Предел последовательности. Теорема Штольца и ее применение. Пределы в математике для чайников: объяснение, теория, примеры решений

  • 24.06.2019

В этой главе изучается операция предельного перехода - основная операция математического анализа. Сначала рассмотрим предел функции натурального аргумента, поскольку все основные результаты теории пределов отчетливо видны в этой простой ситуации. Затем рассмотрим предел в точке функции действительной переменной.

2.1 Предел последовательности

2.1.1 Определение и примеры

Определение 2.1. Функцияf: N → X , областью определения которой является множество натуральных чисел, называется последовательностью.

Значения f(n), n N, называются членами последовательности. Их принято обозначать символом элемента того множества, в которое происходит отображение, снабжая символ соответствующим индексом (аргументом функции f): xn = f(n). Элемент xn называется n-м членом последовательности. В связи с этим последовательность часто обозначают символом {xn } или {xn }+ n=1 ∞ , а также записывают в виде x1 , x2 , . . . , xn , . . . .

В дальнейшем в этой главе будем рассматривать только последовательность f: N → R действительных чисел.

Определение 2.2. Интервал, содержащий точкуa R, называют окрестностью этой точки. Интервал(a − δ, a + δ) ,δ > 0 , называют δ -окрестностью точкиa и обозначаютU a (δ) илиV a (δ) (часто пишут короче:U a илиV a ).

Определение 2.3. Числоa R называют пределом числовой последовательности{x n } , если для любой окрестности точкиa существует номерN N такой, что все элементыx n последовательности, номера которых большеN, содержатся вU a . При этом пишут

n lim→∞ xn = aили lim xn = aили xn → aпри n → ∞.

В логической символике определение 2.3 имеет вид:

a R. a = lim xn Ua N = N(Ua ) N: n > N xn Ua .

Поскольку Ua (ε) = (a − ε, a + ε) = {x R: |x − a| < ε}, то часто употребляют следующую равносильную формулировку определения2.3

Определение 2.4. Числоa называют пределом числовой последовательности{x n } , если для любого положительного числаε найдется номерN = N(ε) такой, что все члены последовательности с номерамиn > N удовлетворяют неравенству|x n − a| < ε .

Соответственно, в логической символике это определение имеет вид: a R, a = lim xn ε > 0 N = N(ε) N: n > N |xn − a| < ε

Замечание. Первые члены последовательности не влияют на существование и величину предела в случае его существования.

Иногда полезна следующая геометрическая интерпретация определения 2.3 предела последовательности:

Число a называется пределом последовательности{x n } , если вне любой окрестности точкиa находится не более конечного числа членов последовательности{x n } .

Ясно, что если вне некоторой окрестности точки a находится бесконечное число членов {xn }, то a не является пределом {xn }.

Рассмотрим несколько примеров.

Пример 2.1. Если {xn } : xn = c, то lim xn = c, так как все члены последовательности, начиная с первого, принадлежат любой окрестности

Пример 2.2. Покажем, что последовательность {xn } : xn =

имеет предел и lim xn = 0.

Зафиксируем ε > 0. Так как

≤ n

< ε для n >

То, полагая N = max{1, }, получим:

|xn | ≤

Следовательно, ε > 0 N = max{1, } N: n > N |xn | < ε.

Замечание. Одновременно мы доказали, что lim

Пример 2.3. Покажем, что lim

0, если q > 1.

Поскольку q > 1, то q = 1 + α, где α > 0. Поэтому n > 1 по формуле бинома Ньютона

qn = 1 + nα +n(n − 1) α2 + · · · + αn > nα.

Отсюда следует, что

N > 1. Зафиксируем ε > 0, положим

N = max{1, } и получим, что

Итак, ε > 0 N = max{1, } N: n > N |1/qn | < ε.

Пример 2.4. Покажем, что последовательность {xn } : xn = (−1)n , не имеет предела.

Для любого числа a укажем такую окрестность, вне которой расположено бесконечное множество членов данной последовательности. Для этого зафиксируем точку a R и рассмотрим ee единичную окрестность Ua (1) = (a − 1, a + 1). Поскольку x2k = 1, x2k+1 = −1, k N, и хотя бы одно из чисел +1 или −1 не принадлежит Ua (1), то вне Ua (1) находится бесконечное множество членов последовательности {xn }. Следовательно, число a не является её пределом. В силу произвольности числа a заключаем, что @ lim xn .

Определение 2.5. Числовая последовательность, имеющая пределом число, называется сходящейся. Все остальные последовательности называются расходящимися.

В логической символике определение 2.5 имеет вид: {xn } сходится a R: lim xn = a.

дящимися, а последовательность {(−1)n } - расходящейся.

2.1.2 Свойства сходящихся последовательностей

Теорема 2.1. Последовательность не может иметь двух различных пределов.

Пусть числовая последовательность {xn } имеет два различных предела a и b. Для определенности будем считать, что a < b. Положим

ε = b − 2 a . По определению2.4 предела последовательности найдем N1 и

n −

такие, что

n > N , то есть

| n −

Тогда n > N = max{N1 , N2 }

< xn <

Чего быть не может.

Определение 2.6. Числовая последовательность {x n } называется ограниченной сверху (соответственно, снизу или ограниченной), если множество X = {x n | n N} является ограниченным сверху (снизу или ограниченным). Если X - неограниченное множество, то {x n } называется неограниченной последовательностью.

C учетом определений 2.1 и2.2 имеем:

{xn } ограничена сверху M R: n N xn ≤ M, {xn } ограничена снизу M R: n N xn ≥ M, {xn } ограничена M > 0: n N |xn | ≤ M,

{xn } не ограничена M > 0 n N: |xn | > M.

Теорема 2.2. Сходящаяся последовательность ограничена.

Пусть последовательность {xn } сходится и lim xn = d. Полагая в определении2.4 ε = 1, найдем номер N такой, что |xn − d| < 1, n > N, то есть d − 1 < xn < d + 1, n > N. Введем обозначения:

a = min{x1 , x2 , . . . , xN , d − 1}, b = max{x1 , x2 , . . . , xN , d + 1}.

Тогда a ≤ xn ≤ b, n N.

Замечание. Ограниченность последовательности - необходимое, но недостаточное условие сходимости (см.пример 4) .

Теорема 2.3. Если числовая последовательность {x n } сходится и lim x n = a , то последовательность {|x n |} сходится и lim |x n | = |a|.

Так как a = lim xn , то ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Отсюда следует, что n > N ||xn | − |a|| ≤ |xn − a| < ε.

Замечание 1. Из теоремы2.3 и примера3 следует, что при |q| > 1

lim q n = 0.

Замечание 2. Обратное утверждение к теореме2.3 не имеет места.

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim - от английского limit - предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача - найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют , читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


Кстати! Для наших читателей сейчас действует скидка 10% на

Еще один вид неопределенностей: 0/0

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.


Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если Вам нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь к за быстрым и подробным решением.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа , добавлен 28.02.2010

    Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.

    презентация , добавлен 21.09.2013

    Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

    контрольная работа , добавлен 17.12.2010

    Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация , добавлен 14.11.2014

    Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.

    презентация , добавлен 17.03.2017

    Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

    презентация , добавлен 25.01.2013

    Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.

    контрольная работа , добавлен 11.08.2009

    Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.

    Понятие предела и понятие функции - фундаментальные понятия математического анализа. Начало изучению понятия предела положено в элементарной математике, где с помощью предельных переходов определяются длина окружности, объём цилиндра, конуса и т.д. Оно также было использовано при определении суммы бесконечно убывающей геометрической прогрессии. Операция предельного перехода является одной из основных операций анализа.

    Предемл фумнкции (предельное значение функции ) в заданной точке, предельной для области определения функции, -- такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

    Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится.

    Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в каждой окрестности данной точки есть точки области определения; это позволяет говорить о стремлении аргумента функции (к данной точке). Но предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят).

    В общем случае необходимо точно указывать способ сходимости функции, для чего вводят т. н. базу подмножеств области определения функции, и тогда формулируют определение предела функции по (заданной) базе. В этом смысле система проколотых окрестностей данной точки -- частный случай такой базы множеств.

    Поскольку на расширенной вещественной прямой можно построить базу окрестностей бесконечно удалённой точки, то оказывается допустимым описание предела функции при стремлении аргумента к бесконечности, а также описание ситуации, когда функция сама стремится к бесконечности (в заданной точке). Предел последовательности (как предел функции натурального аргумента), как раз предоставляет пример сходимости по базе «стремление аргумента к бесконечности».

    Отсутствие предела функции (в данной точке) означает, что для любого заранее заданного значения области значений существует окрестность этого значения такая, что в любой сколь угодно малой окрестности точки, в которой функция принимает заданное значение, существуют точки, значение функции в которых окажется за пределами указанной окрестности.

    Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция оказывается непрерывной(в данной точке).

    Пусть функция определена в некоторой окрестности точки а, кроме, может быть, самой точки а.

    Число В называется пределом функции в точке а (или при ), если для любой последовательности значений аргумента , последовательность соответствующих значений функции, сходится к числу В

    Число А называется пределом функции в точке x=х0 (или при), если для любой сходящейся к х0 последовательности (1) значении аргумента x , отличных от х0 , соответствующая последовательность (2) значений функции сходится к числу А . Обозначается.

    Функция может иметь в точке х0 только один предел. Это следует из того, что последовательность имеет только один предел.

    1). Функция =с=const имеет предел в каждой точке х0 числовой прямой, т.е.

    gif" name="object9" align=absmiddle width=63 height=29>

    2). Функция =x имеет в любой точке х0 числовой прямой предел, равныйх0 , т.е.

    Определение 2. Число А называется пределом функции в точке х=х0 , если для любого числа существует число такое, что для всех, удовлетворяющих неравенству, выполняется неравенство. предельный функция числовой множитель

    Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением ""на языке последовательностей"", или определением по Гейне (1821-1881 - немецкий математик). Второе определение называют определение на языке "", или определением по Коши (1789-1857 - французский математик).

    Можно доказать, что оба определения предела функции в точке х0 эквивалентны, а это значит, что можно использовать любое из них в зависимости от того какое более удобно при решении той или иной задачи.

    Кроме рассмотренного понятия предела функции при существует также понятие предела функции при.

    Определение. Число А называется пределом функции при, если для любого Е>0 можно указать такое положительное число N , что для всех значений x , удовлетворяющих неравенству, будет выполнятся неравенство.