Аналого-цифровые преобразователи. Статические и динамические параметры АЦП. Быстродействующие интегральные микросхемы ЦАП и АЦП и измерение их параметров - Марцинкявичус А

  • 21.06.2019

Существуют различные методы компенсации статических погрешностей ЦАП. Основным классификационным признаком методов является класс учитываемых ошибок. По этому признаку выделяются следующие методы:

1. Коррекция масштаба и нулевой точки характеристики;

2. Коррекция отклонения коммутируемых мер;

3. Коррекция нелинейности общего вида (как интегральной, так и дифференциальной).

Прежде всего, коррекция погрешностей производится при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В последнем случае коррекция проводится за счет введения в структуру устройства кроме БИС ЦАП дополнительных элементов, т. е. на структурном уровне. Вследствие этого такие методы получили название структурных.

В состав ЦАП входят различные функциональные узлы. При осуществлении подгонки каждый из узлов подгоняется независимо от других. Алгоритм подгонки должен, прежде всего, обеспечить монотонность функции преобразования, затем ее линейность, отсутствие смещения нуля и требуемый коэффициент преобразования.

Самым сложным процессом является обеспечение монотонности и линейности, ибо они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента преобразования и дифференциальной нелинейности симметричного типа, т.е. нелинейности обусловленной погрешностями делителя и той части погрешностей ключей, которые можно свести к погрешностям такого рода. Остального рода погрешности носят суперпозиционный характер, т.е. проявляются во взаимовлиянии элементов друг на друга. Такие погрешности выявлять, контролировать и корректировать очень сложно.

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

С ростом точности затраты на разработку преобразователей и их изготовление всегда растут. С учетом всего этого улучшения метрологических показателей рационально добиваться комплексно, используя технологические приемы с различными структурными методами. А при использовании готовых интегральных преобразователей структурные методы это единственный путь дальнейшего повышения метрологических характеристик системы преобразования.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.


Среди структурных методов линеаризации характеристики необходимо выделить компенсационные методы и методы с контролем по тестовому сигналу.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Первые три пункта относятся к процессу контроля, последний пункт - к процессу преобразования, т.к. проведение коррекции осуществляется во время преобразования.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Это обеспечивает долговременную метрологическую стабильность работы преобразователя даже при постоянном воздействии на него каких-либо дестабилизирующих факторов. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Простейшая модель нелинейной составляющей погрешности ЦАП основана на допущении стабильности погрешности для каждого кода и случайной зависимости ее от кода. Очевидно, что идентификация параметров такой модели требует измерения выходного сигнала на всех допустимых кодах (метод сквозного контроля). Обязательным для этого метода является использование прецизионного измерителя.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Большая группа методов контроля по тестовому сигналу основывается на предположении о независимости весов разрядов от преобразуемого кода. При этом можно составить систему независимых уравнений, число которых равно количеству корректируемых разрядов преобразователя. Часто эту систему уравнений добавляют еще двумя, определяющими погрешность смещения нуля и масштабную погрешность. Для составления каждого уравнения на вход преобразователя подают код из заданного набора. После разрешения такой системы уравнений удается найти погрешности задания каждого разряда, а, следовательно, и поправочное (компенсирующее) значение для каждого значения входного кода. Такие методы получили в настоящее время наибольшее распространение и применяются при построении микропроцессорных управляющих систем.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое ЗУ (рис.17.а). Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

Рис. Цифровая (а) и аналоговая (б) коррекция погрешностей ЦАП

При аналоговой коррекции (рис.17.б) кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Зададимся временем преобразования меньшим максимального времени установления. Если удастся идентифицировать динамические параметры ЦАП можно рассчитать такие поправки к входному коду ЦАП, при которых выходное значение за это заданное время будет достигать необходимого значения. В этот момент необходимо фиксировать результат преобразования последующих за ЦАП узлов системы, так как после этого момента выходной сигнал ЦАП будет продолжать изменяться, причем выходить на уровень соответствующий не входному коду, а его скорректированного значения.

Цифро-аналоговые преобразователи имеют статические и динамические характеристики.

Статические характеристики ЦАП

Основными статическими характеристиками ЦАП, являются:

· разрешающая способность;

· нелинейность;

· дифференциальная нелинейность;

· монотонность;

· коэффициент преобразования;

· абсолютная погрешности полной шкалы;

· относительная погрешности полной шкалы;

· смещение нуля;

· абсолютная погрешность

Разрешающая способность – это приращение U ВЫХ при преобразовании смежных значений D j , т.е. отличающихся на единицу младшего разряда (ЕМР). Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования

h = U ПШ /(2 N – 1),

где U ПШ – номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N – разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

Погрешность полной шкалы – относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля, т.е.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля – значение U ВЫХ, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

Нелинейность – максимальное отклонение реальной характеристики преобразования U ВЫХ (D) от оптимальной (рис. 5.2, линия 2). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 5.2,

Дифференциальная нелинейность максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования U ВЫХ (D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 5.2,

Монотонность характеристики преобразования – возрастание (уменьшение) выходного напряжения ЦАП (U ВЫХ) при возрастании (уменьшении) входного кода D . Если дифференциальная нелинейность больше относительного шага квантования h/U ПШ, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦАП характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические характеристики ЦАП

К динамическим характеристик ам ЦАП относятся время установления и время преобразования.

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до (2 N – 1) через единицу младшего разряда выходной сигнал U ВЫХ (t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (см. рис. 5.2), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины «все нули» до «все единицы» (рис. 5.3).

Время установления – интервал времени от момента измене
ния входного кода (рис. 5.3, t = 0) до момента, когда в последний раз выполняется равенство:

|U ВЫХ – U ПШ | = d/2,

причем d/2 обычно соответствует ЕМР.

Скорость нарастания – максимальная скорость изменения U ВЫХ (t) во время переходного процесса. Определяется как отношение приращения D U ВЫХ ко времени Dt, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У цифро-аналоговых преобразователей с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

На рисунке 5.4 приведены два способа линеаризации, из которых следует, что способ линеаризации для получения минимального значения D л, показанный на рис. 5.4, б, позволяет уменьшить погрешность D л вдвое по сравнению с методом линеаризации по граничным точкам (рис. 5.4, а).

Для цифро-аналоговых преобразователей с n двоичными разрядами в идеальном случае (при отсутствии погрешностей преобразования) аналоговый выход U ВЫХ соотносится с входным двоичным числом следующим образом:

U ВЫХ = U ОП (a 1 2 -1 + a 2 2 -2 +…+ a n 2 -n),

где U ОП – опорное напряжение ЦАП (от встроенного или внешнего источника).

Так как ∑ 2 -i = 1 – 2 -n , то при всех включенных разрядах выходное напряжение ЦАП равно:

U ВЫХ (a 1 …a n) = U ОП (1 – 2 -n) = (U ОП /2 n) (2 n – 1) = D (2 n – 1) = U ПШ,

где U ПШ – напряжение полной шкалы.

Таким образом, при включении всех разрядов выходное напряжение цифро-аналогового преобразователя, которое в этом случае образует U ПШ, отличается от значения опорного напряжения (U ОП) на величину младшего разряда преобразователя (D), определяемого как

D = U ОП /2 n .

При включении какого-либо i-го разряда выходное напряжение ЦАП определится из соотношения:

U ВЫХ /a i = U ОП 2 -i .

Цифро-аналоговый преобразователь преобразует цифровой двоичный код Q 4 Q 3 Q 2 Q 1 в аналоговую величину, обычно напряжение U ВЫХ. или ток I ВЫХ. Каждый разряд двоичного кода имеет определенный вес i-го разряда вдвое больше, чем вес (i-1)-го. Работу ЦАП можно описать следующей формулой:

U ВЫХ = e (Q 1 · 1 + Q 2 ·2 + Q 3 ·4 + Q 4 ·8 +…),

где e – напряжение, соответствующее весу младшего разряда, Q i – значение i -го разряда двоичного кода (0 или 1).

Например, числу 1001 соответствует:

U ВЫХ = е (1 ·1 + 0 ·2 + 0 ·4 + 1 · = 9 ·e,

а числу 1100 соответствует

U ВЫХ = e (0 ·1 + 0 ·2 + 1 ·4 + 1 · = 12 ·e.

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в

Значительные трудности возникают при уменьшении случайной погрешности при измерении изменяющейся во времени величины. При этом для получения наилучшей оценки измеряемой величины применяют процедуру фильтрации. В зависимости от вида используемых преобразований различают линейную и нелинейную фильтрацию, где реализация отдельных процедур может быть осуществлена как аппаратными, так и программными средствами.

Фильтрация может применяться не только для подавления помех, наводящихся на входные цепи передачи аналогового сигнала, а при необходимости и для ограничения спектра входного и восстановления спектра выходного сигнала (об этом уже говорилось ранее). При необходимости могут применяться фильтры с перестраиваемой частотой среза.

Применение автоматической коррекции систематических погрешностей можно рассматривать как проведение адаптации канала к его собственному состоянию. Применение современной элементной базы позволяет сегодня реализовывать входные цепи, адаптирующиеся к характеристикам входного сигнала, в частности, к его динамическому диапазону. Для такой адаптации необходим входной усилитель с управляемым коэффициентом передачи. Если по результатам предшествующих измерений удалось установить, что динамический диапазон сигнала мал по сравнению с диапазоном входного сигнала АЦП, то коэффициент усиления усилителя увеличивают до тех пор, пока динамический диапазон сигнала не будет соответствовать диапазону работы АЦП. Таким образом удается добиться минимизации погрешности дискретизации сигнала и, следовательно, повышения точности проведения измерений. Изменение коэффициента усиления сигнала на входе учитывается при этом программно при обработке результатов измерений цифровым контроллером.

Критерии оценки соответствия динамического диапазона сигнала и диапазона работы АЦП будут рассмотрены далее, будут рассмотрены и способы адаптации входного канала к частотным свойствам входного сигнала.

2.4. Устройства выборки-хранения

При сборе информации и ее последующем преобразовании часто бывает необходимо зафиксировать значение аналогового сигнала на некоторый промежуток времени. Для этого используются устройства выборки и хранения (УВХ). Другое название таких устройств – аналоговые запоминающие устройства (АЗУ). Их работа осуществляется в двух режимах. В режиме выборки (слежения) они должны повторять на своем выходе входной аналоговый сигнал, а в режиме хранения – сохранять и выдавать на свой выход последнее входное напряжение, предшествующее моменту перевода устройства в этот режим.

В простейшем случае при построении УВХ для осуществления этих операций нам потребуется лишь конденсатор С ХР и ключ S (рис. 2.12.а ). При замкнутом ключе напряжение на конденсаторе и на выходе УВХ будет повторять входное. При размыкании ключа напряжение на конденсаторе, величина которого будет равна входному напряжению на момент размыкания ключа, будет сохраняться на нем и передаваться на выход УВХ.

https://pandia.ru/text/78/077/images/image030_18.jpg" width="457" height="428 src=">

Р и с. 2.12. Функциональная схема УВХ (а ) и временные диаграммы ее работы (б )

Очевидно, что при практической реализации уровень напряжения на конденсаторе в режиме хранения не будет оставаться постоянным (рис. 2.12.б ) из-за его разрядки током на нагрузку и разрядки за счет собственных токов утечки . Для того чтобы напряжение конденсатора как можно дольше оставалось на допустимом уровне на выходе УВХ устанавливают повторитель на ОУ (DA 1 на рис. 2.12.а ). Как известно повторитель обладает большим входным сопротивлением. Это «развязывает» по сопротивлению цепь конденсатора и цепь нагрузки и существенно уменьшает разряд конденсатора через нагрузку. Для уменьшения собственных токов утечки нужно выбрать конденсатор с качественным диэлектриком. И конечно, для того, чтобы напряжение на конденсаторе как можно дольше оставалось постоянным его необходимо взять как можно большей емкости.

При переводе УВХ из режима хранения в режим слежения напряжение на конденсаторе достигнет текущего уровня входного напряжения не сразу (рис. 2.12.б ). Время, за которое это произойдет, будет определяться временем зарядки конденсатора – это время называют временем захвата или временем выборки. Конденсатор будет заряжаться тем быстрее, чем большим будет ток его заряда. Для того чтобы этот ток не ограничивался выходным сопротивлением предыдущего каскада на входе УВХ тоже устанавливают повторитель на ОУ (DA 2 на рис. 2.12.а ). В данном случае используется то свойство, что повторитель имеет низкое выходное сопротивление. Конденсатор будет заряжаться тем быстрее, чем меньше его емкость. Таким образом, условия выбор значения емкости конденсатора для оптимальной работы УВХ в разных режимах противоречивы – емкость конденсатора должна выбираться каждый раз исходя из конкретных требований к длительности режимов его работы.

Входной повторитель управляет емкостной нагрузкой. Поэтому для его построения используются операционные усилители, обладающие стабильностью при единичном коэффициенте усиления и большой емкостной нагрузке.

При использовании УВХ в АЦП время хранения, как правило, ненамного превышает время преобразования АЦП. При этом номинал конденсатора выбирается таким образом, чтобы получить наилучшее время захвата при условии, что спад напряжения за время одного преобразования не превышает величины младшего разряда АЦП.

Поскольку диэлектрические потери в запоминающем конденсаторе являются одним из источников погрешностей лучше всего выбирать конденсаторы с диэлектриком из полипропилена, полистирола и тефлона. Слюдяные и поликарбонатные конденсаторы имеют уже весьма посредственные характеристики. И совсем не следует использовать керамические конденсаторы.

К точностным характеристикам УВХ относится напряжение смещения нуля, которое обычно не превышает 5 мВ (если применяется ОУ с биполярными транзисторами на входе; ОУ с полевыми транзисторами на входе, имеют более значительное смещение нуля) и дрейф фиксируемого напряжения при заданной емкости конденсатора хранения (для различных УВХ от 10-3 до 10-1 В/c нормируется при емкости С ХР = 1 000 пФ). Величину дрейфа можно уменьшить путем увеличения емкости С ХР. Однако это ухудшает динамические характеристики схемы.

К динамическим характеристикам УВХ относят: время выборки, показывающее как долго при самых неблагоприятных условиях длится процесс заряда конденсатора хранения с заданным уровнем допуска; и апертурную задержку – период между моментом снятия управляющего напряжения и фактическим запиранием ключа.

Существует множество интегральных схем выборки-хранения, обладающих хорошими характеристиками. Ряд схем включает в себя внутренний конденсатор хранения и гарантирует максимальное время выборки в десятки или сотни наносекунд при точности 0,01 % для сигнала величиной 10 В. Величина апертурной задержки для популярных УВХ не превышает 100 нс. Если нужны более высокие рабочие характеристики, можно использовать гибридные и модульные УВХ.

В качестве примера практического построения УВХ на рис. 2.13 приведена функциональная схема БИС К1100СК2 (LF398). Схема имеет общую отрицательную обратную связь, охватывающую всю схему – с выхода повторителя на операционном усилителя DA 2 на вход повторителя на усилителе DA 1.

Датирование" href="/text/category/datirovanie/" rel="bookmark">датирования отсчета АЦП при измерении изменяемого сигнала, в многоканальных измерительных системах для одномоментного снятия данных с различных датчиков, устранения высокочастотных выбросов в выходном сигнале ЦАП при смене кода. Эти и другие применения УВХ будут более подробно рассмотрены в дальнейшем материале.

3. ЦИФРОАНАЛОГОВЫЕ ПРЕОБРАЗОВАТЕЛИ

3.1 Общие способы реализации

Цифроаналоговыми преобразователями (ЦАП) называются устройства служащие для преобразования цифрового кода в аналоговый сигнал по величине пропорциональный значению кода.

ЦАП широко применяются для связи цифровых управляющих систем с исполнительными устройствами и механизмами, которые управляются уровнем аналогового сигнала, в качестве составных частей более сложных аналого-цифровых устройств и преобразователей.

В практике в основном находят применение ЦАП для преобразования двоичных кодов, поэтому далее речь будет вестись только о таких ЦАП.

Любой ЦАП характеризуется, прежде всего, своей функцией преобразования, которая связывает изменение входной величины (цифрового кода) с изменением выходной величины (напряжения или тока) рис. 3.1.

Р и с. 3.1. Функция преобразования (передаточная характеристика) ЦАП

Аналитически функцию преобразования ЦАП можно выразить следующим образом (для случая, когда выходной сигнал представлен напряжением):

U ВЫХ = (U МАХ / N МАХ) N ВХ, где

U ВЫХ – значение выходного напряжения, соответствующее цифровому коду N ВХ, подаваемому на входы ЦАП.

U МАХ – максимальное выходное напряжение, соответствующее подаче на входы максимального кода N МАХ.

Величину К ЦАП, определяемую отношением U МАХ/N МАХ, называют коэффициентом цифроаналогового преобразования. Его постоянство для всего диапазона изменения аргументов определяет пропорциональность изменений величины выходного аналогового сигнала соответствующим изменениям величины входного кода. Именно поэтому, несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N ВХ представить через значения весов его разрядов функцию преобразования ЦАП можно выразить следующим образом:

U ВЫХ = КЦАП, где

i – номер разряда входного кода N ВХ;

A i – значение i -го разряда (ноль или единица);

U i – вес i -го разряда;

n – количество разрядов входного кода (число разрядов ЦАП).

Данный способ записи функции преобразования во многом отражает принцип функционирования большинства ЦАП, по существу заключающийся в проведении суммирования долей аналоговой выходной величины (суммирования аналоговых мер), каждая из которых пропорциональна весу соответствующего разряда.

В целом, по способу построения выделяют ЦАП со взвешенным суммированием токов, со взвешенным суммированием напряжений и на основе кодоуправляемого делителя напряжения.

При построении ЦАП на основе взвешенного суммирования токов в соответствии со значениями разрядов входного кода N ВХ суммируются сигналы генераторов токов и выходной сигнал представлен током. Построение четырехразрядного ЦАП, с использованием этого принципа, иллюстрируется на рис. 3.2. Значения токов генераторов выбираются пропорциональными весам разрядов двоичного кода, т. е. если значение тока наименьшего по величине генератора тока, соответствующего младшему разряду входного кода, равно I , то значение каждого следующего должно быть больше предыдущего в два раза – 2I , 4I , 8I . Каждый i -й разряд входного кода N ВХ управляет i -м ключом S i. Если i -й разряд равен единице, то соответствующий ключ замыкается и тогда ток генератора, у которого величина тока пропорциональна весу этого i -го разряда, участвует в формировании выходного тока преобразователя. Таким образом, получается, что величина выходного тока I N ВХ.

Р и с. 3.2. Построение ЦАП на основе взвешенного суммирования токов

N S 1, S 2 и S 4 в схеме на рис. 3.2 будут замкнуты, а ключ S 3 – разомкнут. Таким образом, в выходном узле будут суммироваться токи равные I , 2I и 8I . В сумме они сформируют выходной ток I ВЫХ = 11I , т. е. величина выходного тока I N ВХ = 11.

При построении ЦАП на основе взвешенного суммирования напряжений в соответствии со значениями разрядов входного кода N ВХ выходной сигнал ЦАП формируется из значений генераторов напряжения и представляется напряжением. Построение четырехразрядного ЦАП, с использованием этого принципа, иллюстрируется на рис. 3.3. Значения генераторов напряжений задаются в соответствии с двоичным законом распределения – пропорционально весам разрядов двоичного кода (Е , 2Е , 4Е и 8Е ). Если i -й разряд входного кода N ВХ равен единице, то соответствующий ему ключ должен быть разомкнут, при этом генератор напряжения, у которого величина напряжения пропорциональна весу этого i -го разряда, участвует в формировании выходного напряжения U ВЫХ преобразователя. Таким образом, получается, что величина выходного напряжения U ВЫХ ЦАП пропорциональна величине входного кода N ВХ.

Р и с. 3.3. Построение ЦАП на основе взвешенного суммирования напряжений

Например, если значение входного кода N ВХ равно одиннадцати, т. е. в двоичной форме он представляется как (1011), то управляемые соответствующими разрядами ключи S 1, S 2 и S 4 в схеме на рис. 3.3 будут разомкнуты, а ключ S 3 – замкнут. Таким образом, в выходной цепи будут суммироваться напряжения равные Е, 2Е и 8Е . В сумме они сформируют выходное напряжение U ВЫХ = 11I , т. е. величина выходного напряжения U ВЫХ будет пропорциональна значению входного кода N ВХ = 11.

В последнем случае ЦАП реализуется как управляемый кодом делитель напряжения (рис. 3.4).

Р и с. 3.4. Построение ЦАП на основе кодоуправляемого делителя напряжения

Кодоуправляемый делитель состоит из двух плеч. Если разрядность реализуемого ЦАП равна n , то количество резисторов в каждом плече равно 2n . Сопротивление каждого плеча делителя меняется с помощью ключей S . Ключи управляются выходным унитарным кодом дешифратора Dc , причем ключи одного плеча управляются им напрямую, другие – через инверторы. Выходной код дешифратора содержит количество единиц, равное значению входного кода N ВХ. При этом не сложно понять, что коэффициент деления делителя всегда будет пропорционален величине входного кода N ВХ.

Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации. Для структуры ЦАП со взвешенным суммированием напряжений невозможно реализовать генераторы напряжений, которые бы допускали режим короткого замыкания на выходе, а также ключи, не имеющие остаточных напряжений в замкнутом состоянии. В структуре ЦАП на основе кодоуправляемого делителя каждое из двух плеч делителя состоит из очень большого числа резисторов (2n ), включает в себя такое же число ключей для управления ими и объемный дешифратор. Поэтому при таком подходе реализация ЦАП получается очень громоздкой. Таким образом, основной структурой, применяемой на практике, является структура ЦАП со взвешенным суммированием токов.

3.2 ЦАП со взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов. В простейшем случае такой ЦАП состоит из резистивной матрицы и набора ключей (рис. 3.5).

Р и с. 3.5. Реализации ЦАП на основе резистивной матрицы

Число ключей и число резисторов в матрице равно количеству разрядов n входного кода N ВХ. Номиналы резисторов выбираются пропорциональными весам двоичного кода, т. е. пропорциональными значениям ряда 2i, i = 1… n . При присоединении к общему узлу матрицы источника напряжения и замыкании ключей через каждый резистор потечет ток. Значения токов по резисторам благодаря соответствующему выбору их номиналов будут распределены по двоичному закону, т. е. пропорциональны весам разрядов двоичного кода. При подаче входного кода N ВХ включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в токовом узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N ВХ.

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Р и с. 3.6. Реализации ЦАП на основе резистивной матрицы и с перекидными ключами

Общим недостатком обоих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную погрешность подгонки как самого большого, так и самого маленького по номиналу резистора. Т. е. относительная точность подгонки больших по величине резисторов должна быть очень высокая. В интегральном исполнении ЦАП при числе разрядов более десяти это обеспечить достаточно трудно.

От всех этих недостатков свободны структуры на основе резистивных R- 2R матриц (рис. 3.7).

Р и с. 3.7. Реализации ЦАП на основе R -2R резистивной матрицы

и с перекидными ключами

Можно убедиться, что при таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза, т. е. их значения распределены по двоичному закону. Наличие в матрице только двух номиналов резисторов, отличающихся в два раза, позволяет достаточно просто осуществлять подгонку их значений, без предъявления высоких требований по относительной точности подгонки.

3.3 Параметры и погрешности ЦАП

Система электрических характеристик ЦАП, отражающая особенности их построения и функционирования, объединяет не один десяток параметров. Ниже приведены основные из них, рекомендованные для включения в нормативно-техническую документацию как наиболее часто встречающиеся и наиболее полно описывающие работу преобразователя в статическом и динамическом режимах.

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной равную весу младшего значащего разряда (МЗР), симметрично расположенную относительно установившегося значения. На рис. 3.8 представлена переходная функция ЦАП, показывающая изменение выходного сигнала ЦАП во времени при смене кода. Кроме времени установления она характеризует и некоторые другие динамические параметры ЦАП – величину выброса выходного сигнала, степень демпфирования, круговую частоту процесса установления и т. д. При определении характеристик конкретного ЦАП данная характеристика снимается при смене кода с нулевого значения на код, равный половине его максимального значения.

4. Максимальная частота преобразования – наибольшая частота дискретизации, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток утечки на выходе, ток потребления, диапазон выходного напряжения или тока, коэффициент влияния нестабильности источников питания и прочие.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики, которые определяются нормированными по величине погрешностями.

Р и с. 3.8. Определение времени установления выходного сигнала ЦАП

Прежде всего, необходимо четко различать статические и динамические погрешности ЦАП. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП или его составных узлов, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП определяются следующим образом.

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Для ЦАП, работающих с внешним источником опорного напряжения, определяется без учета вносимой этим источником погрешности. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение на выходе ЦАП при нулевом входном коде. Измеряется в единицах младшего разряда. Определяет параллельный сдвиг действительной функции преобразования и не вносит нелинейности. Это аддитивная погрешность.

Погрешность коэффициента преобразования (масштабная) – мультипликативная погрешность, связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Главным требованием к ЦАП с этой точки зрения является обязательность монотонности характеристики, определяющая однозначность соответствия выходного и входного сигнала преобразователя. Формально требование монотонности заключается в постоянстве на всем рабочем участке характеристики знака производной.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные .

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины. Интегральная нелинейность возникает из-за различных нелинейных эффектов, которые отражаются на работе преобразователя в целом. Они наиболее ярко проявляются при интегральном исполнении преобразователей. Например, она может быт связана с различным при разных входных кодах уровнем разогрева в БИС каких-то нелинейных сопротивлений.

Погрешность дифференциальной нелинейности – отклонение реальной характеристики от идеальной для смежных значений кода. Эти погрешности отражают немонотонные отклонениями реальной характеристики от идеальной. Для характеристики всей функции преобразования выбирается максимальная по модулю локальная дифференциальная нелинейность. Пределы допустимых значений дифференциальной нелинейности выражаются в единицах веса младшего разряда.

Рассмотрим причины появления дифференциальных погрешностей и то, как они отражаются на функции преобразования ЦАП. Представим, что все веса разрядов в ЦАП заданы идеально точно, кроме веса старшего разряда.

Если рассмотреть последовательность всех кодовых комбинаций для двоичного кода некоторой разрядности, то закономерности формирования двоичного кода определяют кроме всего прочего и то, что в кодовых комбинациях, соответствующих значениям от нуля до половины полной шкалы (от нуля до половины максимального значения кода), старший разряд всегда равен нулю, а в кодовых комбинациях, соответствующих значениям от половины шкалы до полного ее значения, старший разряд всегда равен единице. Поэтому при подаче на ЦАП кодов, соответствующих первой половине шкалы значений входного кода, вес старшего разряда не участвует в формировании выходного сигнала, а при подаче кодов соответствующих второй половине – участвует постоянно. Но если вес этого разряда задан с погрешностью, то эта погрешность будет отражаться и на формировании выходного сигнала. Тогда это отразится на функции преобразования ЦАП, так как показано на рис. 3.9.а .

Р и с. 3.9. Влияние на функцию преобразования ЦАП погрешности задания

веса старшего разряда.

Из рис. 3.9.а . видно, что для первой половины значений входного кода реальная функция преобразования ЦАП соответствует идеальной, а для второй половины значений входного кода реальная функция преобразования отличается от идеальной на величину погрешности задания веса старшего разряда. Минимизации влияния этой погрешности на функцию преобразования ЦАП можно добиться, выбрав такой масштабный коэффициент преобразования, который позволит свести погрешность в конечной точке шкалы преобразования к нулю (рис. 3.9.б ). При этом видно, что дифференциальные погрешности распределяются симметрично относительно середины шкалы. Это определило еще одно их название – погрешности симметричного типа. Одновременно видно, что наличие такой погрешности определяет немонотонное поведение функции преобразования ЦАП.

На рис. 3.10.а . показано, как будет отличаться реальная функция преобразования ЦАП от идеальной при условии отсутствия погрешностей задания весов всех разрядов, кроме разряда, предшествующего старшему. Рис. 3.10.б . показывает, поведение функции преобразования, если выбрать (свести к нулю) масштабную составляющую общей погрешности.

Метрология" href="/text/category/metrologiya/" rel="bookmark">метрологических показателей рационально добиваться комплексно, используя технологические приемы с различными структурными методами. А при использовании готовых интегральных преобразователей структурные методы это единственный путь дальнейшего повышения метрологических характеристик системы преобразования.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.