Схемы на операционных усилителях с обратной связью. Операционный усилитель

  • 07.08.2019

В курсе электроники есть много важных тем. Сегодня мы попытаемся разобраться с операционными усилителями.
Начнем сначала. Операционный усилитель - это такая «штука», которая позволяет всячески оперировать аналоговыми сигналами. Самые простейшие и основные - это усиление, ослабление, сложение, вычитание и много других (например, дифференцирование или логарифмирование). Абсолютное большинство операций на операционных усилителях (далее ОУ) выполняются с помощью положительных и отрицательных обратных связей.
В данной статье будем рассматривать некий «идеал» ОУ, т.к. переходить на конкретную модель не имеет смысла. Под идеалом подразумевается, что входное сопротивление будет стремиться к бесконечности (следовательно, входной ток будет стремиться к нулю), а выходное сопротивление - наоборот, будет стремиться к нулю (это означает, что нагрузка не должна влиять на выходное напряжение). Также, любой идеальный ОУ должен усиливать сигналы любых частот. Ну, и самое важное, коэффициент усиления при отсутствующей обратной связи должен также стремиться к бесконечности.

Ближе к делу
Операционный усилитель на схемах очень часто обозначается равносторонним треугольничком. Слева расположены входы, которые обозначены "-" и "+", справа - выход. Напряжение можно подавать на любой из входов, один из которых меняет полярность напряжения (поэтому его назвали инвертирующим), другой - не меняет (логично предположить, что он называется неинвертирующий). Питание ОУ, чаще всего, двуполярное. Обычно, положительное и отрицательное напряжение питания имеет одинаковое значение (но разный знак!).
В простейшем случае можно подключить источники напряжения прямо ко входам ОУ. И тогда напряжение на выходе будет расчитываться по формуле:
, где - напряжение на неинвертирующем входе, - напряжение на инвертирующем входе, - напряжение на выходе и - коэффициент усиления без обратной связи.
Посмотрим на идеальный ОУ с точки зрения Proteus.


Предлагаю «поиграть» с ним. На неинвертирующий вход подали напряжение в 1В. На инвертирующий 3В. Используем «идеальный» ОУ. Итак, получаем: . Но тут у нас есть ограничитель, т.к. мы не сможем усилить сигнал выше нашего напряжения питания. Таким образом, на выходе все равно получим -15В. Итог:


Изменим коэффициент усиления (чтобы Вы мне поверили). Пусть параметр Voltage Gain станет равным двум. Та же задача наглядно решается.

Реальное применение ОУ на примере инвертирующего и неинвертирующего усилителей
Есть два таких основных правила:
I. Выход операционного усилителя стремится к тому, чтобы дифференциальное напряжение (разность между напряжением на инвертирующем и неинвертирующем входах) было равно нулю.
II. Входы ОУ не потребляют тока.
Первое правило реализуется за счет обратной связи. Т.е. напряжение передается с выхода на вход таким образом, что разность потенциалов становится равной нулю.
Это, так сказать, «священные каноны» в теме ОУ.
А теперь, конкретнее. Инвертирующий усилитель выглядит именно так (обращаем внимание на то, как расположены входы):


Исходя из первого «канона» получаем пропорцию:
, и немного «поколдовав» с формулой выводим значение для коэффициента усиления инвертирующего ОУ:

Приведенный выше скрин в комментариях не нуждается. Просто сами все подставьте и проверьте.

Следующий этап - неинвертирующий усилитель.
Тут все также просто. Напряжение подается непосредственно на неинвертирующий вход. На инвертирующий вход подводится обратная связь. Напряжение на инвертирующем входе будет:
, но применяя первое правило, можно утверждать, что

И снова «грандиозные» познания в области высшей математики позволяют перейти к формуле:
Приведу исчерпывающий скрин, который можете перепроверить, если хотите:

Напоследок, приведу парочку интересных схем, чтобы у Вас не сложилось впечатления, что операционные усилители могут только усиливать напряжение.

Повторитель напряжения (буферный усилитель). Принцип действия такой же, как и у транзисторного повторителя. Используется в цепях с большой нагрузкой. Также, с его помощью можно решить задачку с согласованием импедансов, если в схеме есть нежелательные делители напряжения. Схема проста до гениальности:

Суммирующий усилитель. Его можно использовать, если требуется сложить (отнять) несколько сигналов. Для наглядности - схема (снова обращаем внимание на расположение входов):


Также, обращаем внимание на то, что R1 = R2 = R3 = R4, а R5 = R6. Формула расчета в данном случае будет: (знакомо, не так ли?)
Таким образом, видим, что значения напряжений, которые подаются на неинвертирующий вход «обретают» знак плюс. На инвертирующий - минус.

Заключение
Схемы на операционных усилителях чрезвычайно разнообразны. В более сложных случаях Вы можете встретить схемы активных фильтров, АЦП и устройств выборки хранения, усилители мощности, преобразователи тока в напряжение и многие многие другие схемы.
Список источников
Краткий список источников, который поможет Вам быстрее освоится как в ОУ, так и в электронике в целом:
Википедия
П. Хоровиц, У. Хилл. «Искусство схемотехники»
Б. Бейкер. «Что нужно знать цифровому разработчику об аналоговой электронике»
Конспект лекций по электронике (желательно, собственный)
UPD.: Спасибо НЛО за приглашение

В неинвертирующем усилителе входной сигнал подаётся на неинвертирующий вход ОУ (+), в этом основное отличие неинвертирующего усилителя на ОУ от . При этом источник сигнала «видит» бесконечное входное сопротивление ОУ. Напряжение смещения нуля равно нулю, и поэтому инвертирующий вход ОУ должен иметь тот же потенциал, что и неинвертирующий. Ток с выхода ОУ создаёт падение напряжения на резисторе R G , которое должно быть равно входному напряжению V IN .

Рис. 1. Неинвертирующий ОУ

Для расчета выходного напряжения V OUT и коэффициента усиления воспользуется правилом расчета делителя напряжения:

После преобразования получается выражение для коэффициента усиления в следующем виде:

Важно отметить, что в выражении (2) присутствуют только номиналы пассивных элементов.
Если сопротивление резистора R G выбрать намного больше, чем R F , то отношение (R F /R G) стремится к нулю, а при нулевом сопротивлении R F выражение (2) преобразуется в

В этом случае неинвертирующий усилитель превращается в буфер (повторитель сигнала) с единичным коэффициентом передачи, с бесконечным входным и нулевым выходным сопротивлениями. Резистор R G в этом случае тоже может быть исключён из схемы. На практике некоторые ОУ могут «сгореть» при включении без резистора R F . По этой причине во многих конструкциях буферов этот резистор присутствует. Его функция - защищать инвертирующий вход от бросков напряжения путём ограничения тока на безопасном уровне. Часто используемый номинал этого резистора 20 кОм. В схемах усилителей стоковой обратной связью резистор R F определяет стабильность и требуется всегда. Впрочем, не поленитесь и полистайте datasheet на операционник. Если там описано включение как на рис. 2 — смело используйте!

В статье будет рассмотрена стандартная на операционном усилителе, а также приведены примеры различных режимов работы этого прибора. На сегодняшний день ни одно устройство управления не обходится без усилителей. Это поистине универсальные приборы, которые позволяют выполнять различные функции с сигналом. О том, как работает и что конкретно позволяет сделать этот прибор, вы и узнаете далее.

Инвертирующие усилители

Схема инвертирующего усилителя на ОУ достаточно проста, вы ее можете увидеть на изображении. В ее основе находится операционный усилитель (схемы включения его рассмотрены в данной статье). Кроме этого, здесь:

  1. На резисторе R1 падение напряжения присутствует, по своему значению оно такое же, как входное.
  2. На резисторе R2 также имеется - оно такое же, как выходное.

При этом отношение выходного напряжения к сопротивлению R2 равно по значению отношению входного к R1, но обратно ему по знаку. Зная значения сопротивления и напряжения, можно вычислить коэффициент усиления. Для этого необходимо разделить выходное напряжение на входное. При этом операционный усилитель (схемы включения у него могут быть любыми) может иметь одинаковый коэффициент усиления независимо от типа.

Работа обратной связи

Теперь нужно более детально разобрать один ключевой момент - работу обратной связи. Допустим, на входе имеется некоторое напряжение. Для простоты расчетов примем его значение равным 1 В. Допустим также, что R1=10 кОм, R2=100 кОм.

А теперь предположим, что возникла какая-то непредвиденная ситуация, из-за которой на выходе каскада напряжение установилось на значении 0 В. Далее наблюдается интересная картина - два сопротивления начинают работать в паре, совместно они создают из себя делитель напряжения. На выходе инвертирующего каскада оно поддерживается на уровне 0,91 В. При этом ОУ позволяет фиксировать рассогласование по входам, а на выходе происходит уменьшение напряжения. Поэтому очень просто спроектировать схему на операционных усилителях, реализующую функцию усилителя сигнала от датчика, например.

И продолжаться это изменение будет до той самой поры, покуда не установится на выходе значение стабильное в 10 В. Именно в этот миг на входах операционного усилителя потенциалы окажутся равными. И они будут такими же, как потенциал земли. С другой стороны, если на выходе устройства продолжит уменьшаться напряжение, и оно будет меньше, чем -10 В, на входе потенциал станет ниже, нежели у земли. Следствие этого - на выходе начинает увеличиваться напряжение.

У такой схемы имеется большой недостаток - входной импеданс очень маленький, в особенности у усилителей с большим значением коэффициента усиления по напряжению, в том случае, если цепь обратной связи замкнута. А конструкция, рассмотренная дальше, лишена всех этих недостатков.

Неинвертирующий усилитель

На рисунке приведена схема неинвертирующего усилителя на операционном усилителе. Проанализировав ее, можно сделать несколько выводов:

  1. Значение напряжения UA равно входному.
  2. С делителя снимается напряжение UA, которое равно отношению произведения выходного напряжения и R1 к сумме сопротивлений R1 и R2.
  3. В случае, когда UA по значению равен входному напряжению, коэффициент усиления равен отношению выходного напряжения к входному (или же можно к отношению сопротивлений R2 и R1 прибавить единицу).

Называется данная конструкция неинвертирующим усилителем, у него практически бесконечный входной импеданс. Например, для операционных усилителей 411 серии его значение - 1012 Ом, минимум. А для операционных усилителей на биполярных полупроводниковых транзисторах, как правило, свыше 108 Ом. А вот выходной импеданс каскада, равно как и в ранее рассмотренной схеме, очень мал - доли ома. И это нужно учитывать, когда производится расчет схем на операционных усилителях.

Схема усилителя переменного тока

Обе схемы, рассмотренные в статье ранее, работают на Но вот если в качестве связи источника входного сигнала и усилителя выступает переменный ток, то придется предусматривать заземление для тока на входе устройства. Причем нужно обратить внимание на то, что значение тока крайне мало по величине.

В том случае, когда происходит усиление сигналов переменного тока, необходимо уменьшать коэффициент усиления сигнала постоянного до единицы. В особенности это актуально для случаев, когда коэффициент усиления по напряжению очень большой. Благодаря этому имеется возможность значительно снизить влияние напряжения сдвига, которое приводится к входу устройства.

Второй пример схемы для работы с переменным напряжением

В данной схеме на уровне -3 дБ можно видеть соответствие частоте 17 Гц. На ней у конденсатора импеданс оказывается на уровне двух килоом. Поэтому конденсатор должен быть достаточно большим.

Чтобы построить усилитель переменного тока, необходимо использовать неинвертирующий тип схемы на операционных усилителях. И у него должен быть достаточно большой коэффициент усиления по напряжению. Но вот конденсатор может быть чересчур большим, поэтому лучше всего отказаться от его использования. Правда, придется правильно подобрать напряжение сдвига, приравняв его по значению к нулю. А можно применить Т-образный делитель и увеличить значения сопротивлений обоих резисторов в схеме.

Какую схему предпочтительнее использовать

Большинство разработчиков отдают свое предпочтение неинвертирующим усилителям, так как у них очень высокий импеданс на входе. И пренебрегают схемам инвертирующего типа. Зато у последнего имеется огромное преимущество - он не требователен к самому операционному усилителю, который является его «сердцем».

Кроме того, характеристики, на поверку, у него значительно лучше. И с помощью мнимого заземления можно без особого труда все сигналы комбинировать, причем они не будут оказывать друг на друга какое-то влияние. Может использоваться в конструкциях и схема усилителя постоянного тока на операционном усилителе. Все зависит от потребностей.

И самое последнее - случай, если вся схема, рассмотренная здесь, подключается к стабильному выходу другого операционного усилителя. В этом случае значение импеданса на входе не играет существенной роли - хоть 1 кОм, хоть 10, хоть бесконечность. В этом случае первый каскад всегда выполняет свою функцию по отношению к следующему.

Схема повторителя

Работает повторитель на операционном усилителе аналогично эмиттерному, построенному на биполярном транзисторе. И выполняет аналогичные функции. По сути, это неинвертирующий усилитель, в котором у первого резистора сопротивление бесконечно большое, а у второго равно нулю. При этом коэффициент усиления равен единице.

Имеются специальные типы операционных усилителей, которые используются в технике лишь для схем повторителей. У них значительно лучшие характеристики - как правило, это высокое быстродействие. В качестве примера можно привести такие операционные усилители как OPA633, LM310, TL068. Последний имеет корпус, как у транзистора, а также три вывода. Очень часто такие усилители называют просто буферами. Дело в том, что они обладают свойствами изолятора (очень большой входной импеданс и крайне низкий выходной). Примерно по такому принципу строится и схема усилителя тока на операционном усилителе.

Активный режим работы

По сути, это такой режим работы, при котором выходы и входы операционного усилителя не перегружаются. Если на вход схемы подать очень большой сигнал, то на выходе его просто начнет резать по уровню напряжения коллектора или эмиттера. А вот когда на выходе напряжение фиксируется на уровне среза - на входах ОУ напряжение не меняется. При этом размах не может оказаться большим, нежели напряжение питания

Большая часть схем на операционных усилителях рассчитывается таким образом, что этот размах меньше питающего напряжения на 2 В. Но все зависит от того, какая используется конкретно схема усилителя на операционном усилителе. Такое же имеется ограничение на устойчивость на базе операционного усилителя.

Допустим, есть в источнике с плавающей нагрузкой некое падение по напряжению. В случае если ток имеет нормальное направление движения, можно встретить странную на первый взгляд нагрузку. Например, несколько переполюсованных батарей питания. Такая конструкция может применяться для того, чтобы получить прямой ток заряда.

Некоторые предосторожности

Простой усилитель напряжения на операционном усилителе (схема может быть выбрана любая) можно изготовить буквально "на коленке". Но потребуется учитывать некоторые особенности. Обязательно нужно удостовериться, что обратная связь в схеме отрицательная. Это также говорит о том, что недопустимо путать неинвертирующий и инвертирующий входы усилителя. Кроме того, должна присутствовать цепочка обратной связи для постоянного тока. Иначе операционный усилитель начнет быстро переходить в режим насыщения.

У большинства операционных усилителей входное дифференциальное напряжение очень маленькое по значению. При этом максимальная разность неинвертирующего и инвертирующего входов может ограничиваться значением 5 В при любом подключении источника питания. Если пренебречь данным условием, появятся на входе довольно большие значения токов, которые приведут к тому, что все характеристики схемы ухудшатся.

Самое страшное в этом - физическое разрушение самого операционного усилителя. В результате перестает работать схема усилителя на операционном усилителе полностью.

Следует учитывать

И, конечно же, нужно рассказать о правилах, которые стоит соблюдать, чтобы обеспечить стабильную и долговечную работу операционного усилителя.

Самое главное - ОУ обладает очень высоким коэффициентом усиления по напряжению. И если между входами напряжения изменятся на долю милливольт, на выходе его значение может измениться существенно. Поэтому важно знать: у операционного усилителя выход старается стремиться к тому, чтоб между входами разница напряжений оказалась близка (в идеале равна) к нулю.

Второе правило - потребление тока операционным усилителем крайне малое, буквально наноамперы. Если же на входах установлены полевые транзисторы, то оно исчисляется пикоамперами. Отсюда можно сделать вывод, что входы не потребляют ток, независимо от того, какой используется операционный усилитель, схема - принцип работы остается тем же.

Но не стоит думать, что ОУ действительно постоянно меняет на входах напряжение. Физически это осуществить почти нереально, так как не было бы соответствия со вторым правилом. Благодаря операционному усилителю происходит оценка состояния всех входов. При помощи схемы обратной внешней связи передается напряжение на вход с выхода. Результат - между входами операционного усилителя разница напряжений находится на уровне нуля.

Понятие обратной связи

Это распространенное понятие, и оно уже применяется в широких смыслах во всех областях техники. В любой системе управления имеется обратная связь, которая сравнивает выходной сигнал и заданное значение (эталонное). В зависимости от того, какое значение текущее - происходит корректировка в нужную сторону. Причем системой управления может быть что угодно, даже автомобиль, которые едет по дороге.

Водитель жмет на тормоза, и обратная связь здесь - начало замедления. Проведя аналогию с таким простым примером, можно лучше разобраться с обратной связью в электронных схемах. А отрицательная обратная связь - это если бы при нажимании педали тормоза автомобиль ускорялся.

В электронике обратной связью называют процесс, во время которого происходит передача сигнала с выхода на вход. При этом происходит также погашение сигнала на входе. С одной стороны, это не очень разумная идея, ведь может показаться со стороны, что значительно уменьшится коэффициент усиления. Такие отзывы, кстати, получали основоположники разработки обратной связи в электронике. Но стоит разобраться детальнее в ее влиянии на операционные усилители - практические схемы рассмотреть. И станет ясно, что она и правда немного уменьшает коэффициент усиления, но зато позволяет несколько улучшить остальные параметры:

  1. Сгладить частотные характеристики (приводит их к необходимой).
  2. Позволяет предсказывать поведение усилителя.
  3. Способна устранить нелинейность и искажения сигнала.

Чем глубже обратная связь (речь идет про отрицательную), тем меньшее влияние оказывают на усилитель характеристики с разомкнутой ОС. Результат - все его параметры зависят только от того, какие свойства имеет схема.

Стоит обратить внимание на то, что все операционные усилители работают в режиме с очень глубокой обратной связью. А коэффициент усиления по напряжению (с ее разомкнутой петлей) может достигать даже нескольких миллионов. Поэтому схема усилителя на операционном усилителе крайне требовательна к соблюдению всех параметров по питанию и уровню входного сигнала.

Было показано, что при использовании операционного усилителя в различных схемах включения, усиление каскада на одном операционном усилителе (ОУ), зависит только от глубины обратной связи. Поэтому в формулах для определения усиления конкретной схемы не используется коэффициент усиления самого, если так можно выразиться, «голого» ОУ. То есть как раз тот огромный коэффициент, который указывается в справочниках.

Тогда вполне уместно задать вопрос: «Если от этого огромного «справочного» коэффициента не зависит конечный результат (усиление), тогда в чем же разница между ОУ с усилением в несколько тысяч раз, и с таким же ОУ, но с усилением в несколько сотен тысяч и даже миллионов?».

Ответ достаточно простой. И в том и в другом случае результат будет одинаковый, усиление каскада будет определяться элементами ООС, но во втором случае (ОУ с большим усилением) схема работает более стабильно, более точно, быстродействие таких схем намного выше. Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные.

Как уже было сказано свое название «операционные» рассматриваемые усилители получили в то далекое время, когда в основном применялись для выполнения математических операций в аналоговых вычислительных машинах (АВМ). Это были операции сложения, вычитания, умножения, деления, возведения в квадрат и еще множества других функций.

Эти допотопные ОУ выполнялись на электронных лампах, позднее на дискретных транзисторах и прочих радиодеталях. Естественно, габариты даже транзисторных ОУ были достаточно велики, чтобы использовать их в любительских конструкциях.

И только после того, как благодаря достижениям интегральной электроники, ОУ стали размером с обычный маломощный транзистор, то использование этих деталей в бытовой аппаратуре и любительских схемах стало оправданным.

Кстати, современные ОУ, даже достаточно высокого качества, по цене ненамного выше двух - трех транзисторов. Это утверждение касается ОУ общего применения. Прецизионные усилители могут стоить несколько дороже.

По поводу схем на ОУ сразу стоит сделать замечание, что все они рассчитаны на питание от двухполярного источника питания. Такой режим является для ОУ наиболее «привычным», позволяющим усиливать не только сигналы переменного напряжения, например синусоиду, но также и сигналы постоянного тока или попросту напряжение.

И все-таки достаточно часто питание схем на ОУ производится от однополярного источника. Правда, в этом случае не удается усилить постоянное напряжение. Но часто случается, что в этом просто нет необходимости. О схемах с однополярным питанием будет рассказано далее, а пока продолжим о схемах включения ОУ с двухполярным питанием.

Напряжение питания большинства ОУ чаще всего находится в пределах ±15В. Но это вовсе не значит, что это напряжение нельзя сделать несколько ниже (выше не рекомендуется). Многие ОУ весьма стабильно работают начиная от ±3В, а некоторые модели даже ±1,5В. Такая возможность указывается в технической документации (DataSheet).

Повторитель напряжения

Является самым простым по схемотехнике устройством на ОУ, его схема показана на рисунке 1.

Рисунок 1. Схема повторителя напряжения на операционном усилителе

Нетрудно видеть, что для создания такой схемы не понадобилось ни одной детали, кроме собственно ОУ. Правда, на рисунке не показано подключение питания, но такое начертание схем встречается сплошь и рядом. Единственное, что хотелось бы заметить, - между выводами питания ОУ (например для ОУ КР140УД708 это выводы 7 и 4) и общим проводом следует подключить емкостью 0,01…0,5мкФ.

Их назначение в том, чтобы сделать работу ОУ более стабильной, избавиться от самовозбуждения схемы по цепям питания. Конденсаторы должны быть подключены по возможности ближе к выводам питания микросхемы. Иногда один конденсатор подключается из расчета на группу из нескольких микросхем. Такие же конденсаторы можно увидеть и на платах с цифровыми микросхемами, назначение их то же самое.

Коэффициент усиления повторителя равен единице, или, сказать по- другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными.

Входное сопротивление повторителя на ОУ рассчитывается как произведение входного сопротивления ОУ на его же коэффициент усиления. Например, для упомянутого УД708 входное сопротивление составляет приблизительно 0,5МОм, коэффициент усиления как минимум 30 000, а может быть и более. Если эти числа перемножить, то входное сопротивление получается, 15ГОм, что сравнимо с сопротивлением не очень качественной изоляции, например бумаги. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем.

Чтобы описания не вызывали сомнения, ниже будут приведены рисунки, показывающие работу всех описываемых схем в программе - симуляторе Multisim. Конечно все эти схемы можно собрать на макетных платах, но ничуть не худшие результаты можно получить и на экране монитора.

Собственно, тут даже несколько лучше: совсем не надо лезть куда-то на полку, чтобы поменять резистор или микросхему. Здесь все, даже измерительные приборы, находится в программе, и «достается» при помощи мышки или клавиатуры.

На рисунке 2 показана схема повторителя, выполненная в программе Multisim.

Рисунок 2.

Исследование схемы провести достаточно просто. На вход повторителя от функционального генератора подан синусоидальный сигнал частотой 1КГц и амплитудой 2В, как показано на рисунке 3.

Рисунок 3.

Сигнал на входе и выходе повторителя наблюдается осциллографом: входной сигнал отображается лучом синего цвета, выходной луч - красный.

Рисунок 4.

А почему, спросит внимательный читатель, выходной (красный) сигнал в два раза больше входного синего? Все очень просто: при одинаковой чувствительности каналов осциллографа обе синусоиды с одной амплитудой и фазой сливаются в одну, прячутся друг за друга.

Для того чтобы разглядеть из сразу обе, пришлось снизить чувствительность одного из каналов, в данном случае входного. В результате синяя синусоида стала на экране ровно вдвое меньше, и перестала прятаться за красную. Хотя для достижения подобного результата можно просто сместить лучи органами управления осциллографа, оставив чувствительность каналов одинаковой.

Обе синусоиды расположены симметрично относительно оси времени, что говорит о том, что постоянная составляющая сигнала равна нулю. А что будет, если к входному сигналу добавить небольшую постоянную составляющую? Виртуальный генератор позволяет сдвинуть синусоиду по оси Y. Попробуем сдвинуть ее вверх на 500мВ.

Рисунок 5.

Что из этого получилось показано на рисунке 6.

Рисунок 6.

Заметно, что входная и выходная синусоиды поднялись вверх на полвольта, при этом ничуть не изменившись. Это говорит о том, что повторитель в точности передал и постоянную составляющую сигнала. Но чаще всего от этой постоянной составляющей стараются избавиться, сделать ее равной нулю, что позволяет избежать применения таких элементов схемы, как межкаскадные разделительные конденсаторы.

Повторитель это, конечно, хорошо и даже красиво: не понадобилось ни одной дополнительной детали (хотя бывают схемы повторителей и с незначительными «добавками»), но ведь усиления никакого не получили. Какой же это тогда усилитель? Чтобы получился усилитель достаточно добавить всего несколько деталей, как это сделать будет рассказано дальше.

Инвертирующий усилитель

Для того, чтобы из ОУ получился инвертирующий усилитель достаточно добавить всего два резистора. Что из этого получилось, показано на рисунке 7.

Рисунок 7. Схема инвертирующего усилителя

Коэффициент усиления такого усилителя рассчитывается по формуле K=-(R2/R1). Знак «минус» говорит не о том, что усилитель получился плохой, а всего лишь, что выходной сигнал будет противоположен по фазе входному. Недаром усилитель и называется инвертирующим. Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. Там тоже выходной сигнал на коллекторе транзистора находится в противофазе с входным сигналом, поданным на базу.

Вот тут как раз и стоит вспомнить, сколько усилий придется приложить, чтобы на коллекторе транзистора получить чистую неискаженную синусоиду. Требуется соответствующим образом подобрать смещение на базе транзистора. Это, как правило, достаточно сложно, зависит от множества параметров.

При использовании ОУ достаточно просто подсчитать сопротивление резисторов согласно формулы и получить заданный коэффициент усиления. Получается, что настройка схемы на ОУ намного проще, чем настройка нескольких транзисторных каскадов. Поэтому не надо бояться, что схема не заработает, не получится.

Рисунок 8.

Здесь все так же, как и на предыдущих рисунках: синим цветом показан входной сигнал, красным он же после усилителя. Все соответствует формуле K=-(R2/R1). Выходной сигнал находится в противофазе с входным (что соответствует знаку «минус» в формуле), и амплитуда выходного сигнала ровно в два раза больше входного. Что также справедливо при соотношении (R2/R1)=(20/10)=2. Чтобы сделать коэффициент усиления, например, 10 достаточно увеличить сопротивление резистора R2 до 100КОм.

На самом деле схема инвертирующего усилителя может быть несколько сложнее, такой вариант показан на рисунке 9.

Рисунок 9.

Здесь появилась новая деталь - резистор R3 (скорее она просто пропала из предыдущей схемы). Его назначение в компенсации входных токов реального ОУ с тем, чтобы уменьшить температурную нестабильность постоянной составляющей на выходе. Величину этого резистора выбирают по формуле R3=R1*R2/(R1+R2).

Современные высокостабильные ОУ допускают подключение неинвертирующего входа на общий провод напрямую без резистора R3. Хотя присутствие этого элемента ничего плохого и не сделает, но при теперешних масштабах производства, когда на всем экономят, этот резистор предпочитают не ставить.

Формулы для расчета инвертирующего усилителя показаны на рисунке 10. Почему на рисунке? Да просто для наглядности, в строке текста они смотрелись бы не так привычно и понятно, были бы не столь заметны.

Рисунок 10.

Про коэффициент усиления было сказано ранее. Здесь заслуживают внимания разве что входные и выходные сопротивления неинвертирующего усилителя. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке 11.

Буквой K” обозначен справочный коэффициент ОУ. Вот, пожалуйста, посчитайте чему будет равно выходное сопротивление. Получится достаточно маленькая цифра, даже для среднего ОУ типа УД7 при его K” равным не более 30 000. В данном случае это хорошо: ведь чем ниже выходное сопротивление каскада (это касается не только каскадов на ОУ), тем более мощную нагрузку, в разумных, конечно, пределах, к этому каскаду можно подключить.

Следует сделать отдельное замечание по поводу единицы в знаменателе формулы для расчета выходного сопротивления. Предположим, что соотношение R2/R1 будет, например, 100. Именно такое отношение получится в случае коэффициента усиления инвертирующего усилителя 100. Получается, что если эту единицу отбросить, то особо ничего не изменится. На самом деле это не совсем так.

Предположим, что сопротивление резистора R2 равно нулю, как в случае с повторителем. Тогда без единицы весь знаменатель превращается в нуль, и таким же нулевым будет выходное сопротивление. А если потом этот нуль окажется где-то в знаменателе формулы, как на него прикажете делить? Поэтому от этой вроде бы незначительной единицы избавиться просто невозможно.

В одной статье, даже достаточно большой, всего не написать. Поэтому придется все, что не уместилось рассказать в следующей статье. Там будет описание неинвертирующего усилителя, дифференциального усилителя, усилителя с однополярным питанием. Также будет приведено описание простых схем для проверки ОУ.

Инвертирующий усилитель является одним из самых простых и наиболее часто используемых аналоговых схем. С помощью всего двух резисторов, мы можем выставить необходимый нам коэффициент усиления. Ничего не мешает нам сделать коэффициент менее 1, тем самым ослабив входной сигнал.

Часто к схеме добавляют еще один R3, сопротивление которого равно сумме R1 и R2.

Чтобы понять, как работает инвертирующий усилитель, смоделируем простую схему. У нас на входе напряжение 4В, сопротивление резисторов составляет R1=1к и R2=2к. Можно было бы, конечно, подставить все это в формулу и сразу вычислить результат, но давайте посмотрим, как именно работает эта схема.

Начнем с напоминания основных принципов работы операционного усилителя:

Правило №1 — операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

Обратите внимание, что неинвертирующий вход (+) соединен с массой, то есть на нем напряжение равное 0В. В соответствии с правилом №1 на инвертирующем входе (-) так же должно быть 0В.

Итак, мы знаем напряжение, находящееся на выводах резистора R1 и его сопротивление 1к. Таким образом, с помощью мы можем выполнить расчет, и рассчитать, какой ток течет через резистор R1:

IR1 = UR1/R1 = (4В-0В)/1к = 4мА.

Правило №2 — входы усилителя не потребляют ток

Таким образом, ток, протекающий через R1, течет далее через R2!

Снова воспользуемся законом Ома и вычислим, какое падение напряжения происходит на резисторе R2. Мы знаем его сопротивление и знаем какой ток через него, следовательно:

UR2 = IR2R2 = 4мА *2к = 8В.

Получается, что на выходе мы имеем 8В? Не совсем так. Напомню, что это инвертирующий усилитель, т. е. если на вход мы подаем положительное напряжение, а на выходе снимаем отрицательное. Как же это происходит?

Это происходит вследствие того, что обратная связь установлена на инвертирующем входе (-), и для уравнивания напряжений на входе усилитель снижает потенциал на выходе. Соединения резисторов можно рассмотреть как простой , поэтому чтобы потенциал в точке их соединения был равен нулю, на выходе должно быть минус 8 вольт: Uвых. = -(R2/R1)*Uвх.

Есть еще один подвох, связанный с 3 правилом:

Правило №3 — напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

То есть нужно проверить, что рассчитанные нами напряжения можно реально получить через усилитель. Часто начинающие думают, что усилитель работает как источник свободной энергии и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание.
Классические усилители работают от напряжения -15В и +15В. В такой ситуации наши -8В, которые мы рассчитали, являются реальным напряжением, так как находится в этом диапазоне.

Однако современные усилители часто работают с напряжением 5В и ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал нам минус 8В на выходе. Поэтому, при проектировании схем всегда помните, что теоретические расчеты всегда нужно подкреплять реальностью и физическими возможностями.

Необходимо отметить, что инвертирующий усилитель имеет один недостаток. Мы уже знаем, что не нагружает источник сигнала, поскольку входы усилителя имеют очень большое сопротивление, и потребляют ток так мало, что в большинстве случаев его можно игнорировать (правило №2).

Инвертирующий же усилитель имеет входное сопротивление равное сопротивлению резистора R1, на практике оно составляет от 1к…1М. Для сравнения, усилитель с входами на полевых транзисторах имеет сопротивление порядка сотен мегаом и даже гигаом! Поэтому иногда может быть целесообразно перед усилителем установить повторитель напряжения.