислить моменты четвертого порядка. Учтем, что квадратурные компоненты I и Q являются гауссовскими случайными величинами с нулевым средним и одинаковой дисперсией σ 2 и воспользуемся известным правилом размыкания моментов четвертого порядка . В соответствии с ним, если имеются четыре случайные величины a , b , c , и d , то справедлива следующая формула:

Применяя это правило, вычислим моменты четвертого порядка в (2.3.99). В результате будем иметь

(2.3.101)

Если принять во внимание (2.3.96), (2.3.66) и (2.3.74), то (2.3.98) можно записать в виде

Теперь необходимо учесть, что . В результате получим следующее выражение для функции корреляции мощности:

Сравнивая полученную формулу с (2.3.97), убеждаемся в справедливости (2.3.94).

Для канальной модели Кларка мы нашли, что коэффициент корреляции определяется (2.3.91). С учетом (2.3.94), коэффициент корреляции мощности в случае модели Кларка будет равен

. (2.3.104)

Корреляционные свойства амплитуды А исследуются с привлечением значительно более сложного математического аппарата и здесь не рассматриваются. Однако следует отметить, что коэффициент корреляции амплитуды А удовлетворяет следующему приближенному равенству .

Signals and linear systems. Correlation of signals

Тема 6. Корреляция сигналов

Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

Мишель Монтень. Французский юрист-мыслитель, XVI в.

Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов.Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

Введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.

Корреляция – математическая операция, схожа со свёрткой, позволяет получить из двух сигналов третий. Бывает: автокорреляция (автокорреляционная функция), взаимная корреляция (взаимнокорреляционная функция, кросскорреляционная функция). Пример:

[Взаимная корреляционная функция]

[Автокорреляционная функция]

Корреляция - это техника обнаружения заранее известных сигналов на фоне шумов, ещё называют оптимальной фильтрацией. Хотя корреляция очень похожа на свёртку, но вычисляются они по-разному. Области применения их также различные (c(t)=a(t)*b(t) - свертка двух функций, d(t)=a(t)*b(-t) - взаимная корреляция).

Корреляция – это та же свёртка, только один из сигналов инвертируется слева направо. Автокорреляция (автокорреляционная функция) характеризует степень связи между сигналом и его сдвинутой на τ копией. Взаимнокорреляционная функция характеризует степень связи между 2-мя разными сигналами.

Свойства автокорреляционной функции:

  • 1) R(τ)=R(-τ). Функция R(τ) – является чётной.
  • 2) Если х(t) – синусоидальная функция времени, то её автокорреляционная функция – косинусоидальная той же частоты. Информация о начальной фазе теряется. Если x(t)=A*sin(ωt+φ), то R(τ)=A 2 /2 * cos(ωτ).
  • 3) Функция автокорреляции и спектра мощности связаны преобразованием Фурье.
  • 4) Если х(t) – любая периодическая функция, то R(τ) для неё может быть представлена в виде суммы автокорреляционных функций от постоянной составляющей и от синусоидально изменяющейся составляющей.
  • 5) Функция R(τ) не несёт никакой информации о начальных фазах гармонических составляющих сигнала.
  • 6) Для случайной функции времени R(τ) быстро уменьшается с увеличением τ. Интервал времени, после которого R(τ) становится равным 0 называется интервалом автокорреляции.
  • 7) Заданной x(t) соответствует вполне определённое R(τ), но для одной и той же R(τ) могут соответствовать различные функции x(t)

Исходный сигнал с шумами:

Автокорреляционная функция исходного сигнала:

Свойства взаимной корреляционной функции (ВКФ):

  • 1) ВКФ не является ни чётной ни нечётной функ¬цией, т.е. R ху (τ) не равно R ху (-τ).
  • 2) ВКФ остаётся неизменной при перемене чередования функций и изменений знака аргумента, т.е. R ху (τ)=R ху (-τ).
  • 3) Если случайные функции x(t) и y(t) не содержат постоянных составляющих и создаются независимыми источниками, то для них R ху (τ) стремится к 0. Такие функции называются некоррелированными.

Исходный сигнал с шумами:

Меандр той же частоты:

Корреляция исходного сигнала и меандра:



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.

  • 5 Спектральный анализ периодических сигналов. Условия Дирихле. Ряд Фурье.
  • 6 Спектральный анализ непериодических сигналов. Преобразование Фурье. Равенство Парсеваля.
  • 7 Представление непрерывных сигналов выборками. Теорема Котельникова. Влияние частоты дискретизации на возможность восстановления сигнала с помощью фильтра.
  • 8 Процесс интерполяции непрерывного сообщения. Простейшие виды интерполяции алгебраическими полиномами.
  • 9 Корреляционный анализ. Корреляционная функция, ее свойства. Вычисление корреляционной функции одиночного импульса и периодического сигнала
  • 10 Взаимная корреляционная функция, ее свойства. Вычисление взаимной корреляционной функции сигналов
  • 11 Случайные процессы. Реализация случайного процесса. Законы распределения случайных процессов
  • 13 Помехоустойчивое кодирование. Повышение верности в одностороннем и двустороннем каналах передачи
  • 14 Блочные систематические коды, свойства и способы представления
  • 15 Коды Хэмминга, свойства. Структурная схема кодера и декодера, принцип работы
  • 16 Общие свойства и способы представления циклических кодов.
  • 18 Аналоговые виды модуляции. Амплитудная модуляция. Амплитудно-модулированное колебание, временная и спектральная характеристики
  • 19 Аналоговые виды модуляции. Амплитудный модулятор.
  • 20 Аналоговые виды модуляции. Демодулятор ам-сигналов.
  • 21. Аналоговые виды модуляции. Балансная модуляция. Балансно-модулированное колебание, временная и спектральная характеристики. Модулятор и демодулятор бмк.
  • 22 Аналоговые виды модуляции. Однополосная модуляция. Методы формирования одной боковой полосы частот ам-колебания.
  • 24 Спектры фазо-модулированных и частотно-модулированных колебаний.
  • 25 Аналого-импульсные виды модуляции. Амплитудно-импульсная модуляция: аим-1 и аим-2. Модуляторы и демодуляторы аим сигналов.
  • 26 Широтно-импульсная модуляция: шим-1 и шим-2. Спектральное представление шим-сигнала. Модуляторы шим-сигналов.
  • 27 Фазо-импульсная модуляция. Модуляторы фим-сигналов.
  • 28 Частотно-импульсная модуляция. Детекторы чим-сигналов.
  • 29 Цифровые виды модуляции. Импульсно-кодовая модуляция. Дискретизация, квантование и кодирование.
  • 30 Дифференциальная икм. Структурная схема системы передачи с предсказанием. Структурная схема линейного предсказателя, принцип работы. Адаптивная дифференциальная икм.
  • 31 Дельта-модуляция. Принцип формирования сигнала дельта-модуляции. Адаптивная дельта-модуляция.
  • 32 Дискретные виды модуляции. Способы двухпозиционной (однократной) модуляции. Позиционность сигнала, кратность модуляции.
  • 33 Однократная абсолютная фазовая манипуляция. Фазовый манипулятор.
  • 34 Детектор фмн-сигналов.
  • 35 Манипулятор однократной относительной фазовой манипуляции.
  • 35 Манипулятор однократной относительной фазовой манипуляции.
  • 36 Демодулятор сигналов с однократной офмн.
  • 38 Принципы построения многоканальных систем передачи. Теоретические предпосылки разделения каналов. Частотное разделение каналов.
  • 39 Фазовое разделение каналов. Модулятор и демодулятор сигналов дофмн.
  • 40 Временное разделение каналов. Структурная схема многоканальной системы передачи с временным разделением каналов.
  • 41 Оптимальный прием сигналов. Задачи и критерии оптимального приема.
  • 42 Структурная схема приемника при полностью известных сигналах, принцип работы.
  • 9 Корреляционный анализ. Корреляционная функция, ее свойства. Вычисление корреляционной функции одиночного импульса и периодического сигнала

    Наряду со спектральным анализом корреляционный анализ играет большую роль в теории сигналов. Его смысл состоит в измерении степени сходства (различия) сигналов. Для этого служит корреляционная ф-ция.

    КФ представляет собой интеграл от произведения двух копий сигнала, сдвинутых друг отн. друга на время .

    Чем больше значение КФ, тем сильнее сходство. КФ обладает следующими свойствами:

    1. Значение КФ при
    равно энергии сигнала (интегралу от его квадрата)

    2. Является четной функцией

    3. Значение КФ при

    4. С ростом абс. значения КФ сигнала с конечной энергией затухает

    5. Если сигнал является ф-цией напряжения от времени, то размерность его КФ [
    ]

    В случае периодического сигнала (с периодом Т) КФ вычисляют, усредняя произведение сдвинутых копий в пределах одного периода:

    Набор свойств такой КФ изменяется:

    1. Значение КФ при
    равно средней мощности сигнала

    2. Свойство четности сохраняется.

    3. Значение КФ при
    является максимально возможным.

    4. КФ является периодической ф-цией (с тем же периодом, что и сигнал)

    5. Если сигнал не содержит дельта-функций, то его КФ непрерывна.

    6. Если сигнал является зависимостью U(t), то размерность КФ [
    ]

    КФ гармонического сигнала является гармонической ф-цией, которая не зависит от начальной фазы сигнала.

    10 Взаимная корреляционная функция, ее свойства. Вычисление взаимной корреляционной функции сигналов

    Взаимная корреляционная функция (ВКФ)- функция, показывающая степень сходства для сдвинутых во времени 2-ух различных сигналов.

    Общий вид:

    Для примера вычислим ВКФ 2-ух функций:


    При

    При

    При

    Объединяя результаты, можно записать:

    Свойства ВКФ:

    1)

    2)

    3)

    4) Если функции S 1 (t ) и S 2 (t ) не содержат дельта-функций, то их ВКФ не может иметь разрывов.

    5) Если в качестве сигнала выступает функция U (t ) , то размерность ВКФ

    11 Случайные процессы. Реализация случайного процесса. Законы распределения случайных процессов

    Иногда на практике приходится иметь дело с явлениями, протекание которых во времени непредсказуемо и в каждый момент времени описывается случайной величиной. Такие явления называются случайными процессами. Случайным процессом называется функция ζ(t ) неслучайного аргумента t (как правило, времени), которая при каждом фиксированном значении аргумента является случайной величиной. Например, температура в течение суток, регистрируемая самописцем. Значения, принимаемые процессом ζ(t ) в определенные моменты времени называются состояниями , а множество всех состояний – фазовым пространством случайного процесса. В зависимости от количества возможных состояний случайного процесса его фазовое пространство может быть дискретным или непрерывным. Если случайный процесс может изменять свое состояние лишь в определенные моменты времени, то такой процесс называется случайным процессом с дискретным временем ; а если в произвольные, то – процессом с непрерывным временем .

    Случайный процесс ζ(t ) называется стационарным , если распределение вероятностей его возможных состояний не изменяется во времени. Например, при ежесекундном подбрасывании игральной кости распределение вероятностей состояний соответствующего случайного процесса (рис.44, б ) не зависит (не изменяется) от времени (при этом все состояния ζ(t ) равновозможны). В противоположность этому, случайный процесс, характеризующий температуру окружающей среды, не является стационарным, т.к. для лета характерны более высокие температуры, чем для зимы.

    Распределение вероятностей состояний стационарного случайного процесса называется стационарным распределением .

    Существуют различные законы распределения среди них Равномерное, Гаусовское (нормальное)

    Равномерное : пусть некторая случ величина х может принимать значения х 1 <=x<=x 2 тогда плотность вероятности

    P(x)=система(0 при xх 2)

    Функцию распределения найдем путем интегрирования

    F(x)= система(0 при xx 2)

    Гауссово (нормальное) распределение . В теории случайных сигналов фундаментальное значение имеет гауссова плотность вероятности