Конспект по дисциплине телекоммуникации на тему "классификация систем передачи данных". Классификация видов информации, способов передачи и коммутации. Классификация способов коммутации и передачи

  • 11.05.2019

По виду передаваемых сообщений различают:

1) телеграфию (передача текста),

2) телефонию (передача речи),

3) фототелеграфию (передача неподвижных изображений),

4) телевидение (передача подвижных изображений),

5) телеметрию (передача результатов измерений),

6) телеуправление (передача управляющих команд),

7) передачу данных (в вычислительных системах и АСУ).

По диапазону частот – в соответствии с декадным делением диапазонов электромагнитных волн от мириаметровых (3÷30) кГц до децимиллиметровых (300÷3000) ГГц.

По назначению – вещательные (высококачественная передача речи, музыки, видео от малого числа источников сообщений большому количеству их получателей) и профессиональные (связные), в которых число источников и получателей сообщений одного порядка.

Различают следующие режимы работы СС:

1) симплексный (передача сигналов в одном направлении),

2) дуплексный (одновременная передача сигналов в прямом и обратном направлениях),

3) полудуплексный (поочередная передача сигналов в прямом и обратном направлениях).

Каналом связи называется комплекс радиотехнических устройств, при помощи которых передается и принимается информация, плюс среда между ними. В зависимости от вида сигналов на входе и выходе различают каналы: непрерывные; дискретные; дискретно-непрерывные; непрерывно-дискретные.

Каналы связи можно характеризовать по аналогии с сигналами следующими тремя параметрами:

– временем доступа Тк,

– шириной полосы пропускания ΔFк,

– динамическим диапазоном [дБ],

где Pк.доп. – максимально допустимая мощность сигнала в канале,

Pш – мощность собственных шумов канала.

Обобщенным параметром канала является его емкость

Очевидным необходимым условием согласования сигнала и канала является выполнение неравенства Vc

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 1.3. Классификация систем связи:

  1. Белоус И.А.. ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ И СИСТЕМ СВЯЗИ. Практикум, 2016
  2. 22.7. Пропускная способность каналов радиотехнической системы связи
  3. 22.1. Тактико-технические параметры радиотехнической системы связи
  4. Исследование связи синусового узла с вегетативной нервной системой
  5. 22.4. Количество информации при приёме дискретных сигналов радиотехнической системы связи
  6. Правовые системы и теоретические проблемы их классификации § 1. Правовая система общества: понятие, элементы, функции
2. Классификация видов информации, способов передачи и коммутации. Мультисервисные сети связи

2. Классификация видов информации, способов передачи и коммутации

2.1. Классификация видов информации

  • пользовательская (группа "U ser");
  • управления (группа "C ontrol");
  • административного управления (группа "M anagement").

К пользовательской информации (U ) относятся, например, те виды, которые приведены в таблице 2.1.

Для обмена этими видами информации используются информационные протоколы прикладного уровня, например, SMTP, H.323, HTTP, FTP, T.120 и др.

Большинство видов информации, приведенных в таблице 2.1, чувствительно к задержке при передаче по каналам телекоммуникационных сетей. Переход к сетям, основанным на концепции NGN, требует учета разнообразия характеристик различных видов информации.

Характеристики телефаксов:

1. Факс гр. 3: 203x98 точек/дюйм;

2. Факс гр. 4: 400x400 точек/дюйм.

К виду C относятся :

  • процессов установления и разъединения соединения между сетевыми объектами;
  • информация, обеспечивающая поддержку процессов предоставления интеллектуальных услуг ;
  • информация, обеспечивающая поддержку процессов роуминга в сотовых сетях мобильной связи.

Для обмена этими видами информации используются сигнальные протоколы:

  • Q.931 (протокол уровня 3 стека DSS1);
  • ISUP (протокол уровня 7 стека CCS7 N-ISDN);
  • B-ISUP (протокол уровня 7 стека CCS7 B-ISDN);
  • SIP (протокол уровня 7, используемый в NGN) и др.

К виду M относятся :

  • информация административного управления (O&M – эксплуатации и технического обслуживания);
  • информация управления сетями связи (TMN).

В процессе решения этих задач обеспечивается обмен данными:

Об авариях;

О результатах измерений характеристик управляемых объектов;

О статистике;

О начислении платы за предоставляемые ресурсы и др.

Таблица 2.1. Виды и характеристики информации пользователей

информации

Диапазон частот (D F). Скорость передачи (V). Динамический диапазон уровней (D)

Чувствительность:

T - к задержке;

L (loss) - к потере информации

Службы связи (сéти)

0,3-3,4 кГц; D£ 40дБ

0,02 –20 кГц;

Радиовещания

TV (подвижное изображение)

D F кан £ 6 МГц

Цифровая ТЛФ

6,5 - 64 Кбит/c

Цифровое TV

2 - 25 Мбит/c

Телеграфная

50 Бит/с-2400 Бит/с

Данные (ПЭВМ)

9,6 Кбит/с – 34 Мбит/с

ПД (X.25,FR,ATM)

Факс (гр. 3, 4)

2,4 Кбит/с – 64 Кбит/с

ФАКСИМИЛЕ

Видеотекст,

телетекст

Видеотекс;

телетекс

9,6 Кбит/с – 64 Кбит/с

FR, Internet (E-mail), ATM

14 Кбит/с – 64 Кбит/с

FR, Internet, TЛФ

Видео почта

(64 – 128) Кбит/с

ТЛФ, FR, Internet, ATM

Телеметрия

(2,4 – 128) Кбит/с

Доступ к Internet

(19,2-2048) Кбит/с

(2,4 - 56) Кбит/с

ТЛФ, Internet, ATM

ТV по запросу

(2,0 – 8,0) Мбит/с

TV, КТВ, ATM, Internet

Видеоте-лефония

ТЛФ, Internet, ATM

Видеоконфе-ренция

(384 – 512) Кбит/с

ТЛФ, Internet, ATM

Для обмена этими видами информации используются протоколы управления сетью, например, SNMP, CMIP, ILMI, OMAP, FTAM и др.

Службы, функционирующие в МСС, характеризуются следующими атрибутами:

  • скорость передачи информации;
  • способ установления соединения (коммутируемое, полупостоянное или постоянное);
  • метод коммутации (КК или КП);
  • конфигурация связи (“точка-точка”, “многоточечная”, “широковещательная”);
  • принцип установления связи (по запросу, с предварительным резервированием на заданное время, постоянная связь);
  • протокол доступа.

В рекомендации ITU-T I.211 все услуги МСС предлагается делить на интерактивные и вещательные . К интерактивным услугам относятся: диалоговые (интерактивные), почтовые, "по запросу". К вещательным услугам относятся: трансляционные без влияния пользователя и с возможностью активного управления со стороны пользователя. Примеры диалоговых услуг приведены в таблице 2.2.

Таблица 2.2. Примеры диалоговых услуг, предоставляемых службами МСС

Тип информации

Широкополосная услуга

Область применения

1. Подвижные изображения и звук

Видеотелефония

Системы связи для передачи речи, неподвижных и подвижных изображений между двумя пользователями

Видеоконференции

Системы связи для передачи речи, документов, неподвижных и подвижных изображений между двумя или большим количеством пользователей

Видеонаблюдение

Системы охраны и мониторинга (технологических процессов, дорожного движения и др.)

Передача видео- и аудиоинформации

Передачи ТВ, работа с БД мультимедиа

Передача множества звуковых каналов

Передача нескольких радиопрограмм, информац. каналы на нескольких языках одновременно

Высокоскоростная передача информации в цифровой форме

Передача данных при взаимодействии:

    1. Передача видеоинформации и неподвижных изображений.
    2. Распределённая интерактивная компьютерная обработка.
    3. Распределенные системы автоматизации производства с обменом в интерактивном режиме.

Высокоскоростное телеуправление

  • Системы сигнализации,
  • Телеметрия,
  • Системы контроля в реальном времени.

4. Документы

Высокоскоростной телефакс

Передача изображений, текста, рисунков

Передача видео высокого разрешения

  • Передача видео с проф. качеством,
  • Передача изображений из операционных (мед.),
  • Компьютерные игры с удалёнными абонентами.

Обмен документами

Передача смешанных документов.

2.2. Классификация способов коммутации и передачи

На рисунке 2.1 приведена классификация способов коммутации и передачи

Рисунок 2.1. Классификация способов коммутации и передачи

В таблице 2.2 приведены достоинства и недостатки способов коммутации и передачи.

Таблица 2.2. Достоинства и недостатки способов коммутации и передачи

коммутации

Достоинства

Недостатки

Коммутация каналов (КК)

1) не требуются ресурсы сети для обработки сообщений;

2) задержка доставки сообщений минимальна (она равна времени установления соединения tус).

1) невозможно изменение полосы пропускания канала;

2) невозможна интеграция в одной сети видов служб с разными скоро-стями передачи;

3) низкое использование полосы пропускания канала.

Многоскоростная коммутация (МСКК)

1) возможность изменения полосы пропускания канала;

2) задержка доставки минималь-на;

1) низкое использование канала при пачечном трафике (Кп = Тс/Тпер>1);

2) высокая сложность системы синхронизации;

3) необходимость выделения большого количества каналов с базовой полосой пропускания (Vбаз) для высокоскоростных служб;

4) необходимость выбора низкой базовой полосы пропускания канала.

Быстрая коммутация каналов (БКК)

1) возможность передачи пакетов данных в паузах речевого сигнала;

2) улучшенное использование полосы канала при трафике пачечного типа (Кп >1);

3) задержка доставки пакетов мала.

1) при перегрузках быстро растут потери;

2) при перегрузках часть речевых отрезков

теряется;

3) после передачи каждого пакета (в паузах речевого обмена) необходимо восстанавливать соединение между пользователями за время tус £ 140 мс, чтобы задержки “из конца в конец” не превышали 240 мс.

Быстрая коммутация пакетов (БКП)

1) динамическое изменение скорости передачи (полосы пропускания канала);

2) малая вероятность ошибки;

3) простота протоколов звена данных и сетевого уровней в узлах сети;

4) малая величина задержки;

5) хорошее использование ресурсов сети при пачечном трафике;

6) гибкость в условиях перегрузки.

а) потери скорости передачи из-за необходи-мости включения адреса в каждый пакет;

б) усложнение коммутационных полей коммутаторов.

Коммутация пакетов (КП)

1) динамическое изменение скорости передачи;

2) высокое использование ресурсов сети при пачечном трафике.

а) задержка для пакетов с речевой информацией может быть недопустимо большой;

б) высокая сложность протоколов звеньевого и сетевого уровней;

в) большая зависимость задержки сообщений от поступающей нагрузки.

Первый проект сети с коммутацией пакетов был обнародован в 1974 г. Основа концепции такой сети – отказ от жесткой связи между канальным интервалом (TIME SLOT) и соединением в первичных цифровых синхронных сетях . В то время (70-е годы 20-го века) качество каналов сетей связи было низким. Поэтому для обеспечения приемлемой семантической прозрачности сквозного соединения в сети потребовалось использование сложных протоколов уровня звена данных, позволивших обеспечить разграничение кадров и защиту от ошибок .

Пакетная коммутация ориентирована на предоставление виртуальных каналов , которые существуют лишь как временнóе подмножество ресурса физической цепи.

Это временнóе подмножество пользователь ощущает как реальный канал. При этом в одном физическом канале осуществляется мультиплексирование потоков пакетов многих пользователей и служб.

Пропускная способность физического канала считается достаточной, если ни один из пользователей не замечает понижения качества услуг при параллельном использовании общего ресурса с другими пользователями.

Различают два вида соединений в пакетных сетях:

  • виртуальный канал (аналогичен коммутируемому соединению, устанавливаемому на время сеанса);
  • постоянный виртуальный канал (аналогичен выделенной линии, кроссируемой по определенному маршруту “из конца в конец”).

При объединении потоков нескольких источников в одном канале могут использоваться статическое или статистическое мультиплексирование.

Алгоритм статического мультиплексирования потоков широко используется в современных сетях, поскольку позволяет относительно экономно расходовать пропускную способность магистральных каналов. Простейший пример передачи информации многих источников по одному каналу магистральной сети: за каждым из источников закрепляется определенная часть ресурса магистрального канала (например, своя полоса частот). В этом случае каждый источник может использовать только ту часть ресурса, которая ему отведена (рисунок 2.2, слева).

Рисунок 2.2. Сравнение эффективности использования сетевых ресурсов при статическом (слева) и статистическом (справа) мультиплексировании потоков

Слева на рисунке 2.2 показаны потоки трех отдельных источников при жестком разделении полосы магистрали (статическое мультиплексирование) между ними. Справа – потоки тех же источников в магистральном канале при работе алгоритма статистического мультиплексирования.

Принцип статистического мультиплексирования состоит в том, что потоки отдельных источников складываются (агрегируются) в магистральном канале с экономией пропускной способности (рисунок 2.2, справа).

На рисунке 2.3 отражены требования к качеству доставки информации “из конца в конец” между интерфейсами “пользователь-сеть” (UNI).

Оборудование потребителя включает оконечное оборудование (TE), например, хост и какой-либо маршрутизатор или, если имеется, ЛВС. Граничные маршрутизаторы (ER), к которым подключается оконечное оборудование, могут называться шлюзами доступа (Access Gateway, AGW). Эталонные каналы (ресурсы) сетей имеют следующие атрибуты:

1) область сети IP может поддерживать виртуальные соединения “пользователь-пользователь”, “пользователь-хост” и другие варианты соединения конечных точек;

2) сетевые сегменты могут быть представлены как области с маршрутизаторами на их границах и неопределенным количеством внутренних маршрутизаторов с различными ролями в процессе доставки потоков информации;

3) количество сетевых сегментов в заданном пути может зависеть от предлагаемого класса

обслуживания (CoS), сложности и географической протяженности каждого сетевого сегмента;

5) сетевые сегменты , поддерживающие передачу пакетов в потоке, могут изменяться во время его существования ;

6) возможность соединения по протоколу IP простирается за международные границы, но не следует соглашениям о коммутации каналов (например, на международной границе могут отсутствовать идентифицируемые шлюзы, если один и тот же сетевой сегмент используется по обе стороны границы).

В таблице 2.3 приведены показатели качества доставки информации в МСС с пакетной коммутацией (Рекомендация ITU-T Y.1541) .

Таблица 2.3. Показатели качества доставки информации в МСС с пакетной коммутацией

Класс качества доставки

(T з - задержка IP-пакета)

(джиттер)

(доля потерь)

(доля искаженных IP-пакетов)

(приоритет 1)

50 мс. 3)

10 -3 . 4)

10 -4 . 5)

(приоритет 1)

50 мс. 3)

10 -3 . 4)

(приоритет 2)

(приоритет 2)

(приоритет 3)

(приоритет 3)

Примечания:

1) При большом времени распространения сигналов могут возникать сложности для классов "0" и "2" с соблюдением норм на среднее значение времени задержки IP пакетов. Величина IPTD определена для максимальной длины информационного поля пакета 1500 байтов.

2) Величина вариации задержки IP-пакетов (IPDV) определяется разницей между верхней и нижней границей задержки, измеренной в течение интервала оценки . В качестве длительности этого интервала предлагается выбирать одну минуту. Все эти соображения ITU-T считает предварительными и требующими дополнительного изучения.

3) Эта величина зависит от скорости в тракте обмена пакетами. Приемлемая величина вариации задержки достигается при использовании трактов со скоростью 2048 Кбит/с и более, а также при длине информационного поля пакетов менее 1500 октетов.

4) Требование для классов "0" и "1" отчасти основано на исследованиях, показывающих, что высококачественные голосовые приложения (и соответствующие кодеки) весьма эффективны при значениях IPLR менее 10 -3 .

5) Эта величина (IREP=10 -4) гарантирует то, что потери пакетов будут компенсированы вышестоящими уровнями и допустимы при использовании связки технологий IP/ATM.

Класс "0 " предназначен для обмена информацией в реальном времени (в частности, для телефонной связи с высоким качеством при использовании IP технологии). Он предусматривает создание отдельной очереди с приоритетной обработкой пакетов (высший приоритет ). Для класса "0 " характерны ограничения на способы маршрутизации (максимальное число транзитов) и допустимое расстояние между взаимодействующими терминалами (время распространения сигналов).

Класс "1" также предназначен для обмена информацией в реальном времени, но с менее жесткими требованиями (VoIP, VTC).

Предусматривается создание отдельной очереди с приоритетной обработкой пакетов. Класс "1" обеспечивает хорошее качество телефонной связи .

Класс "2" ориентирован на обмен данными с высокой степенью интерактивности. К этому классу относится, в частности, сигнальная информация . Очереди на обработку присвоен второй приоритет.

Пакеты классов "0" и "1" имеют преимущество на обработку, по сравнению с пакетами других классов.

Классу "3", предназначенному для обмена с менее высоким уровнем интерактивности, присущи те же ограничения на принципы маршрутизации и время распространения сигналов, что и классу "1". Обслуживание пакетов этого класса должно осуществляться со вторым приоритетом. Этот класс считается приемлемым для интерактивного обмена данными .

Класс "4" предназначен для обмена различной информацией с низкой вероятностью потери (короткие транзакции , потоковое видео или видео в реальном (масштабе) времени, "живое" видео и др.). Допускаются длинные очереди пакетов на обработку, которая осуществляется с третьим приоритетом. Никакие ограничения на маршрутизацию и время доставки сообщений не накладываются.

Класс "5" ориентирован на те IP приложения, которые не требуют высоких показателей качества доставки информации. Соответствующие пакеты формируют отдельную очередь; обслуживание осуществляется с самым низким приоритетом (третий приоритет). Никакие ограничения на маршрутизацию и время доставки сообщений не накладываются. Типичным примером услуг, поддерживаемых с классом "5", можно считать "электронную почту".

Символ "U" (первая буква в слове "U nspecified") указывает на то, что показатель для данного класса обслуживания не нормируется. Джиттер (jtter) – флуктуации задержки.

Федеральное агентство по образованию

Государственное учреждение

высшего профессионального образования

«Тульский государственный университет»

Кафедра «Финансы и менеджмент»

ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ

КУРСОВАЯ РАБОТА

на тему:

Современные системы передачи данных

Тула 2009

Введение

1. Понятие систем передачи данных и их классификация

2. Беспроводные системы передачи данных

2.1 Системы персональной сотовой связи

2.2 СВЧ-системы

2.3 Спутниковые системы

3. Проводные системы передачи данных

3.1 Оптико-волоконные и волоконно-коаксиальные системы

4 Характеристика основных производителей современного оборудования систем передачи данных

Заключение

Список использованной литературы

Сегодняшние реалии жизни требуют от человека быть в курсе всех последних событий, новостей финансового и политического мира, а также незамедлительно реагировать на любые изменения, происходящие в мире. Человек нуждается в постоянном обмене данными. Ярким примером такой зависимости от информационных каналов связи можно назвать трейдерство. Человек, играющий на бирже, должен владеть всеми сведениями, которые влияют на котировки акций. Больше того, ему нужен Интернет, чтобы вовремя внести изменения в свои фишки, иначе он не получит прибыль. Благодаря тому, что сейчас активно развиваются кабельные, спутниковые и мобильные линии связи, такой человек может иметь постоянно работающий канал, а нередко даже и резервный, на всякий случай. Этот пример доказывает актуальность темы исследования.

Целью работы является изучение возможностей, а также изучение достоинств и недостатков современных систем передачи данных.

Для достижения данной цели в работе решаются следующие задачи:

· классификация систем передачи данных;

· подробное рассмотрение всех видов систем передачи данных;

· краткое описание основных производителей современного оборудования систем передачи данных


1. Понятие системы передачи данных и их классификация

Система передачи данных – система, предназначенная для передачи информации как внутри различных систем инфраструктуры организации, так и между ними, а также с внешними системами. Определение систем передачи данных, на первый взгляд, очень просто и коротко. Но за этими словами скрывается огромное значение данной системы не просто для других технических систем, а для бизнес-процессов современной организации в целом. Система передачи данных является, прямо или косвенно, основной технической составляющей работоспособности практически любых средних и крупных организаций, а также многих малых компаний, использующих современные средства управления своим бизнесом.

Так сложилось исторически, что система передачи данных с каждым годом становится все более универсальной средой для передачи самой различной информации, как между конечными пользователями, так и между системными (служебными) устройствами. Чем больше универсальность, тем больше требований к этой системе.

Система передачи данных состоит из нескольких компонентов, определяемых в зависимости от решаемых задач. Их далеко не полный перечень:

· коммутаторы,

· маршрутизаторы,

· межсетевые экраны и мосты,

· мультиплексоры,

· различные конвертеры физической среды и интерфейсов передачи данных,

· точки беспроводного доступа,

· клиентское оборудование,

· программное обеспечение управления оборудованием.

Также практически все современные инженерные системы имеют в своем составе встроенные компоненты для организации передачи разнородных данных (служебный "горизонтальный" трафик между устройствами, данные управления между центром управления и устройствами, мультимедийный трафик), имеющих непосредственное отношение к системам передачи данных.

Крупнейшей сетью передачи данных является сеть Интернет. В настоящее время Интернет представляет собой всемирную сеть, состоящую из соединенных между собой компьютеров. Интернет позволяет любому пользователю, имеющему выход в сеть, получить доступ ко всем информационным ресурсам, хранящимся на сайтах (компьютерах-серверах) по всему миру. Сеть Интернет обеспечивает работу электронной почты, позволяющей передавать сообщения другим пользователям сети и принимать сообщения от них. Также Интернет дает возможность передавать файлы между компьютерами, а с помощью специальных программ (браузеров) искать и выводить на свой дисплей любую информацию, имеющуюся в сети Интернет. И это еще не полный список.

По мере увеличения разнообразия имеющейся в сети Интернет информации (совершен поразительный качественный скачок от простых текстовых файлов к сложной графике, анимации, передаче аудио и видеосигналов) растет потребность в организации именно высокоскоростного доступа, позволяющего получать все многообразие имеющейся в сети Интернет информации.

Сети передачи данных могут быть проводными, что означает соединение компьютеров с помощью кабелей, или беспроводными, в которых подключения выполняются посредством радиоволн, по воздуху.

Беспроводное соединение позволяет работать на компьютерах в любом месте дома без использования кабелей. Прокладка кабелей - затратный процесс, при этом они выглядят не эстетично и могут быть опасны, если свободно лежат на полу.

Проводные системы передачи данных можно разделить на системы, использующие витую пару телефонных проводов, и системы, использующие оптико-волоконные кабели, - к этой категории также следует отнести системы, в которых вместе с оптико-волоконными кабелями используются также и коаксиальные кабели.

Классификация систем передачи данных изображена на рисунке 1.

Рисунок 1 - Классификация систем передачи данных

Рассмотрим все эти категории более подробно, причем начнем в обратном порядке - от пока наиболее экзотических беспроводных систем, через достаточно дорогие оптико-волоконные к наиболее демократичным, широко распространенным и, значит, более удобным в освоении и эксплуатации витым парам телефонных проводов.


2. Беспроводные системы передачи данных

В настоящее время бурное развитие технологий беспроводных сетей открывает для бизнеса новые возможности по эффективной организации корпоративной сети предприятия. Преимущества беспроводных решений:

· низкая стоимость развертывания;

· мобильность, возможность демонтировать оборудование при переезде;

· безопасность, возможность шифрования трафика;

· надежная и качественная телефонная связь;

· высокоскоростной доступ к сети Интернет;

· независимость от кабельной инфраструктуры;

· простота подключения и использования.

Отсутствие проводов и, как следствие, привязки к какому-то конкретному месту всегда было значимо для мобильных пользователей, которым оперативный доступ к информации нужен постоянно, независимо от места их нахождения. Беспроводные сети эффективны, прежде всего, при передаче данных на расстояния до нескольких сот метров, и отличаются низкой стоимостью реализации. Ассортимент беспроводного сетевого оборудования может включать в себя беспроводные видеокамеры и прочие устройства. Развитие беспроводных систем доступа идет в трех основных направлениях. Это спутниковые системы, наземные СВЧ-системы и системы персональной сотовой связи, которые позволяют обеспечить доступ мобильных пользователей. Разумеется, каждое из этих средств имеет свои достоинства и недостатки .

Доступ в сеть Интернет может быть организован посредством существующей системы сотовой связи с использованием аналоговых модемов (модемов для передачи по телефонным каналам) (рисунок 2). Так как каналы сотовой связи имеют достаточно узкую полосу частот, скорость передачи данных будет невелика (в процессе постепенного развития систем сотовой связи и усовершенствования технологий скорость передачи данных также постепенно росла от 9,6 Кбит/с до 19,2 Кбит/с). Определенного увеличения скорости передачи данных можно достичь за счет использования временно свободных каналов (по которым не ведутся телефонные разговоры).

Рисунок 2

Система передачи данных по каналам сотовой связи

Плюсы и минусы использования сотовой связи для доступа в сеть Интернет очевидны. Главное достоинство заключается в мобильности и возможности выхода в сеть Интернет из любого места, а не только из квартиры или офиса, которые с помощью кабеля привязаны к провайдеру. К недостаткам можно отнести достаточно высокую стоимость услуг сотовой связи, а также не стопроцентный охват территории компаниями сотовой связи и наличие зон неуверенной связи.

По мере того, как увеличивалась потребность в расширении количества линий междугородней связи, разрабатывались системы, способные удовлетворить такие потребности. Одной из таких систем были радиорелейные линии, в которых в качестве носителя сигнала использовался не кабель, а радиоканал. Работая на сверхвысоких частотах (диапазон СВЧ) одна радиорелейная линия способна поддерживать работу тысяч телефонных каналов и нескольких телевизионных каналов одновременно. Использование данного диапазона частот приводит к необходимости размещать ретрансляторы на небольшом расстоянии друг от друга (до 30 километров) в пределах прямой видимости (сверхвысокочастотный сигнал не может завернуть за угол или перепрыгнуть даже через небольшую горку). Необходимость строить через определенное расстояние ретрансляционные вышки с антеннами делает данную технологию достаточно дорогой при организации связи на большое расстояние, но данная технология может найти свое применение, например, для организации фиксированного радиодоступа - высокоскоростной передачи данных между двумя зданиями (со скоростью от 2 Мбит/с и выше). Во многих случаях такое решение будет иметь меньшую стоимость по сравнению с прокладыванием между зданиями оптико-волоконного кабеля (например, в городах, где проложить кабель не всегда просто, или в том случае, когда эти здания разделяет река) .

В условиях недостатка частотного ресурса были созданы, успешно применяются и развиваются беспроводные системы фиксированного доступа, работающие в инфракрасной области (на основе ИК светодиодов и полупроводниковых лазеров). Они обеспечивают рабочую дальность от 300 м до 1-3 км при скорости передачи до 155 Мбит/с. Все основные недостатки этих систем (сравнительно высокая стоимость и некоторая зависимость от погодных условий и загрязнения оптики) с лихвой окупаются отсутствием необходимости получения разрешения на использование радиочастоты, а также быстротой и простотой монтажа. На следующим этапом развития систем фиксированного радиодоступа явилось создание таких протоколов обмена информацией между приемо-передатчиками, которые позволили организовать подключение многих объектов к одному (соединение "точка-многоточка"), что наиболее соответствует задачам организации доступа в Интернет (рисунок 3). Кроме того, были созданы различные механизмы (например, пакетная передача, работа на изменяющейся частоте), которые позволили увеличить пропускную способность, скорость передачи и эффективность использования частотного ресурса.

Рисунок 3 - Системы фиксированного радиодоступа

Обеспечивая среднюю скорость передачи данных, системы данного типа позволяют организовать канал передачи на достаточно большое расстояние. В то же время подверженность внешним помехам и зависимость от географических условий (обязательная необходимость прямой видимости) делают применение таких систем не всегда целесообразным.

2.3 Спутниковые системы

Для организации передачи данных используются и спутниковые системы. Причем варианты могут быть различными - от низкоскоростных индивидуальных каналов для отдельных пользователей до высокоскоростных каналов, одновременный доступ к которым может иметь большое количество пользователей (коллективный доступ). В первом случае может применяться двунаправленный канал (но это по карману только очень богатым организациям). Во втором случае спутник служит только для передачи нисходящего потока данных, поступающих из сети Интернет к пользователю (рисунок 4). Пользователю необходимо обязательно установить спутниковую антенну, СВЧ-ресивер и карту декодера прямо в персональный компьютер. Для организации восходящего потока данных (от пользователя в сеть Интернет) используется линия телефонной связи и модем.

Рисунок 4 - Спутниковая система

Спутник охватывает большую зону на поверхности Земли и является наиболее "широко охватывающей" технологией доступа в Интернет с географической точки зрения. Спутниковые системы доступа имеют не очень высокую скорость передачи данных (порядка 400 Кбит/с по направлению к пользователю) и работают не очень быстро. Представьте себе, что вы хотите загрузить какой-либо материал на экран вашего компьютера. Щелкнув на него мышью своего компьютера, вы подали сигнал запроса, который должен пройти по вашей телефонной линии, через провайдера и по обычному тракту в сети Интернет, а после ответа сигнал передается на спутник вверх и вниз, что в общей сложности составляет около 70 тысяч километров. Даже обладая скоростью света, данное средство доступа в Интернет остается достаточно медленным. Это особенно заметно при осуществлении двусторонней связи в режиме реального времени. Несмотря на широкую зону охвата, спутниковые системы имеют ряд недостатков, связанных, в частности, с необходимостью приобретения и настройки достаточно дорогостоящего оборудования. Впрочем, существует целый ряд экстремальных ситуаций, когда невозможно организовать доступ в сеть Интернет никаким другим образом, кроме как через спутник (простой пример - корабль, находящийся посреди океана).


3. Проводные системы передачи данных

3.1 Оптико-волоконные и волоконно-коаксиальные системы

Оптико-волоконные и волоконно-коаксиальные системы изначально создавались для кабельного телевидения и передачи видеосигнала. Благодаря тому, что эти системы по определению являются широкополосными, разрабатывалась именно такая технология, которая позволила бы использовать данное преимущество для высокоскоростной передачи данных, в основном для организации доступа в Интернет частных пользователей.

На рисунке 5 показана система, позволяющая организовать высокоскоростную передачу данных в обоих направлениях. Такая двунаправленная система кабельного телевидения позволяет передавать нисходящий поток передачи данных в полосе частот от 50 МГц до 750 МГц, которая поделена на каналы 6 МГц. Полоса частот, выделенная для восходящего потока данных, делится между всеми пользователями, к которым проложен коаксиальный кабель. Обычно это частотный диапазон от 5 МГц до 40 МГц.

Рисунок 5 - Оптико-волоконная система передачи данных

Один видеоканал, имеющий номинальную полосу частот 6 МГц, может использоваться для передачи данных из сети Интернет со скоростью до 30 Мбит/с. Общая скорость восходящего потока данных до 10 Мбит/с, но практикуемый метод коллективного использования в реальности для каждого отдельного пользователя дает гораздо меньшее значение.

Казалось бы, все хорошо. И почему бы ни развивать оптико-волоконную технологию доступа пользователей в сеть Интернет. Все очень просто. Развитие оптико-волоконной техники и развертывание сетей оптико-волоконных кабелей является очень дорогим удовольствием. Особенно если сравнивать внедрение этой технологии с другими технологиями. Имеет ли смысл прокладывать новые дорогие линии связи до каждого пользователя, если подавляющая часть этих пользователей уже подключена как минимум к одной телекоммуникационной компании - телефонной. Гораздо целесообразней обратить свое основное внимание (не отставая при этом, разумеется, от технического прогресса) на то богатство, которое имеется у нас под ногами - кабельную телефонную сеть, состоящую из витых пар проводов.

3.2 Использование витой пары и абонентских телефонных проводов для передачи данных

Витая пара (англ. twisted pair) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара - один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и легкости в монтаже, является самым распространенным решением для построения локальных сетей. Телефонные провода является главным носителем, который в настоящее время используется для подключения всех абонентов (независимо от их юридического статуса) к оборудованию телефонной сети. Одно только это должно вызывать здоровый энтузиазм у разработчиков систем высокоскоростной передачи данных по данному носителю. Каждый абонент телефонной сети имеет отдельную физическую пару проводов в кабеле, идущем от телефонной станции, которая соединяет его телефонный аппарат с коммутационным оборудованием, установленным на телефонной станции. Каждая пара в кабеле является витой (т.е. провода пары свиты друг с другом), что позволяет снизить нежелательные помехи. При осуществлении обычной телефонной связи каждая пара кабеля на абонентском участке кабельной сети поддерживает один голосовой канал. Также витые пары проводов используются для соединения персональных компьютеров в ЛВС (локальных сетях). Существует три основных решения при организации доступа в сеть Интернет по витой паре. Речь идет об аналоговых модемах, предназначенном специально для передачи по телефонным каналам, о ISDN и о технологиях, объединенных под общим названием xDSL. Аналоговые модемы хорошо известны и понятны большинству пользователей современных домашних компьютеров (рисунок 6). Принцип их работы основан на использовании диапазона голосовых частот витой пары для передачи данных. Для этого используются технологии передачи, известные как "частотная манипуляция" и "квадратурная амплитудная модуляция". Аналоговый модем позволяет достигать скорости передачи данных до 56 Кбит/с.


Рисунок 6 - Использование витой пары для доступа в сеть Интернет

Невысокая цена и совместимость практически с любой телефонной линией сделали аналоговые модемы основным выбором индивидуальных пользователей. К сожалению, скорость передачи аналогового модема в значительной мере зависит от качества телефонной линии и установленного соединения. Именно поэтому получить максимальную скорость передачи данных практически невозможно (обычно модем с заявленной скоростью в 33,6 Кбит/с позволяет работать со скоростью 28,8 Кбит/с, в лучшем случае 31,2 Кбит/с). Непрофессиональные пользователи сети Интернет могут использовать и аналоговые модемы, но рано или поздно любой из них сталкивается с проблемами, связанными с низким качеством соединения и перегрузками телефонной сети общего пользования. Эта сеть, в своем существующем на данный момент виде, совершенно не предназначена для того, чтобы передавать трафик сети Интернет. Более высокоскоростной альтернативой аналоговым модемам служит ISDN (рисунок 7). ISDN (не совсем по-русски называемая цифровой сетью связи с интеграцией служб) представляет собой цифровую технологию, позволяющую передавать данные со скоростью 144 Кбит/с. Для этого используется схема кодирования 2В1Q. Скорость передачи данных 144 Кбит/с складывается из двух каналов В по 64 Кбит/с каждый, используемых для передачи голоса и данных, и одного служебного канала D 16 Кбит/с для передачи управляющих сигналов. Каналы В могут использоваться как два отдельных голосовых канала, два канала передачи данных со скоростью 64 Кбит/с, как два отдельных канала передачи голоса и данных, а также совместно для передачи данных со скоростью 128 Кбит/с.

Рисунок 7 - Использование технологии ISDN

Технологии xDSL позволяют значительно увеличить скорость передачи данных по медным парам телефонных проводов, при этом не требуя глобальной модернизации абонентской кабельной сети. Именно возможность преобразования существующих телефонных линий, при условии проведения определенного объема подготовительных технических мероприятий, в высокоскоростные каналы передачи данных и является основным преимуществом технологий xDSL.Данные технологии позволяют значительно расширить полосу пропускания медных абонентских телефонных линий. Любой абонент, пользующийся обычной телефонной связью, является потенциальным кандидатом на то, чтобы с помощью одной из технологий xDSL значительно увеличить скорость своего соединения с сетью Интернет. При этом предусмотрено и сохранение нормальной работы обычной телефонной связи, вне зависимости от "общения" пользователей с сетью Интернет (рисунок 8).

Рисунок 8 - Использование технологии xDSL


Многообразие технологий xDSL позволяет пользователю (с учетом определенных ограничений, связанных с длиной и качеством абонентской линии) выбрать подходящую именно ему скорость передачи данных - от 32 Кбит/с до более чем 50 Мбит/с. Современные технологии xDSL дают возможность организовать высокоскоростной доступ в сеть Интернет для каждого индивидуального пользователя или каждого небольшого предприятия, превращая обычные телефонные кабели в высокоскоростные цифровые каналы. xDSL включает в себя целый набор различных технологий, позволяющих организовать цифровую абонентскую линию, которые различаются по расстоянию, на которое передается сигнал, скорости передачи данных, а также по разнице в скоростях передачи "нисходящего" (от сети к пользователю) и "восходящего" (от пользователя в сеть) потока данных. Технологии xDSL предоставляют телекоммуникационным компаниям возможности, от которых они просто не могут отказаться. Они создают быстрый и недорогой метод дополнительного использования существующей кабельной сети, а также базу для перехода к технологиям будущего. Игнорировать это было бы просто глупо.


4. Характеристика основных производителей современного оборудования систем передачи данных

Жители крупных городов кроме кабельного соединения могут воспользоваться одной из предоставляемой мобильным провайдером VAS услугой GPRS EGGE связи. Особенно она незаменима во время перемещения по городу, потому что, увы, зона Wi-Fi-покрытия невелика, а за пределами населенных пунктов и вовсе отсутствует. Вышки UMTS нет даже и во многих городах. Если же вы живете за пределами мегаполиса в коттедже постоянно, или выезжаете летом на дачу, то кроме сотовой, следует обратить внимание на спутниковую связь. Сейчас активно развиваются малые спутниковые наземные станции, сокращенно VSAT. Они состоят из двух частей. Первая - это наружный блок, состоящий из антенны, которая имеет диаметр не более двух с половиной метров, а также модуля, отвечающего за прием и передачу данных. Современные установки обычно используют антенны в диапазоне от полуметра до метра двадцати. Если же вам необходимо передавать данные в диапазоне «С», то придется рассмотреть приобретение установки с размером антенны не менее метра восьмидесяти. Вторая часть - это внутренний блок, который исполняет роль спутникового модема. Данная технология является довольно высокоскоростной. Пользователь VSAT станции получит информацию на скорости, равной четырем Мбитам. Исходящий поток данных возможен на скорости до двух Мбит. Если же использовать режим multicast, то можно получить скорость, близкую к тридцати Мбитам в секунду. Это много, если сравнивать с аналогичными показателями GPRS. Те имеют потолок, равный 171,2 Кбит в секунду, предел у EDGE составляет 473,6 Кбит, UMTS может поддерживать скорость до 7,2 Мбит в секунду. Причем эти скорости являются теоретически возможными, на практике можно смело делить на два и не ошибиться. Вот почему VSAT станции столь востребованы сегодня у потребителей .

Рассмотрим теперь основных производителей систем передачи данных, продукцию которых эффективно используют предприятия в своих проектах.

Cisco Systems - один из мировых лидеров в области сетевых технологий, а также на рынке потребительских услуг для сетевого дизайна, внедрения и поддержки (рисунок 9).

Рисунок 9 – Cisco IP Communicator

Компания предлагает комплексные решения на основе широкой линейки своих продуктов: маршрутизаторы, коммутаторы локальных и внешних сетей, решения для удаленного и прочего доступа, инструменты управления Web-сайтом, Internet-приложения, программное обеспечение для сетевого управления и многое другое . На сегодняшний день Cisco развивает свой бизнес по трем основным направлениям:


Таблица 1 – Основные направления развития бизнеса Cisco

Решения для корпоративных сетей

сотрудничество с крупными организациями, предъявляющими серьезные запросы к комплексным сетям, и, учитывая объемы информационного потока, использующими разные типы компьютерных сетей. В эту группу наших клиентов входят крупные правительственные учреждения, корпорации, а также образовательные структуры.

Решения для сервис-провайдеров

сотрудничество с компаниями, обеспечивающими поставку информационных услуг, включая системы телекоммуникации.

Решения для малого и среднего бизнеса

это направление включает услуги, предлагаемые Cisco Systems, для компаний, нуждающихся в собственных сетевых базах данных, так же, как и в подключении к Internet, но при этом не имеющих постоянных отделов, занимающихся такими услугами.

3COM- один из наиболее известных и хорошо зарекомендовавших себя производителей передовых, практичных и высокоэффективных продуктов, услуг и решений для сетей передачи голоса и данных, предназначенных в основном для секторов SMB, Enterprise, государственного сектора (рисунок 10).

Рисунок 10 - Логотип производителя 3COM технологий

Allied Telesis - один из мировых лидеров в области сетевых технологий (рисунок 11). Из всего многообразия продуктов, предлагаемых данным производителем, наша компания чаще всего использует конвертеры среды передачи (медиаконвертеры, гигабитные медиаконвертеры, корзины), коммутаторы и маршрутизаторы. Данного вендора можно смело отнести к секторам SMB и Enterprise как производителя хорошо зарекомендовавшего надежного, с хорошим показателем цена/качество для бюджетных решений, оборудования СПД.

Рисунок 11 - Логотип производителя технологии Allied Telesis

Компания D-Link представляет новый беспроводной маршрутизатор с поддержкой технологии Mesh, предназначенный для создания локальных и городских сетей с ячеистой топологией (рисунок 12). Маршрутизатор DWR-500 предназначен для построения больших беспроводных сетей, что является привлекательным решением для территориально-распределенных предприятий, провайдеров услуг и муниципальных служб оперативного реагирования (милиции, скорой помощи, МЧС). Устройство также можно использовать для предоставления широкополосного беспроводного доступа в Интернет в местах, где прокладка кабельной системы затруднительна или невозможна, а использование традиционных беспроводных сетей неэффективно из-за ограничений зоны охвата.

Рисунок 12 - Маршрутизатор D-Link DWR-500

Помимо перечисленных выше, компании также используют решения и от других вендоров, таких как: Alcatel-Lucent, HP, Avaya, NetGear и т.д.


Заключение

Система передачи данных – система, предназначенная для передачи информации как внутри различных систем инфраструктуры организации, так и между ними, а также с внешними системами. В работе представлена классификация систем передачи данных. Системы передачи данных могут быть проводными, что означает соединение компьютеров с помощью кабелей, или беспроводными, в которых подключения выполняются посредством радиоволн, по воздуху. Развитие беспроводных систем доступа идет в трех основных направлениях. Это спутниковые системы, наземные СВЧ-системы и системы персональной сотовой связи, которые позволяют обеспечить доступ мобильных пользователей. Проводные системы передачи данных можно разделить на системы, использующие витую пару и телефонные провода, и системы, использующие оптико-волоконные кабели, - к этой категории также следует отнести системы, в которых вместе с оптико-волоконными кабелями используются также и коаксиальные кабели. Беспроводное соединение позволяет работать на компьютерах в любом месте дома без использования кабелей. Однако за свободу и мобильность беспроводной сети приходится платить: проводные сети работают немного быстрее. Тем не менее, большинству пользователей достаточно скорости беспроводной сети.

Также в работе представлена краткая характеристика основных производителей современных систем передачи данных таких, как Cisco Systems, 3COM, Allied Telesis, D-Link.


Список использованных источников

1 Бертсекас Д. Сети передачи данных / Д. Бертсекас, Р. Галлагер – пер. с англ. - М.: Мир, 2003. – 562 c.

2 Беспроводные сети Wi-Fi / А.В. Пролетарский [и др.]. - Интернет-университет информационных технологий, 2007.

3 ГОСТ 7.1. – 2003. Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Библиографическое описание. Общие требования и правила составления. – Взамен ГОСТ 7.1.– 84, ГОСТ 7.16 – 79, ГОСТ 7.18 – 79, ГОСТ 7.34 – 81, ГОСТ 7.40 – 82; введ. 2004 07 01. – М.: Изд-во стандартов, 2004. – 166 с.

4 Григорьев В.А. Сети и системы радиодоступа / В.А. Григорьев, О.И. Лагутенко, Ю.А. Распаев. - М.: Эко-Трендз, 2005. - 384 с.

5 Максим М. Безопасность беспроводных сетей / М. Максим, Д. Полино. - М.: Компания "АйТи"; ДМК Пресс, 2004. - 288 с.

6 Огнянович А.В. Методические указания по оформлению контрольно-курсовых, курсовых, выпускных квалификационных и дипломных работ/А.В. Огнянович, Е.В. Бельская. - Тула: ТулГУ, 2008. – 31 с.

7 Олифер В.Г. Основы сетей передачи данных / В.Г. Олифер, Н.А. Олифер.- Интернет-университет информационных технологий, 2005.

8 Таненбаум Э.С. Компьютерные сети / Э.С. Таненбаум – СПб.: Питер, 2003.– 848 с.

9 Официальный сайт компании Cisco - http://cisco.ru

10 Сайт технологии Wi Fi - http://wifi-wiki.ru

11 Специализированный портал, посвященный беспроводным технологиям- http://wireless.ru

До недавнего времени в телекоммуникациях существовало четкое разделение на системы коммутации и системы передачи. Однако сейчас, с развитием и повсеместным внедрением цифровой техники, наблюдается взаимопроникновение этих областей телекоммуникаций, что приводит к необходимости рассматривать передачу и коммутацию сигналов в системах электросвязи совместно. Для системного изложения последующего материала, введем неко­торые определения.

Системой электросвязи будем называть совокупность технических средств, обеспе­чивающую образование линейного тракта и каналов передачи. В состав любой системы электросвязи входит передатчик, канал передачи и приемник. Системы электросвязи делят­ся на две группы: односторонние (передача информации осуществляется только от источ­ника информации к абоненту, примером может служить радиовещание) и двухсторонние (примером может служить телефония).

Линейный тракт системы передачи включает совокупность технических средств, обес­печивающих передачу сигналов: 1) в пределах системы передачи; 2) в полосе частот; 3) со скоростью, определяемой номинальным числом каналов данной системы передачи.

Каналом передачи будем называть средство односторонней передачи сигналов. Не­сколько однонаправленных каналов могут использовать общий путь передачи, как в систе­мах с объединением разделенных по частоте или по времени каналов, где каждому каналу выделяется отдельная полоса частот или отдельный временной интервал.

Часто каналы объединяются в пучки каналов - совокупность каналов, технически вы­полненные как единица направления обмена между частями системы электросвязи. В свою очередь, пучки каналов могут подразделяться на подпучки - определенное количество каналов с близкими характеристиками (например, типом сигнализации, типом пути и др.).

Линией передачи телефонной сети называется совокупность цепей, линейных трактов однотипных или разнотипных систем передачи, имеющих общую среду распространения, а также линейных сооружений и устройств их обслуживания. Линия передачи может содер­жать один или несколько каналов.

В настоящее время в связи используются типовые каналы передачи, параметры кото­рых нормализованы. Например, в телефонии: канал тональной частоты с эффективно пере­даваемой полосой частот 300...3400 Гц и цифровой канал со скоростью передачи 64 Кбит/с.

Задачей системы коммутации является создание требуемого пути (в телекоммуникаци­ях - информационного тракта) между двумя любыми оконечными устройствами. Коммутацией называется установление по заявке индивидуального соединения заданного входа систе­мы с заданным ее выходом на время, необходимое для передачи информации между ними.



В зависимости от формы представления передаваемой через систему информации раз­личают коммутацию цифровую и аналоговую. Цифровой коммутацией называется процесс, при котором соединения между вводом и выводом системы устанавливаются с помощью операций над цифровым сигналом без преобразования его в аналоговый сигнал.

ГОСТ 22670-77 вводит понятия однокоординатной и многокоординатной коммутации цифрового сигнала. Однокоординатной называется коммутация, при которой соединительные пути в системе отделены друг от друга по одному разделительному признаку (под раздели­тельным признаком понимается параметр, по которому в системе происходит разделение со­единительных путей между вводом и выводом системы). Если для осуществления коммута­ции используется две и более координаты, то говорят о многокоординатной коммутации.

Существует два принципа коммутации - с переключением трактов (коммутация каналов) и с запоминанием информации (коммутация с запоминанием). Коммутация каналов применя­ется в основном на сетях, к которым предъявляются два основных требования: время на уста­новление соединения должно быть значительно меньше времени сеанса связи, и, кроме того, задержки информации при передаче должны быть минимальны. Обычно это сети, где необхо­димо обеспечить диалоговую работу. При этом способе соединительный путь между вводом и выводом системы предоставляется на время, необходимое для передачи всей информации. Коммутация каналов может быть реализована в системах с объединением частотно-разделенных каналов (ЧРК), системах с объединением время - разделенных каналов (ВРК) и др. (рис. 1.1). В системах передачи с объединением ЧРК для передачи сигналов по каждому кана­лу в диапазоне частот линейного тракта отводится определенная полоса частот.



Рис. 1.1. Виды коммутации

Чаще всего системы с объединением ЧРК передают аналоговые сигналы, поэтому ино­гда их называют аналоговыми системами передачи. В системе передачи с объединением ВРК для передачи сигнала по каждому каналу в линейном тракте отводится определенный интервал времени. Если в эти интервалы времени по каждому каналу передаются цифровые сигналы, то такие системы передачи с ВРК называются цифровыми системами передачи. Как правило, в таких системах применяется синхронное мультиплексирование.

Коммутация с запоминанием основана на передаче информации, заранее записанной в память узла коммутации. При этом данные могут быть преобразованы (изменена скорость передачи, изменен код, добавлена или удалена служебная информация). Коммутация с за­поминанием применяется, как правило, на цифровых сетях и подразделяется на коммута­цию сообщений и коммутацию пакетов. В первом случае сообщение передается целиком, согласно адресной части, помещаемой в заголовке сообщения. При коммутации пакетов со­общение разбивают на части определенной длины - пакеты, с целью минимизировать оче­реди в узлах коммутации и время обработки информации. Каждый пакет при этом получает свой заголовок. Сети с коммутацией пакетов (сети Х.25, Frame Relay, ATM) значительно превосходят сети с коммутацией сообщений в скорости, что позволяет использовать их в настоящее время не только для служб передачи данных, но и служб, работающих в инте­рактивном режиме. В системах коммутации с запоминанием применяется, как правило, асинхронное (статистическое) мультиплексирование, позволяющее в любой момент време­ни предоставить абоненту требуемую полосу пропускания цифрового тракта (при условии ее наличия).

Весь последующий материал (кроме особо оговоренных случаев) излагается для систем коммутации каналов.

Основные понятия по передаче информации

Информация это совокупность сведений об окружающем нас мире. Эти сведения человек получает в процессе взаимодействия с окружающим миром, изучения различных явлений посредством книг, радио, телевидения и других средств общения. Всякий обмен информацией предполагает тот или иной язык, знаки которого и правила применения получателю и отправителю информации. Совокупность знаков содержащих некоторую информацию называют сообщением. Материальными носителями сообщений и следовательно информации может быть магнитная лента или диск с записями, бумага с текстом, механические колебания некоторой среды, колебания эл. тока и напряжения, электромагнитные волны, оптическое излучение и т.д. Все возможные носители сообщений называют сигналами в широком смысле.

Наиболее употребимыми сигналами являются колебания эл. тока и напряжения, э.м. волны и механические колебания упругой среды несущие сообщения. Если информация от некоторого источника воспринимается непосредственно органами чувств человека, то говорят о непосредственной передаче сообщения. Если же информация не может быть непосредственно воспринята органами чувств человека, то прибегают к преобразованию сообщения в некоторые сигналы. Таким образом, сигнал – это некоторый физический процесс, однозначно отображающий информацию и пригодный для передачи ее на расстояние. Общим свойством любых сигналов является информативность, которая определяется степенью новизны сообщения. Сигналы не несущие получателю новой информации не обладают для него информативностью.

Наибольшую информацию человек получает посредством зрения и слуха. Поэтому широко распространена передача информация с помощью световых и звуковых сигналов. Такие методы передачи информации называют прямыми. Однако эти методы обладают ограниченными возможностями из-за рассеяния и поглощения энергии световых и звуковых колебаний в пространстве и ограниченной чувствительностью органов чувств человека. Для передачи информации на большие расстояния применяются электрические и электромагнитные сигналы.

Классификация систем связи

По физической природе сигнала системы связи подразделяются на: 1) акустические 2) электрические 3) электромагнитные 4) оптические

По технической реализации системы связи подразделяются на: 1) телефонные 2) телеграфные 3) радиотехнические 4) телевизионные 5) спутниковые 6) волоконно-оптические 7) компьютерные 8) факсимильные

По направленности потока информации они могут быть: 1) односторонними 2) двусторонними 3) разветвленной сетью

По виду использования линий связи системы связи делятся на: 1) проводные 2) кабельные 3) радиоволновые 4) волоконно-оптические

По способу обработки информации системы связи делятся на: 1) аналоговые 2) цифровые

Радиосвязь Радиоволновой диапазон и его классификация

В основе радиосвязи лежит использование для передачи информации э.м. волн (ЭМВ) свободно распространяющихся в пространстве. Скорость распространения ЭМВ обеспечивает практически мгновенную передачу различных сообщений на большие расстояния. Из всего спектра ЭМВ в радиосвязи используются э.м. волны частоты которых лежат в пределах от 3·10 3 до 3*10 12 Гц. Если изобретатель радиосвязи Попов использовал радиоволны с λ=200-500м, то сейчас используется и оптический диапазон э.м. колебаний. Официально к радиоволнам относят э.м. волны с λ>5*10 -5 , т.е. с частотой ν<6*10 12 Гц. Под длиной волны понимают расстояние, проходимое волной за один период колебания: λ=c*T=c/f, где c=3*10 8 м/c - скорость распространения э.м. волны. Согласно международному регламенту связи радиоволны разделены на 12 диапазонов. Столбцы в таблице – 1) f, Гц 2) λ, м 3) нумерация и наименование радиодиапазонов (международный регламент) 4) наименование частот (международный регламент) 5) Внерегламентные термины. Данные таблицы: 1-ая строка:

1) 3 2) 10 8 3) 1 декаметровый 4) крайне низкие (КНЧ) 5) сверхдлинные волны (СДВ) 2-ая строка: 1) 30 2) 10**7 3) 2 мегаметровый 4) сверхнизкие (СНЧ) 5) СДВ. 3-ая строка: 1) 300 2) 10**6 3) 3 Гектометровый 4) Инфранизкие (ИНЧ) 5) СДВ 4-ая строка: 1) 3*10**3 2) 10**5 3) 4 мериаметровый 4) очень низкие (ОНЧ) 5) СДВ 5-ая строка: 1) 3*10**4 2) 10**4 3) 5 километровый 4) низкие (НЧ) 5) длинные 6-ая строка: 1) 3*10**5 2) 10**3 3) 6 гектометровый 4) средние (СЧ) 5) средние (СВ) 7-ая строка: 1) 3*10**6 2) 10**2 3) 7 Гектометровый 4) высокие (ВЧ) 5) короткие (КВ) 8-ая строка: 1) 3*10**7 2) 10 3) 8 метровый 4) очень высокие (ОВЧ) 5) УКВ 9-ая строка: 1) 3*10**8 2) 1 3) 9 дециметровый 4) ультравысокие (УВЧ) 5) УКВ 10-ая строка: 1) 3*10**9 2) 10**-1 3) 10 сантиметровый 4) сверхвысокие (СВЧ) 5) УКВ 11-ая строка: 1) 3*10**10 2) 10**-2 3) 11 миллиметровый 4) крайневысокие (КВЧ) 5) УКВ 12-ая строка: 1) 3*10**11 2) 10**-3 3) 12 дециметровый 4) гипервысокие (ГВЧ) 5) субмиллиметровые волны 13-ая строка: 1) 3*10**12 2) 10**-4 3) Инфракрасные лучи 14-ая строка: 1) 3*10**13 2) 10**-5 3) инфракрасные лучи 15-ая строка: 1) 3*10**14 2) 10**-6 3) видимые лучи 16-ая строка: 1) 3*10**15 2) 10**-7 3) видимые и ультрафиолетовые лучи 17-ая строка: 1) 3*10**16 2) 10**-8 3) рентгеновские лучи 18-ая строка: 1) 3*10**17 2) 10**-9 3) рентгеновские лучи 19-ая строка: 1) 3*10**-18 2) 10**-10 3) рентгеновские лучи.

Деление радиоволн производится с учетом особенности получения и условий их распространения над земной поверхностью. Надо помнить, нет резкой границы между свойствами радиоволн лежащих в смежных диапазонах. Излучение и прием ЭМВ производится с помощью передающей и приемной антенн. В простейшем случае возбуждение радиоволн осуществляется в передающей антенне при протекании в ней тока высокой частоты. i A =I m *cos(ωt-φ). Γде I m - амплитуда тока; ω=2πf – частота колебаний; t – время; φ – нач. фаза.

При протекании такого тока в антенне происходит преобразование энергии колебания высокой частоты в энергию возбуждаемых в пространстве ЭМВ. Эффективность такого преобразования зависит от частоты питающего тока. Излучаемая мощность тем больше чем выше частота тока в антенне. Э.м. колебания оптического диапазона малой мощности возбуждается светодиодами, а средней и большей мощности с помощью оптических квантовых генераторов (лазеров).