Из чего сделан конденсатор. Какие бывают конденсаторы? Типы конденсаторов, их характеристики (8 фото)

  • 13.09.2019

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Объясняя, что такое конденсатор, мы должны четко представлять физические основы работы и конструкцию этого незаменимого элемента каждого мало-мальски серьезного электронного устройства.

К недостаткам танталовых конденсаторов можно отнести чувствительность к пульсациям тока и перенапряжениям, а также относительную дороговизну этих изделий.

Силовые конденсаторы, как правило, используются в системах высокого напряжения. Они широко применяются для компенсации потерь в линиях электропередач, а также для улучшения коэффициента мощности в промышленных электроустановках. Изготавливаются из высококачественной металлизированной пропиленовой пленки с применением специальной пропитки нетоксичным изоляционным маслом.

Могут иметь функцию самоликвидации внутренних повреждений, что придает им дополнительную надежность и увеличивает срок службы.

Керамические конденсаторы имеют в качестве материала диэлектрика керамику. Отличаются высокой функциональностью по рабочему напряжению, надежностью, низкими потерями и дешевизной.

Диапазон емкостей их варьируется от нескольких пикофарад до примерно 0,1 мкФ. В настоящее время являются одним из наиболее широко используемых типов конденсаторов, используемых в электронном оборудовании.

Серебряные слюдяные конденсаторы пришли на смену широко распространенным ранее слюдяным элементам. Обладают высокой стабильностью, герметичным корпусом и большой емкостью на единицу объема.

Широкому применению серебряно-слюдяных конденсаторов мешает их относительная дороговизна.

У бумажных и металлобумажных конденсаторов обкладки изготовляются из тонкой алюминиевой фольги, а в качестве диэлектрика используется специальная бумага, пропитанная твердым (расплавленным) или жидким диэлектриком. Применяются в низкочастотных цепях радиоустройств при больших токах. Отличаются относительной дешевизной.

Для чего нужен конденсатор

Имеется целый ряд примеров использования конденсаторов в самых разнообразных целях. В частности, их широко применяют для хранения и и цифровых данных. используются в телекоммуникационной связи для регулировки частоты и настройки телекоммуникационного оборудования.

Типичным примером их применения является использование в источниках питания. Там эти элементы сглаживания (фильтрацию) выпрямленного напряжения на выходе этих устройств. Они также могут быть использованы в для генерации высокого напряжения, многократно превышающего входное напряжение. Конденсаторы широко применяются в различного рода преобразователях напряжения, устройствах бесперебойного питания для компьютерной техники и т.д.

Объясняя, что такое конденсатор, нельзя не сказать, что этот элемент может служить и отличным хранилищем электронов. Однако реально эта функция имеет определенные ограничения по причине неидеальности изоляционных характеристик используемого диэлектрика. Тем не менее конденсатор обладает свойством достаточно длительное время хранить электрическую энергию при отключении от цепи заряда, поэтому он может быть использован как временный источник питания.

Благодаря своим уникальным физическим свойствам эти элементы нашли настолько широкое применение в электронной и электротехнической промышленности, что сегодня редко какое электротехническое изделие не включает в себя по крайней мере один такой компонент для какой-либо цели.

Подводя итоги, можно констатировать, что конденсатор - это бесценная часть огромного множества электронных и электротехнических устройств, без которых был бы немыслим дальнейший прогресс в науке и технике.

Вот что такое конденсатор!

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор . Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.


Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор , ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.


Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD - привода

Также существуют миниатюрные танталовые конденсаторы . Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.


Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.


Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода . Плюсовым выводом – анодом - в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.


Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные . Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Условные обозначения конденсаторов

Подстроечный конденсатор
Электролитический конденсатор
Два конденсатора в общей обкладкой в одном корпусе