Максимальная емкость конденсатора. Что такое конденсатор. Формула энергии конденсатора

  • 17.05.2019

Заряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+q ), а вторая обкладка получает равный по величине отрицательный заряд (-q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

P ис. 1

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.


Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ Ri , так как вся э. д. с. генератора приложена к сопротивлению Ri.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е - U с. Поэтому i зар = (E-Uс)/Ri

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора Ri ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением Ri = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: Ri = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением Ri = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Рис. 3. Графики зарядных токов при разных емкостях

Разряд конденсатора

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc /R


Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 - при R = 40 Ом, i оразр = Uc о/R = 100/40 = 2,5 А и кривая 2 - при 20 Ом i оразр = 100/20 = 5 А.

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 - для конденсатора емкостью 10 мкф и кривая 2 - для конденсатора емкостью 20 мкф).

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

Энергия конденсатора

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = СU 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = СU 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.

Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом - диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах - конденсаторах .

Но прежде введём понятие электрической ёмкости .

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где - заряд шара, - его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика - важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость - тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

МкФ.

Как видите, Ф - это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости - но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина - заряд положительной обкладки - называется зарядом конденсатора .

Пусть - площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь - напряжённость поля положительной обкладки, - напряженность поля отрицательной обкладки, - поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников - конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком :

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора - ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где - напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины class="tex" alt="(d_2 > d_1)"> , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

Это можно переписать следующим образом:

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что - потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14) .

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) - (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

Итак, формулы (12) - (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но - объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет - это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина - энергия единицы объёма поля - называется объёмной плотностью энергии . Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Обложка

Учебно-методическое пособие к лабораторной работе № 3.3

по дисциплине «Физика»

Владивосток

Титул

Министерство образования и науки Российской Федерации

Школа естественных наук

ИЗУЧЕНИЕ ПРОЦЕССОВ ЗАРЯДКИ И РАЗРЯДКИ КОНДЕНСАТОРА. ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА

Владивосток

Дальневосточный федеральный университет

____________________________________________________________________________________________________________

Оборот титула

УДК 53 (о76.5)

Составитель: О.В.Плотникова

Изучение процессов зарядки и разрядки конденсатора. Определение емкости конденсатора: учебно-методич. пособие к лабораторной работе № 3.3 по дисциплине «Физика» / Дальневосточный федеральный университет, Школа естественных наук [сост. О.В.Плотникова]. – Владивосток: Дальневост. федерал. ун-т, 2013. - с.

Пособие, подготовленное на кафедре общей физики Школы естественных наук ДВФУ, содержит краткий теоретический материал по теме «Электрическая емкость. Конденсаторы» и инструктаж к выполнению лабораторной работы «Изучение процессов зарядки и разрядки конденсатора. Определение емкости конденсатора» по дисциплине «Физика».

Для студентов-бакалавров ДВФУ.

УДК 53 (о76.5)

© ФГАОУ ВПО «ДВФУ», 2013

Цель работы: экспериментальное подтверждение законов, описывающие процессы зарядки и разрядки конденсатора, определение постоянной времени электрической цепи, определение неизвестной емкости конденсатора.

Краткая теория

    Электроёмкость.

Проводники – это вещества, содержащие большое количество свободных заряженных частиц. В металлических проводниках такими частицами являются свободные электроны, в электролитах – положительные и отрицательные ионы, в ионизированных газах – ионы и электроны.

Если рассматривать проводник, рядом с которым нет других проводников, то он называется уединенным. Опыт показывает, что потенциал уединенного проводника прямо пропорционален находящемуся на нем заряду. Отношение заряда, сообщенного проводнику, к его потенциалу называется электроемкостью проводника (или просто емкостью):

Таким образом, емкость определяется величиной заряда, который надо сообщить проводнику, чтобы увеличить его потенциал на единицу.

Емкость зависит от размеров и формы проводника, от диэлектрической проницаемости среды, от наличия рядом других проводников и не зависит ни от заряда, ни от потенциала. Так, для уединенного проводящего шара радиуса R емкость равна:

С = 4πεε 0 R. (т.к. потенциал φ=
).

Здесь ε – диэлектрическая проницаемость среды, ε 0 - электрическая постоянная.

Единица емкости в системе СИ называется Фарадой (Ф). 1Ф = 1.

    Конденсаторы.

Емкостью обладают не только отдельные проводники, но и системы проводников. Система, состоящая из двух проводников, разделенных слоем диэлектрика, называется конденсатором. Проводники в этом случае называются обкладками конденсатора. Заряды на обкладках имеют противоположные знаки, но по модулю – одинаковы. Практически все поле конденсатора сосредоточено между обкладками и.

Емкостью конденсатора называется величина

С= , (1)

где q – абсолютная величина заряда одной из обкладок, U - разность потенциалов (напряжение) между обкладками.

В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими, цилиндрическими.

Найдем емкость плоского конденсатора, обкладки которого имеют площадь S, расположены на расстоянии d, а пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью ε.

Если поверхностная плотность заряда на обкладках равна σ (σ= ), то напряженность поля конденсатора (поле считается однородным) равна:

Е= =

Разность потенциалов между обкладками связана с напряженностью поля: Е = , откуда получим U=Ed = =

Используя формулу (1), получим для емкости плоского конденсатора выражение:

С =(2)

    Соединение конденсаторов.

Используются два основных вида соединения: последовательное и параллельное.

При параллельном соединении (рис 1), общая емкость батареи равна сумме емкостей всех конденсаторов:

С общ. = С 1 +С 2 +С 3 +…=ΣС i . (3)

При последовательном соединении (рис.2) величина, обратная общей емкости, равна сумме величин, обратных емкостям всех конденсаторов:

. (4)

Если последовательно соединены n конденсаторов с одинаковой емкостью С, то общая емкость: С общ. =

Рис. 1.Параллельное соединение. Рис. 2.Последовательное соединение

    Энергия конденсатора.

Если процесс зарядки конденсатора является медленным (квазистационарным), то можно считать, что в каждый момент времени потенциал любой из обкладок конденсатора во всех точках одинаков. При увеличении заряда на величину dq совершается работа
, гдеu – мгновенное значение напряжения между обкладками конденсатора. Учитывая, что
, получаем:
. Если емкость не зависит от напряжения, то эта работа идет на увеличение энергии конденсатора. Интегрируя данное выражение, получим:

,

где W – энергия конденсатора, U – напряжение между обкладками заряженного конденсатора.

Используя связь между зарядом, емкостью конденсатора и напряжением, можно представить выражение для энергии заряженного конденсатора в других видах:

. (5)

    Квазистационарные токи. Процессы зарядки и разрядки конденсатора.

При зарядке или разрядке конденсатора в цепи конденсатора течет ток. Если изменения тока происходят очень медленно, то есть за время установления электрического равновесия в цепи изменения токов и э.д.с. малы, то для определения их мгновенных значений можно использовать законы постоянного тока. Такие медленно меняющиеся токи называют квазистационарными.

Так как скорость установления электрического равновесия велика, под понятие квазистационарных токов подпадают и довольно быстрые в обычном понимании процессы: переменный ток, многие электрические колебания, используемые в радиотехнике. Квазистационарными являются и токи зарядки или разрядки конденсатора.

Рассмотрим электрическую цепь, общее сопротивление которой обозначим R. Цепь содержит конденсатор емкостью C, подключенный к источнику питания с э.д.с. ε (рис. 3).

Рис. 3. Процессы зарядки и разрядки конденсатора.

Зарядка конденсатора . Применяя к контуру ε RC1ε второе правило Кирхгофа, получим:
,

где I, U – мгновенные значения силы тока и напряжения на конденсаторе (направление обхода контура указано стрелкой).

Учитывая, что
,
, можно привести уравнение к одной переменной:

.

Введем новую переменную:
. Тогда уравнение запишется:

.

Разделив переменные и проинтегрировав, получим:
.

Для определения постоянной А используем начальные условия:

t=0, U=0, u= - ε. Тогда получим: А= - ε. Возвращаясь к переменной
, получим окончательно для напряжения на конденсаторе выражение:

. (6)

С течением времени напряжение на конденсаторе растет, асимптотически приближаясь к э.д.с. источника (рис.4, I.).

Разрядка конденсатора. Для контура CR2C по второму правилу Кирхгофа: RI=U. Используем также:

, и
(ток течет в обратном направлении).

Приведя к переменной U, получим:

. Интегрируя, получим:
.

Постоянную интегрирования B определим из начальных условий: t=0, U=ε. Тогда получим: В=ε.

Для напряжения на конденсаторе получим окончательно:

. (7)

С течением времени напряжение падает, приближаясь к 0 (рис. 4, II).

Рис. 4. Графики зарядки (I) и разрядки (II) конденсатора.

    Постоянная времени . Характер протекания процессов зарядки и разрядки конденсатора (установление электрического равновесия) зависит от величины:

, (8)

которая имеет размерность времени и называется постоянной времени электрической цепи. Постоянная времени показывает, через какое время после начала разрядки конденсатора напряжение уменьшается в e раз (е=2,71).

Теория метода

Прологарифмируем выражение (7):

(учли, что RC=τ).

График зависимости lnU от t (линейная зависимость) выражается прямой линией (рис.5), пересекающей ось y (lnU) в точке с координатами (0; lnε). Угловой коэффициент К этого графика и будет определять постоянную времени цепи:
,
откуда:

. (9)

Рис. 5. Зависимость натурального логарифма напряжения от времени при разрядке конденсатора

Используя формулы:
и
,
можно получить, что для одного и того же интервала времени
:
.

Отсюда:
.
(10)

Экспериментальная установка

Установка состоит из основного блока – измерительного модуля, имеющего клеммы для подключения дополнительных элементов, источника питания, цифрового мультиметра и набора минимодулей с различными значениями сопротивления и емкости.

Для выполнения работы собирается электрическая цепь в соответствии со схемой, изображенной на верхней панели модуля. В гнезда «R 1 » подключается минимодуль с номиналом 1Мом, в гнезда «R 2 » - минимодуль с номиналом 100Ом. Параметры исследуемого конденсатора, подключаемого в гнезда «С», задаются преподавателем. В гнезда подключения амперметра устанавливается перемычка. В гнезда вольтметра подключается цифровой мультиметр в режиме вольтметра.

Следует отметить, что сопротивления резисторов заряда-разряда (минимодулей) R и цифрового вольтметра R V образуют делитель напряжения, что приводит к тому, что фактически максимальное напряжение на конденсаторе будет равно не ε, а
,

где r 0 - сопротивление источника питания. Соответствующие поправки необходимо будет вносить и при вычислении постоянной времени. Однако, если входное сопротивление вольтметра (10 7 Ом) значительно превышает сопротивление резисторов, и сопротивление источника мало, то данными поправками можно пренебречь.

Порядок выполнения работы

Таблица 1

ε= В, R 1 = Ом, С 1 = Ф

Разрядка

τ 1 ±Δτ 1 (с)

Таблица 2

ε = В, R 1 = Ом, С х =? Ф

Разрядка

τ х ±Δτ х (с)

С х ± Δ С х (Ф)

Таблица 3

ε= В, R 2 = Ом, С 2 = Ф

Разрядка

τ 2 ±Δτ 2 (с)

Обработка результатов измерения

По результатам измерений студенты выполняют одно из следующих заданий (по указанию преподавателя).

Задание 1. Построение кривых разрядки конденсаторов и экспериментальное подтверждение закона, описывающего данный процесс.

    Используя данные, взятые из таблиц 1 и 3, постройте графики зависимости напряжения от времени при разрядке конденсаторов С 1 и С 2 . Проанализируйте их, сравните с теоретическими (рис. 4).

    Постройте графики разрядки конденсаторов С 1 и С 2 в осях (lnU, t). Проанализируйте их, сравните с теоретическими (рис. 5).

    Определите по графикам угловые коэффициенты К 1 и К 2. Среднее значение углового коэффициента находится как отношение, определяющее тангенс угла наклона прямой:

.

    Случайные погрешности графическим методом можно оценить по отклонению опытных точек относительно проведенной прямой. Относительная погрешность углового коэффициента может быть найдена согласно формуле:

,

где δ(lnU) – отклонение (в проекции на ось lnU) от прямой линии наиболее удаленной опытной точки,
- интервал, на котором сделаны измерения.


Задание 2. Определение неизвестной емкости конденсатора.

    Используя данные, взятые из таблиц 1 и 2, постройте графики зависимости напряжения от времени при разрядке конденсаторов С 1 и С х. Проанализируйте их, сравните с теоретическими (рис. 4).

    Постройте графики разрядки конденсаторов С 1 и С х в осях (lnU, t). Сравните их и сделайте вывод о соотношении постоянных времени (см. рис.5).

    Определите по формуле (10) неизвестную емкость, используя графики и данные таблиц 1 и 2.

    Найдите относительные погрешности угловых коэффициентов ε К1 и ε кх (см. п.4 задания 1).

    Определите относительную и абсолютную погрешности емкости:

,
.

    Сравните полученное значение С х со значением, измеренным при помощи цифрового мультиметра в режиме измерения емкости. Сделайте вывод.

Дополнительное задание.

Рассчитайте энергию заряженного конденсатора, используя формулу (5).

Контрольные вопросы

    Что представляет собой конденсатор? Что называется емкостью конденсатора?

    Докажите, что электрическое поле плоского конденсатора сосредоточено между его обкладками.

2. Сколько надо взять конденсаторов емкостью 2мкФ и как их соединить,

чтобы получить общую емкость 5 мкФ?

    Как можно найти энергию заряженного конденсатора?

    Какие токи называются квазистационарными? Почему токи зарядки и разрядки конденсатора можно отнести к квазистационарным?

    По какому закону изменяется напряжение на конденсаторе в процессах а) зарядки и б) разрядки?

    Что показывает постоянная времени цепи? От чего она зависит?

    Зачем в данной работе строится график зависимости lnU от t?

    Как в данной работе определяется постоянная времени электрической цепи?

ЛИТЕРАТУРА

1.Трофимова Т.И. Курс физики. / Т.И. Трофимова. - М.: Высшая школа, 2006-2009 г. г. – 544с.

2 Савельев И.В. Курс физики. В 3-х томах. Том 2. Электричество. Колебания и волны. Волновая оптика. Изд. 3-е, стереотип. / И.В. Савельев - М.: Лань, 2007. - 480 с.

3. Грабовский Р. И. Курс физики / Р.И. Грабовский - СПб: издательство «Лань», 2012. – 608с.

4 Зисман Г. А., Тодес О. М. Курс общей физики. В 3-х томах. Том 2. Электричество и магнетизм / Г.А. Зисман, О.М. Тодес - СПб: «Лань», 2007. - 352c.

Концевой титул

Учебное издание

Составитель:

Плотникова Ольга Васильевна

ИЗУЧЕНИЕ ПРОЦЕССОВ ЗАРЯДКИ И РАЗРЯДКИ КОНДЕНСАТОРА. ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА

Учебно-методическое пособие к лабораторной работе № 3.3 по дисциплине «Физика»

Компьютерная верстка

Подписано в печать

Формат 60х84/16. Усл.печ.л. Уч.-изд.л.

Тираж экз. Заказ

Дальневосточный федеральный университет

Отпечатано на кафедре общей физики ШЕН ДВФУ

690091, г. Владивосток, ул. Суханова, 8

Характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 - φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению - конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика - воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

Ёмкость цилиндрического конденсатора:

Ёмкость плоского конденсатора:

Емкость сферического конденсатора:

В формуле мы использовали:

Электрическая ёмкость (ёмкость конденсатора)

Потенциал проводника (Напряжение)

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

С=Co*ε, где:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

C=(2π*l*R*ε)/d, где:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

C=(4π*l*R1*R2*ε)/(R2-R1), где:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Способы соединения элементов

Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.

Параллельное соединение

Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.

При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:

где C1-Cn – параметры деталей, участвующих в параллельном соединении.

Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.

Последовательное соединение

Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.

При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.

Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.

Рассчитываются эти параметры следующим образом:

  • Допустимое напряжение:

Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;

  • Общая ёмкость:

1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.

Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).

Смешанное соединение

Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:

  1. определяются группы элементов, соединённые параллельно;
  2. для каждой группы в отдельности рассчитывается эквивалентные значения;
  3. рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
  4. получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.

Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.

Видео