Бесконтактный TrueRMS измеритель тока. Проведем один из расчетов тока. Подключение датчиков в многофазные цепи сетей переменного тока

  • 19.05.2019

Измерение постоянных токов чаще всего производится магнитоэлектрическими гальванометрами, микроамперметрами, миллиамперметрами и амперметрами, основной частью которых является магнитоэлектрический измерительный механизм (измеритель). Устройство одной из распространённых конструкций стрелочного измерителя показано на рис. 1. Измеритель содержит подковообразный магнит 1. В воздушном зазоре между его полюсными наконечниками 2 и неподвижным цилиндрическим сердечником 5, выполненными из магнитномягкого материала, создаётся равномерное магнитное поле, линии индукции которого перпендикулярны к поверхности сердечника. В этом зазоре помещается рамка 4, намотанная тонким медным изолированным проводом (диаметром 0,02...0,2 мм) на лёгком бумажном или алюминиевом каркасе прямоугольной формы. Рамка может поворачиваться вместе с осью 6 и стрелкой 10, конец которой перемещается над шкалой. Плоские спиральные пружины 5 служат для создания момента, противодействующего повороту рамки, а также для подвода тока к рамке. Одна пружина закреплена между осью и корпусом. Вторая пружина одним концом прикреплена к оси, а другим - к рычагу корректора 7, вилка которого охватывает эксцентричный стержень винта 8. Вращением этого винта достигается установка стрелки на нулевое деление шкалы. Противовесы 9 служат для уравновешивания подвижной части измерителя с целью стабилизации положения стрелки при изменении положения прибора.

Рис. 1. Устройство магнитоэлектрического измерительного механизма.

Измеряемый ток, проходя по виткам рамки, взаимодействует с магнитным полем постоянного магнита. Создаваемый при этом вращающий момент, направление которого определяется известным правилом левой руки, вызывает поворот рамки на такой угол, при котором он уравновешивается противодействующим моментом, возникающим при закручивании пружин 5. Благодаря равномерности постоянного магнитного поля в воздушном зазоре вращающий момент, а следовательно, и угол отклонения стрелки оказываются пропорциональными току, протекающему через рамку. Поэтому магнитоэлектрические приборы имеют равномерные шкалы. Другие величины, влияющие на значение вращающего момента магнитная индукция в воздушном зазоре, число витков и площадь рамки - остаются постоянными и в совокупности с силой упругости пружин определяют чувствительность измерителя.

При повороте рамки в её алюминиевом каркасе индуцируются токи, взаимодействие которых с полем постоянного магнита создаёт тормозной момент, быстро успокаивающий подвижную часть измерителя (время успокоения не превышает 3 с).

Измерители характеризуются тремя электрическими параметрами: а) током полного отклонения Iи, вызывающим отклонение стрелки до конца шкалы; б) напряжением полного отклонения Uи, т. е. напряжением на рамке измерителя, создающим в её цепи ток Iи; в) внутренним сопротивлением Rи, которое является сопротивлением рамки. Эти параметры взаимосвязаны законом Ома:

В радиоизмерительных приборах применяют различные типы магнитоэлектрических измерителей, ток полного отклонения которых обычно лежит в пределах 10...1000 мкА. Измерители, у которых ток полного отклонения не превышает 50-100 мкА, считаются высокочувствительными.

Некоторые измерители снабжаются магнитным шунтом в виде стальной пластинки, которую можно приближать к торцовым поверхностям полюсных наконечников и магнита или удалять от них. При этом будет соответственно уменьшаться или возрастать в небольших пределах ток полного отклонения I, вследствие изменения воздействующего на рамку магнитного потока из-за ответвления части полного магнитного потока через шунт.

Напряжение полного отклонения Uи для большинства измерителей лежит в пределах 30-300 мВ. Сопротивление рамки Rи зависит от периметра рамки, числа витков и диаметра провода. Чем чувствительнее измеритель, тем больше витков из более тонкого провода имеет его рамка и тем больше её сопротивление. Повышение чувствительности измерителей достигается также применением более мощных магнитов, бескаркасных рамок, пружин с малым противодействующим моментом и подвеской подвижной части на растяжках (двух тонких нитях).

В чувствительных измерителях с бескаркасными рамками стрелка, отклоняясь под действием проходящего по рамке тока, совершает ряд колебаний, прежде чем остановиться в положении равновесия. Для уменьшения времени успокоения стрелки рамку шунтируют резистором с сопротивлением порядка тысяч или сотен Ом. Роль последнего иногда выполняет электрическая схема прибора, включённая параллельно рамке.

Измерители с подвижными рамками позволяют получить угол полного отклонения стрелки до 90-100°. Малогабаритные измерители иногда выполняются с неподвижной рамкой и подвижным магнитом, укреплённым на одной оси со стрелкой. При этом удаётся увеличить угол полного отклонения стрелки до 240°.

Особо чувствительные измерители, служащие для измерений весьма малых токов (менее 0,01 мкА) и напряжений (менее 1 мкВ), называются гальванометрами. Они часто применяются в качестве нуль-индикаторов (индикаторов отсутствия в цепи тока или напряжения) при измерениях методами сравнения. По способу отсчёта различают гальванометры стрелочные и зеркальные; в последних отсчётная риска на шкале создаётся с помощью светового луча и зеркальца, укреплённого на подвижной части прибора.

Магнитоэлектрические измерители пригодны для измерений только на постоянном токе. Изменение направления тока в рамке приводите изменению направления вращающего момента и отклонению стрелки в обратную сторону. При включении измерителя в цепь переменного тока с частотой до 5-7 Гц стрелка будет непрерывно колебаться около нуля шкалы с этой частотой. При большей частоте тока подвижная система вследствие своей инерционности не успевает следовать за изменениями тока и стрелка остаётся в нулевом положении. Если через измеритель протекает пульсирующий ток, то отклонение стрелки определяется постоянной составляющей этого тока. Чтобы исключить при этом дрожание стрелки, измеритель шунтируют конденсатором большой ёмкости.

Измерители, предназначенные для работы в цепи постоянного тока, направление которого неизменно, имеют одностороннюю шкалу, одним из концов которой служит нулевое деление. Для получения правильного отклонения стрелки необходимо, чтобы ток протекал через рамку в направлении от зажима с обозначением «+» к зажиму с обозначением «-». Измерители, предназначенные для работы в цепях постоянного тока, направление которого может изменяться, снабжаются двусторонней шкалой, нулевое деление которой обычно располагается посредине; при протекании тока в приборе от зажима «+» к зажиму «-» стрелка отклоняется вправо.

Магнитоэлектрические измерители выдерживают кратковременную перегрузку, достигающую 10-кратного значения тока Iи, и 3-кратную длительную перегрузку. Они не чувствительны к внешним магнитным полям (из-за наличия сильного внутреннего магнитного поля), потребляют при измерениях небольшую мощность и могут быть выполнены всех классов точности.

Для измерений на переменном токе магнитоэлектрические измерители применяют совместно с полупроводниковыми, электронными, фотоэлектрическими или термопреобразователями ; в совокупности они образуют соответственно выпрямительные, электронные, фотоэлектрические или термоэлектрические приборы.

В измерительных приборах иногда используют электромагнитные, электродинамические и ферродинамические измерители, которые пригодны для непосредственного измерения как постоянных токов, так и среднеквадратических значений переменных токов, имеющих частоту до 2,5 кГц. Однако измерители этих типов значительно уступают магнитоэлектрическим в отношении чувствительности, точности и потребляемой при измерениях мощности. Кроме того, они имеют неравномерную шкалу, сжатую в начальной части, и чувствительны к воздействию внешних магнитных полей, для ослабления которых приходится использовать магнитные экраны и усложнять конструкцию приборов.

Определение электрических параметров магнитоэлектрических измерителей

При использовании в качестве измерителя магнитоэлектрического прибора измерительного механизма неизвестного типа параметры последнего - ток полного отклонения Iи и внутреннее сопротивление Rи - приходится определять опытным путём.

Рис. 2. Схемы измерения электрических параметров магнитоэлектрических измерителей

Сопротивление рамки Rи можно приближённо замерить омметром, имеющим необходимый предел измерений. При проверке высокочувствительных измерителей нужно соблюдать осторожность, так как большой ток омметра может их повредить. Если используется многопредельный батарейный омметр, то измерение следует начинать с наиболее высокоомного предела, при котором ток в цепи питания омметра наименьший. Переход на другие пределы допускается лишь в том случае, если это не вызывает зашкаливания стрелки измерителя.

Достаточно точно параметры измерителя могут быть определены по схеме на рис. 2, а. Схему питают от источника постоянного напряжения Б через резистор R1, служащий для ограничения тока в цепи. Реостатом R2 добиваются отклонения стрелки измерителя И на всю шкалу. При этом значение тока Iи отсчитывают по образцовому (опорному) микроамперметру (миллиамперметру) μА (При наладке, поверке и градуировке средств измерений в случае отсутствия образцовых приборов и мер применяют рабочие приборы и меры более высокого класса точности, чем испытуемые; такие приборы и меры будем называть опорными). Затем параллельно измерителю подключают опорный магазин сопротивлений Rо, изменением сопротивления которого добиваются уменьшения тока через измеритель ровно в два раза по сравнению с током в общей цепи. Это будет иметь место при сопротивлении Rо = Rи. Вместо магазина сопротивлений можно применить любой переменный резистор с последующим измерением его сопротивления Rо = Rи с помощью омметра или моста постоянного тока. Возможно также включение параллельно измерителю нерегулируемого резистора с известным сопротивлением R, желательно близким к предполагаемому сопротивлению Rи; тогда значение последнего определяется по формуле

Rи =(I/I1 - 1) * R,

где I и I1 - токи, отсчитываемые соответственно по приборам μA и И.

Если измеритель И имеет равномерную шкалу, содержащую αп делений, то можно применить схему, приведённую на рис. 2, б. Искомые параметры измерителя вычисляются по формулам:

Iи = U/(R1+R2) * αп/α1 ; Rи = (α2 * R2)/(α1-α2) - R1 ,

где U - напряжение питания, отсчитываемое по вольтметру V, α1 и α2 - отсчёты по шкале измерителя при установке переключателя В соответственно в положения 1 и 2, a R1 и R2 - известные сопротивления резисторов, которые берутся примерно одинаковых номиналов. Погрешность измерений тем меньше, чем ближе отсчёт α1 к концу шкалы, что достигается соответствующим выбором сопротивления

Магнитоэлектрические миллиамперметры и амперметры

Магнитоэлектрические измерители при непосредственном включении в электрические цепи могут быть применены лишь в качестве микроамперметров постоянного тока с пределом измерения, равным току полного отклонения Iи. Для расширения предела измерения измеритель И включают в цепь тока параллельно шунту - резистору малого сопротивления Rш (рис. 3); при этом через измеритель будет протекать лишь часть измеряемого тока и тем меньшая, чем меньше сопротивление Rш по сравнению с сопротивлением измерителя Rи. При радиоэлектронных измерениях максимально необходимый предел измерения постоянных токов редко превосходит 1000 мА (1 А).

При выбранном предельном значении измеряемого тока Iп через измеритель должен протекать ток полного отклонения Iи; это будет иметь место при сопротивлении шунта

Rш = Rи:(Iп/Iи - 1). (1)

Например, при необходимости расширения предела измерений микроамперметра типа М260, имеющего параметры Iп = 0,2 мА и Rи = 900 Ом, до значения Iп = 20 мА необходимо применить шунт сопротивлением Rш = 900 /(100-1) = 9,09 Ом.

Рис. 3. Схема градуировки магнитоэлектрического миллиамперметра (амперметра)

Шунты к миллиамперметрам изготовляются из манганиновой или константановой проволоки. Благодаря высокому удельному сопротивлению материала размеры шунтов получаются небольшими, что позволяет включать их непосредственно между зажимами прибора внутри или снаружи его кожуха. Если известно значение тока Iп (в амперах), то диаметр проволоки шунта d (в миллиметрах) выбирают из условия

d >= 0,92 I п 0,5 , (2)

при выполнении которого плотность тока в шунте не превышает 1,5 А/мм 2 . Например, шунт миллиамперметра с пределом измерения Iп = 20 мА должен изготовляться из проволоки диаметром 0,13 мм.

Подобрав проволоку подходящего диаметра d (в миллиметрах), длина её (в метрах), необходимая для изготовления шунта сопротивлением Rш (в омах), приближённо находится по формуле

L = (1,5...1,9)d 2 * Rш (3)

и точно подгоняется при включении прибора по схеме на рис. 3 последовательно с опорным миллиамперметром mА.

Шунты на большие токи (к амперметрам) обычно изготовляются из листового манганина. Для исключения влияния переходных сопротивлений контактов и сопротивлений соединительных проводников такие шунты имеют четыре зажима (рис. 4, а). Наружные массивные зажимы называются токовыми и служат для включения шунта в цепь измеряемого тока. Внутренние зажимы называются потенциальными и предназначены для подключения измерителя. Подобная конструкция также исключает возможность повреждения измерителя большим током при случайном отключении шунта.

Для уменьшения температурной погрешности измерений, вызываемой различной зависимостью от температуры сопротивлений рамки измерителя и шунта, последовательно с измерителем включают манганиновый резистор Rк (рис. 4, б); погрешность снижается во столько раз, во сколько увеличивается сопротивление цепи измерителя. Еще лучшие результаты достигаются при включении терморезистора Rк с отрицательным температурным коэффициентом сопротивления. При расчёте прибора с температурной компенсацией под сопротивлением Rи в расчётных формулах следует понимать суммарное сопротивление измерителя и резистора Rк.

Рис. 4. Схемы включения шунта на большие токи (а) и элемента температурной компенсации (б)

С учётом влияния шунта внутреннее сопротивление миллиамперметра (амперметра)

Rма = RиRш/(Rи+Rш). (4)

Для обеспечения достаточно высокой точности в широком диапазоне измеряемых токов прибор должен иметь несколько пределов измерений; это достигается применением ряда переключаемых шунтов, рассчитанных на различные значения предельного тока Iп.

Переходным множителем шкалы N называют отношение верхних предельных значений двух смежных пределов измерений. При N = 10, как, например, в четырёхпредельном миллиамперметре с пределами 1, 10, 100 и 1000 мА, шкала прибора, выполненная для одного из пределов (1 мА), может быть легко применена для измерения токов на остальных пределах посредством умножения отсчёта на соответствующий множитель 10, 100 или 1000. При этом диапазон измерений будет достигать 90% диапазона показаний, что приведёт к заметному возрастанию погрешности измерения тех значений токов, которым соответствуют отсчёты на начальных участках шкал.

Рис. 5. Шкалы многопредельных магнитоэлектрических миллиамперметров

С целью повышения точности измерений в некоторых приборах предельные значения измеряемых токов выбирают из ряда чисел 1, 5, 20, 100, 500 и т. д., применяя для отсчёта общую шкалу с несколькими рядами числовых отметок (рис. 5, а). Иногда предельные значения выбирают из ряда чисел 1, 3, 10, 30, 100 и т. д., что позволяет исключить отсчёт по первой трети шкалы; однако при этом шкала должна иметь два ряда отметок, проградуированных в значениях, кратных соответственно 3 и 10 (рис. 5, б).

Переключение шунтов, необходимое для перехода от одного предела измерений к другому, может осуществляться посредством переключателя при использовании на всех пределах общих входных зажимов (рис. 6) или с помощью системы разрезных гнёзд, половинки которых замыкаются между собой металлическим штепселем измерительного шнура (рис. 7). Особенностью схем на рис. 6, б, и 7, б является то, что в состав шунта каждого предела измерений входят резисторы шунтов других, менее чувствительных пределов.

Рис. 6. Схемы многопредельных миллиамперметров с переключателями пределов измерений.

При переключении под током предела измерений прибора возможно повреждение измерителя, если он окажется кратковременно включённым без шунта в цепь измеряемого тока. Во избежание этого конструкция переключателей (рис. 6) должна обеспечивать переход с одного контакта на другой без разрыва цепи. Соответственно конструкция разрезных гнёзд (рис. 7) должна позволять штепселю измерительного шнура при включении первоначально замыкаться с шунтом, а затем с цепью измерителя.

Рис. 7. Схемы многопредельных миллиамперметров со штепсельно-гнездовой коммутацией пределов измерений.

С целью предохранения измерителя от опасных перегрузок параллельно ему иногда ставят кнопку Кн с размыкающим контактом (рис. 7, б); измеритель включается в схему лишь при нажатой кнопке. Эффективным способом защиты чувствительных измерителей является шунтирование их (в прямом направлении) специально подобранными полупроводниковыми диодами; при этом, однако, возможно нарушение равномерности шкалы.

По сравнению с приборами, имеющими переключаемые шунты, более надёжными в работе являются многопредельные приборы с универсальными шунтами. Универсальный шунт представляет собой группу последовательно соединённых резисторов, образующих вместе с измерителем замкнутую цепь (рис. 8). Для подключения к исследуемой цепи используется общий минусовый зажим и зажим, соединённый с одним из отводов шунта. При этом образуются две параллельные ветви. Например, при установке переключателя В в положение 2 (рис. 8, а) в одну ветвь входят резисторы действующего участка шунта, имеющего сопротивление Rш.д = Rш2 + Rш3, во второй ветви последовательно с измерителем включён резистор Rш1. Сопротивление Rш.д должно быть таким, чтобы при предельном измеряемом токе Iп через измеритель протекал ток полного отклонения Iи. В общем случае

Rш.д = (Rш + Rи) (Iи/Iп). (5)

где Rш = Rш1 + Rш2 + Rш3 + ... есть полное сопротивление шунта.

Универсальный шунт в целом выполняет функцию действующего шунта на пределе 1, которому отвечает наименьшее предельное значение измеряемого тока Iп1; его сопротивление можно подсчитать по формуле (1). Если выбраны пределы измерений Iп2 = = N12*Iп1; Iп3 = N23*Iп2; Iп4 = N34*Iп3 и т. д., то сопротивления отдельных участков шунта определятся выражениями:

Rш2 + Rш3 + RШ4 + ... = Rш/N12;

Rш3 + Rш4 + ... = Rш/(N12*N23);

Rш4 + ... = Rш/(N12*N23*N34) и т. д. Разность сопротивлений из двух смежных равенств позволяет определить сопротивления отдельных компонентов шунта Rш1, Rш2, Rш3 и т. д.

Рис. 8. Схемы многопредельных миллиамперметров с универсальными шунтами

Из приведённых выше выражений видно, что переходные множители N12, N23, N34 и т. д. целиком определяются отношением сопротивлений отдельных участков шунта и совершенно не зависят от данных измерителя. Поэтому один и тот же универсальный шунт, присоединённый параллельно различным измерителям, будет изменять их пределы в одинаковое число раз; при этом исходный предел измерений определится формулой

Iп1 = Iи*(Rи/Rш + 1). (6)

Из схем на рис. 8 видно, что в приборах с универсальными шунтами пределы измерений могут выбираться как с помощью переключателей, так и посредством гнёзд обычного типа. Нарушение контакта в этих схемах безопасно для измерителя. Если примерное значение подлежащего измерению тока неизвестно, то перед подключением многопредельного прибора к исследуемой цепи следует устанавливать наибольший верхний предел измерений,

Градуировка магнитоэлектрических миллиамперметров и амперметров

Градуировка измерительного прибора заключается в определении его градуировочной характеристики, т. е. зависимости между значениями измеряемой величины и показаниями отсчётного устройства, выраженной в виде таблицы, графика или формулы. Практически градуировка стрелочного прибора завершается нанесением на его шкалу делений, отвечающих определённым численным значениям измеряемой величины.

Для магнитоэлектрических приборов, имеющих равномерные шкалы, основной задачей градуировки является установление соответствия конечного деления шкалы предельному значению измеряемой величины, что может быть выполнено с помощью схемы, подобной приведённой на рис. 3. Градуируемый прибор подключается к зажимам 1 и 2. Реостатом R в цепи, питаемой источником постоянного тока, устанавливают по опорному прибору mА предельное значение тока Iп и отмечают точку шкалы, до которой отклоняется стрелка измерителя И. Если градуируемый прибор имеет один предел, то за конечную точку шкалы может быть принята любая точка вблизи упора, ограничивающего перемещение стрелки. В многопредельных приборах с кратными шкалами такой произвольный выбор конца шкалы можно производить лишь на одном пределе, принимаемом за исходный.

Если стрелка при токе Iп не находится на конечном делении шкалы, необходима регулировка прибора. В однопредельных приборах или на исходном пределе многопредельного прибора эта регулировка может быть произведена с помощью магнитного шунта. При отсутствии последнего регулировку осуществляют подгонкой сопротивлений шунтов. Если при токе Iп стрелка не доходит до конечного деления, то сопротивление шунта Rш следует увеличить; при зашкаливании стрелки сопротивление шунта уменьшают.

При градуировке многопредельных приборов, работающих по схемам, приведённым на рис. 6, б, 7, б и 8, подгонка шунтов должна проводиться в определённом порядке, начиная с сопротивления шунта Rш, соответствующего наибольшему предельному току Iп3; затем последовательно подгоняются сопротивления шунтов Rш2 и Rш1. При переключении пределов может потребоваться замена опорного прибора, верхний предел измерений которого во всех случаях должен быть равен или несколько превышать предельное значение градуируемой шкалы.

Зная положения начального и конечного делений равномерной шкалы, легко определить положения всех промежуточных делений. Следует, однако, учитывать, что у некоторых магнитоэлектрических приборов вследствие конструктивных недостатков или особенностей измерительной схемы может не быть точной пропорциональности между угловым перемещением стрелки и измеряемым током. Поэтому желательно проверить градуировку шкалы в нескольких промежуточных точках, изменяя ток реостатом R. Резистор Rо служит для ограничения тока в цепи.

Градуировка должна выполняться при полностью собранном приборе, находящемся в нормальных рабочих условиях. Полученные опорные точки наносятся на поверхность шкалы остро отточенным карандашом (при снятом с кожуха измерителя стекле) или фиксируются по отметкам имеющейся шкалы прибора. Если старая шкала измерителя негодна, то изготовляется новая шкала из плотной гладкой бумаги, которая наклеивается на место старой шкалы клеем, стойким к сырости. Положение новой шкалы должно строго соответствовать положению, занимаемому старой шкалой при градуировке прибора. Хорошие результаты достигаются при вычерчивании шкалы чёрной тушью в увеличенном масштабе с последующим изготовлением её фотокопии требуемого размера.

Рассмотренные выше общие принципы градуировки приложимы к стрелочным измерительным приборам различного назначения.

Особенности измерения постоянных токов

Для измерения тока прибор (например, миллиамперметр) включают последовательно в исследуемую цепь; это приводит к возрастанию общего сопротивления цепи и уменьшению протекающего в ней тока. Степень этого уменьшения оценивается (в процентах) коэффициентом влияния миллиамперметра

Вма = 100*Rма/(Rма + Rц),

где Rц есть общее сопротивление цепи между точками подключения прибора (например, зажимами 1 и 2 на схеме рис. 3).

Умножая числитель и знаменатель правой части формулы на значение тока в цепи I и учитывая, что I*Rма есть падение напряжения на миллиамперметре Uма, а I (Rма + Rц) равно э.д.с. Е, действующей в исследуемой схеме, получаем

Вма = 100*Uма/Е.

В сложной (разветвлённой) цепи под э. д. с. Е нужно понимать напряжение холостого хода между точками разрыва цепи, к которым должен подключаться прибор.

Предельным значением напряжения Uма является падение напряжения на приборе Uп, вызывающее отклонение его стрелки до конечной отметки шкалы. Следовательно, предельно возможное значение коэффициента влияния при использовании данного прибора

Bп = 100Uп/E. (7)

Из приведённых формул следует, что чем меньше э. д. с. Е, тем сильнее влияет прибор на измеряемый ток. Например, если Uп/E = 0,1, то Вп = 10%, т. е. включение прибора может вызвать уменьшение тока в цепи на 10%; при Uп/E = 0,01 уменьшение тока не превосходит 1%. Поэтому при измерении тока накала радиоламп или эмиттерного тока транзисторов следует ожидать значительно большего изменения тока в цепи, чем при измерении анодных, экранных или коллекторных токов. Очевидно также, что при одинаковых пределах измерений меньшее влияние на измеряемый ток оказывает прибор, характеризуемый меньшим значением напряжения Uп. В многопредельных миллиамперметрах с переключаемыми шунтами (рис. 6 и 7) на всех пределах измерений максимальное падение напряжения на приборе одинаково и равно напряжению полного отклонения измерителя, т. е. Uп = Uи = Iи/Rи, а мощность, потребляемая прибором, ограничивается значением

Рп = IиUи = Iп*Iи*Rи. В миллиамперметрах с универсальными шунтами (рис. 8) падение напряжения на приборе равно Iи*Iи лишь на исходном пределе 1. На других пределах оно возрастает до значения Uп ≈ Iи*(Rп + Rш) (при увеличении потребляемой прибором мощности в (Rи + Rш)/Rи раз), так как представляет собой сумму падений напряжений на измерителе и включённом последовательно с ним участке шунта. Следовательно, прибор с универсальным шунтом при прочих равных условиях сильнее влияет на режим исследуемых цепей, чем прибор с переключаемыми шунтами.

Если взять полное сопротивление универсального шунта Rш >> Rи, то низший предел миллиамперметра будет близок к Iи, однако на других пределах падение напряжения на приборе может оказаться чрезмерно большим. Если же взять сопротивление Rш небольшим, то возрастёт наименьший предельный ток Iп1 прибора. Поэтому в каждом конкретном случае необходимо решать вопрос о допустимом значении сопротивления шунта Rш.

При включении магнитоэлектрического прибора в цепь пульсирующего или импульсного тока с целью измерения постоянной составляющей этого тока необходимо параллельно прибору присоединить конденсатор большой ёмкости, имеющий для переменной составляющей тока сопротивление, значительно меньшее внутреннего сопротивления прибора Rма. С целью устранения влияния ёмкости прибора относительно корпуса исследуемой установки место включения прибора в высокочастотные цепи выбирают таким образом, чтобы один из его зажимов непосредственно или через конденсатор большой ёмкости соединялся с корпусом.

В некоторых случаях в различные цепи исследуемого радиоэлектронного устройства включают постоянные шунты, что позволяет с помощью одного и того же магнитоэлектрического измерителя поочерёдно контролировать токи в этих цепях без их разрыва.

Задача 1. Рассчитать схему миллиамперметра с универсальным шунтом (рис. 8) на три предела измерений: 0,2; 2 и 20 мА при переходном множителе N = 10. Измеритель прибора - микроамперметр типа М94 - имеет данные: Iи= 150 мкА = 0,15 мА, Rи = 850 Ом, Uи = Iи/Rи = 0,128 В. Для каждого предела найти падение напряжения на приборе при предельном токе, а также максимально возможное влияние прибора на измеряемый ток, если в цепи последнего действует э. д. с. Е = 20 В.

1. На пределе 1 (Iп1 = 0,2 мА) шунтом к измерителю является универсальный шунт в целом. Полное сопротивление последнего, определённое по формуле (1), Rш = 2550 Ом.

Падение напряжения на приборе при предельном токе Uп1 = Uи = 0,128 В. Предельно возможный коэффициент влияния миллиамперметра Вп1 = (Uп1/E)*100= 0,64%.

2. Для предела 2 (Iп2 = 2 мА) сопротивление шунтирующего участка универсального шунта Rш2+ Rш3 = Rш/N = 255 Ом. Следовательно, сопротивление Rш1 = Rш - (Rш2 + Rш3) = 2295 Ом.

Предельное падение напряжения на приборе Uп2 = Iи/(Rи + Rш1) = 0,727 В. Предельный коэффициент влияния Вп2 = 100*Uп2/E = 3,63%.

3. Для предела 3 (Iп3 = 20 мА) Rш3 = Rш/N 2 = 25,5 Ом; Rш2 = 255-25,5 = 229,5 Ом; Uп3 = Iп*(Rи + Rш1 + Rш2) = 0,761 В; Вп3 = 100*п3/Е = 3,80%.

Задача 2. Рассчитать схему миллиамперметра с универсальным шунтом на три предела измерений: 5, 50 и 500 мА. Измеритель прибора - микроамперметр типа М260М - имеет данные: Iи = 500 мкА, Rи = 150 Ом. Определить влияние прибора на измеряемый ток, если измерения на пределах 5 и 50 мА производятся в цепях, в которых действуют э. д. с. не менее 200 В, а на пределе 500 мА - в цепи накала радиолампы, питаемой от батареи с э.д.с. 6 В.

Ответ: Rш= 16,67 Ом; Rш1 = 15 Ом; Rш2= 1,5 Ом; Rш3=0,17 Ом; Uп1 = 75 мВ; Вп1 = 0,037%; Uп2 = 82,5 мВ; Вп2 = 0,041%; Uп3 = 83 мВ; Вп3= 1,4%.

Ответ: 1) Rш1 = 16,67 Ом; Rш2 = 1,52 0м; Rш3=0,15 Ом; 2) Rш1 =15,15 Ом; Rш2= 1,37 Ом; Rш3 = 0,15 Ом.

Транзисторные микроамперметры постоянного тока

При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения Iи имеющегося магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Наиболее простыми и экономичными являются усилители на биполярных транзисторах. Усиления тока можно добиться при включении транзисторов по схемам с общим эмиттером и общим коллектором, однако первая схема предпочтительнее, поскольку она обеспечивает меньшее входное сопротивление усилителя.

Рис. 9. Схемы однотранзисторных микроамперметров постоянного тока

Простейшая схема однотранзисторного микроамперметра, питаемого от источника с э.д.с. Е = 1,5...4,5 В, показана на рис. 9, а, сплошными линиями. Током базы Iб является измеряемый ток, при некотором номинальном значении которого Iн в цепи коллектора протекает ток Iк, равный току полного отклонения Iи измерителя И. Статический коэффициент передачи тока Вст = Iк/Iб = Iи/Iн, откуда номинальный измеряемый ток Iн = Iи/Bст. Например, при использовании транзистора типа ГТ115А, имеющего Вст = 60, и измерителя типа М261 с током Iи = 500 мкА номинальный ток Iн = 500/60 ≈ 8,3 мкА. Поскольку зависимость между токами Iк и Iб близка к линейной, то шкала измерителя, проградуированная в значениях измеряемого тока, будет почти равномерной (за исключением небольшого начального участка шкалы до 10% её длины). Включением специально подобранного шунта между входными зажимами можно повысить предельный измеряемый ток до удобного для расчётов значения (например, до 10 мкА).

В реальных схемах транзисторных микроамперметров принимают меры, направленные к стабилизации режима работы и коррекции возможных его отклонений. Прежде всего недопустимо (особенно при повышенном напряжении питания) размыкание цепи базы транзистора, которое может иметь место в процессе измерений. Поэтому базу соединяют с эмиттером через резистор небольшого сопротивления либо, как это показано штриховой линией на рис. 9, а, с отрицательным полюсом источника посредством резистора Rб с сопротивлением порядка сотен килоом. В последнем случае к базе подводится напряжение смещения, которое задаёт режим работы усилителя. Затем с целью подгонки требуемого номинального тока (предположим, 10 мкА для приведённого выше примера) параллельно измерителю (или последовательно с ним) включают подстроечный резистор Rш = (2...5) Rи.

Следует учесть, что при отсутствии измеряемого тока через измеритель будет протекать начальный ток коллектора Iк.н, достигающий 5-20 мкА и обусловленный наличием неуправляемого обратного тока коллектора Iк.о и тока в цепи базового резистора Rб. Действие тока Iк.н можно компенсировать установкой стрелки измерителя на нуль механическим корректором прибора. Однако рациональнее перед началом измерений производить электрическую установку нуля, например, с помощью вспомогательного элемента питания Е0 и реостата R0 = (5...10) Rи, создавая в цепи измерителя компенсационный ток I0, равный по значению, но обратный по направлению току Iк.н. Вместо двух источников питания можно применить один (рис. 9, б), включив параллельно ему делитель напряжения из двух резисторов R1 и R2 с сопротивлениями порядка сотен ом. При этом образуется схема моста постоянного тока (см. Мостовой метод измерения электрических сопротивлений), который уравновешивается изменением сопротивления одного из плеч (R0).

Необходимость усложнения исходной схемы однотранзисторного усилителя приводит к тому, что коэффициент усиления по току

Ki = Uи/Iн (8)

оказывается меньше коэффициента передачи тока Вст используемого транзистора. Более того, надежную работу транзисторного микроамперметра удаётся обеспечить лишь при условии выбора Ki << Вст.

Как известно, параметры транзистора существенно зависят от температуры окружающей среды. Изменение последней приводит к самопроизвольным колебаниям (дрейфу) обратного тока коллектора Iк.о, который в германиевых транзисторах возрастает почти в 2 раза на каждые 10 К увеличения температуры. Это вызывает заметное изменение коэффициента усиления по току Кi и входного сопротивления усилителя, что может привести к полному нарушению градуировочной характеристики прибора. Следует также учитывать и наблюдаемое с течением времени необратимое изменение параметров («старение») транзисторов, что создаёт необходимость в периодической проверке и коррекции градуировочной характеристики транзисторного прибора.

Если изменение тока Iк.o можно в какой-то степени компенсировать установкой нуля перед началом измерений, то для стабилизации коэффициента усиления Ki приходится принимать специальные меры. Так, смещение на базу (рис. 9, б) подают посредством делителя напряжения из резисторов Rб1 и Rб2, причём в качестве последнего иногда используют термистор, имеющий отрицательный температурный коэффициент сопротивления. Термистор можно заменить диодом Д, включённым параллельно резистору Rб1. С повышением температуры обратное сопротивление диода уменьшается, что приводит к такому перераспределению напряжений между электродами транзистора, которое противодействует возрастанию тока коллектора. В том же направлении действует и отрицательная обратная связь между коллектором и базой, появляющаяся благодаря подключению к коллектору (а не к минусу питания) вывода резистора Rб2. Наиболее эффективное действие оказывает отрицательная обратная связь, возникающая при включении в цепь эмиттера резистора Rэ.

Повышение устойчивости работы усилителя посредством применения достаточно глубокой отрицательной обратной связи приводит к малому отношению коэффициентов Ki/Bст. Поэтому для получения коэффициента усиления Ki, равного нескольким десяткам, приходится подбирать для микроамперметра германиевый транзистор с высоким коэффициентом передачи тока: Вст = 120...200.

В микроамперметрах возможно применение кремниевых транзисторов, которые по сравнению с германиевыми обладают параметрами, более стабильными как во времени, так и в отношении температурных влияний. Однако коэффициент Вст у кремниевых транзисторов обычно невелик. Повысить его можно путём использования схемы составного транзистора (рис. 9, в); последний имеет коэффициент передачи тока Вст примерно равный произведению соответствующих коэффициентов составляющих его транзисторов, т. е. Вст ≈ Вст1*Вст2. Однако обратный ток коллектора составного транзистора:

Iк.о ≈ Iк.о2 + Bст2*Iк.о1

значительно превышает соответствующие токи его компонентов и подвержен заметным температурным колебаниям, что приводит к необходимости стабилизации режима усилителя.

Высокой устойчивости работы транзисторного микроамперметра легче достигнуть при выполнении его усилителя по балансной схеме с двумя обычными или составными транзисторами, специально подобранными по идентичности их параметров (в первую очередь - по примерному равенству коэффициентов Вст и токов Iк.o). Типовая схема подобного прибора с элементами стабилизации и коррекции приведена на рис. 10. Поскольку начальные коллекторные токи транзисторов примерно в одинаковой степени зависят от температуры и напряжения питания, а через измеритель они протекают в противоположных направлениях, компенсируя друг друга, то повышаются устойчивость нулевого положения стрелки измерителя и равномерность его шкалы. Глубокая отрицательная обратная связь, обеспечиваемая резисторами Rэ и Rб.к, повышает стабильность коэффициента усиления по току. Балансная схема повышает также чувствительность микроамперметра, поскольку измеряемый ток создаёт на входных электродах обоих транзисторов потенциалы различных знаков; в результате внутреннее сопротивление одного транзистора увеличивается, а другого - уменьшается, что усиливает разбаланс места постоянного тока, в диагональ которого включён измеритель И.

При налаживании балансного микроамперметра подстроечным потенциометром Rк осуществляют уравнивание потенциалов коллекторов, что контролируется по отсутствию показаний измерителя при замкнутых накоротко входных зажимах. Установка нуля в процессе эксплуатации производится потенциометром Rб посредством уравнивания токов баз при разомкнутых входных зажимах. Следует учитывать, что эти две регулировки взаимозависимы и при отладке прибора их необходимо несколько раз поочерёдно повторять.

Рис. 10. Балансная схема транзисторного микроамперметра

Входное сопротивление микроамперметра Rмка в основном определяется суммарным сопротивлением R = Rб1 + Rб2 + R6, действующим между базами транзисторов, и примерно составляет (0,8...0,9)*R; его точное определение, так же как и номинального предельного тока Iн, приходится осуществлять опытным путём. Подгонку требуемого значения номинального тока удобно производить с помощью шунтирующей цепочки резисторов сопротивление которой необходимо учитывать при определении входного сопротивления Rмка.

Стабильность входного сопротивления позволяет производить расширение предела измерений в направлении понижения чувствительности с помощью шунтов. Сопротивление шунта, необходимое для получения предельного измеряемого тока Iп,

Rш.п = Rмка*Iн/(Iп - Iн) = Rмка*Iи/(Ki*Iп - Iи) (9)

При указанных на схеме численных данных и использовании транзисторов с Вст ≈ 150 балансный микроамперметр имеет коэффициент усиления Ki ≈ 34 и посредством подстроечного резистора Rm может быть подогнан под номинальный ток Iн = 10 мкА. При необходимости получения номинального тока примерно 1 мкА усилитель дополняется вторым каскадом, который часто выполняется по схеме эмиттерного повторителя, что облегчает согласование выходного сопротивления усилителя с малым сопротивлением измерителя И.

Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное . Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр . Вольтметры бывают стрелочные (аналоговые) и цифровые .

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V » внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU » и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1 », а около второго «PU 2 ».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем . Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1 . На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1 .

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину . Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр .

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m , 2V , 20V , 200V , 600V . Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения .

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001 ». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5 ». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58 ». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1 ». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V .
На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.
Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

И еще один момент.
Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра , а также дополнительно проверяйте выбранный предел измерения . И только после всех этих операций производите измерения . Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются или генераторы тока.

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «~ », для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе:

  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, . Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

Из рисунка видно, что на тестере выбрана граница измерений 300 вольт, а на мультиметре 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения - ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной - только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

Отметим два важных обстоятельства:

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заземление необходимо для безопасной эксплуатации электричества. – наиболее важный компонент электрической сети.

Трансформатор 220 на 12 Вольт – назначение и рекомендации по изготовлению вы найдете .

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Видео на тему

Измерение, контроль и регулирование тока - распространенные задачи в различных приложениях электроники. Предлагаемая вниманию читателей статья представляет собой обзор схемотехнических решений и компонентов, применяемых для этих целей.

Один из способов измерения тока в электрической цепи - это измерение падения напряжения на токоизмерительном резисторе (шунте) известного сопротивления, включенном последовательно с нагрузкой. Чтобы сопротивление шунта оказывало минимальное воздействие на режим работы нагрузки, оно выбирается минимально возможной величины, что предполагает последующее усиление сигнала.

В таблице 1 перечислены производители электронных компонентов, выпускающие как специализированные изделия, предназначенные для контроля тока, так и микросхемы усилителей, подходящих для этой цели.

Таблица 1. Фирмы-производители микросхем-мониторов тока

Изготовитель
Analog Devices Inc.
Integration Associates Inc.
International Rectifier
Ixys Corp.
Linear Technology Corp.
Maxim Integrated Products
National Semiconductor
Semtech Corp.
Texas Instruments Inc.
Zetex Semiconductor

Специализированные микросхемы для контроля (измерения) тока производителями названы Low-Side Current Sense Monitor (Amplifier) и High-Side Current Sense Monitor (Amplifier). Буквальный перевод этих терминов на русский язык дает такие же загадочные названия, как «южный мост» в материнской плате компьютера.

Фирма Maxim определяет High-side current sensing как измерение тока по падению напряжения на резисторе, включенном между источником питания и нагрузкой, а Low-side current sensing - как измерение тока по падению напряжения на резисторе, включенном между нагрузкой и общим проводом («землей»).

Воспользуемся для дальнейшего описания понятиями измерения тока в положительном и отрицательном полюсах нагрузки предполагая, что шина питания имеет положительный потенциал относительно общей шины, что справедливо для подавляющего большинства современных электронных схем. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки

Преимущества:

  • низкое входное синфазное напряжение;
  • входной и выходной сигнал имеют общую «землю»;
  • простота реализации с одним источником питания.

Недостатки:

  • нагрузка не имеет непосредственной связи с «землей»;
  • отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
  • возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит множество операционных усилителей, предназначенных для работы с однополярным питанием с входным синфазным напряжением, включающим потенциал общей шины, а также многие из инструментальных усилителей. По этой причине специализированные микросхемы Low-Side Sense Monitor (Amplifier) практически отсутствуют. Схемы измерения тока с применением операционного и инструментального усилителей приведены на рис. 1 и 2 соответственно. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется либо двухполярное питание усилителя, либо смещение уровня выходного сигнала подключением вывода REF инструментального усилителя к источнику опорного напряжения.

Рис. 1. Схема измерения тока в отрицательном полюсе с операционным усилителем

Рис. 2. Схема измерения тока в отрицательном полюсе с измерительным усилителем

Измерение тока в положительном полюсе нагрузки

  • обнаруживается короткое замыкание в нагрузке.
  • Недостатки:

    • высокое синфазное входное напряжение (зачастую очень высокое);
    • необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).

    Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

    В схеме на рис. 3 можно применить любой из подходящих по допустимому напряжению питания и точностным характеристикам операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

    Рис. 3. Схема измерения тока в положительном полюсе с операционным усилителем

    Так называемые Over-The-Top Rail-To-Rail Input и Output Amplifier (LT1494, LT1636, LT1637, LT1672, LT1782, LT1783, LT1784 от Linear Technology) работоспособны при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 4, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В.

    Рис. 4. Схема измерения тока в положительном полюсе с Over-The-Top операционным усилителем

    Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. На рис. 5 показана схема с применением LTC6800. Напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя (5,5 В).

    Рис. 5. Схема измерения тока в положительном полюсе с инструментальным усилителем LTC6800

    Дифференциальные усилители, подходящие для построения схем мониторов тока в положительном полюсе, перечислены в таблице 2. Некоторые из них имеют очень широкий диапазон входного синфазного напряжения, распространяющийся и в область отрицательных значений, что позволяет организовать при необходимости измерение тока и в нагрузке, подключенной к источнику питания отрицательной полярности. Рекордные показатели у LT1990, имеющего диапазон входного синфазного напряжения от –37 до 250 В при однополярном питании и ±250 В при двухполярном. Схема с его использованием изображена на рис. 6. Микросхемам AD629 и INA117 требуется двухполярное питание, при этом диапазон входного синфазного напряжения составляет ±270 В и ±200 В.

    Рис. 6. Схема измерения тока в положительном полюсе с дифференциальным усилителем LT1990

    Таблица 2. Дифференциальные усилители

    Интеграция практически всех необходимых компонентов в один кристалл привела к созданию специализированных микросхем мониторов тока. Как правило, эти микросхемы не обеспечивают точности, достижимой с использованием прецизионных усилителей. Однако для подавляющего большинства применений, особенно если требуется только контроль тока, а не измерение его точного значения, заявляемой производителями точности вполне достаточно.

    По выходному сигналу микросхемы можно разделить на три группы: с токовым выходом, потенциальным выходом и ШИМ-выходом.

    Характеристики микросхем c токовым выходом приведены в таблице 3. На рис. 7 показана схема с применением INA139, в которой кроме токового шунта требуется единственный внешний компонент - резистор R OUT . В схеме на рис. 8 с применением LTC6101HV, кроме того, необходим резистор R IN , включаемый в цепь встроенного источника тока.

    Рис. 7. Монитор тока в положительном полюсе с токовым выходом INA139

    Рис. 8. Монитор тока в положительном полюсе с токовым выходом LTC6101HV

    Таблица 3. Микросхемы мониторов тока с токовым выходом

    Поскольку выходное сопротивление схем достигает нескольких десятков килоом, схемы последующей обработки сигнала должны иметь высокое входное сопротивление.

    Особенность трехвыводных микросхем ZXCT1008 и ZXCT1009 от Zetex - протекание собственного тока потребления микросхемы через резистор R OUT , что, естественно, вносит дополнительную погрешность. Однако ввиду чрезвычайно малого собственного потребления эта погрешность незначительна, особенно в конце шкалы, и вполне приемлема. На рис. 9 показано применение ZXCT1009 в схеме зарядного устройства для Li-Ion аккумулятора.

    Рис. 9. Схема управления зарядным устройством

    В таблице 4 приведены характеристики микросхем-мониторов тока с потенциальным выходом. От мониторов тока с токовым выходом они отличаются тем, что содержат внутренний резистор R OUT , а часть из них имеет выходной усилитель, позволяющий уменьшить выходное сопротивление до единиц и даже долей ома. В качестве примера внутренней организации на рис. 10 показан монитор тока MAX4372.

    Рис. 10. Монитор тока в положительном полюсе с потенциальным выходом MAX4372

    Таблица 4. Микросхемы мониторов тока с потенциальным выходом

    При необходимости контролировать ток, который изменяет направление в зависимости от режима работы схемы, например, ток, протекающий через реверсируемый электродвигатель, или ток заряда–разряда аккумуляторной батареи, используются два монитора тока. Схема для последнего случая приведена на рис. 11. Здесь каждый монитор контролирует ток своего направления. Альтернативное решение - использование сдвоенного монитора тока MAX4377 или двунаправленного (Bidirectional) монитора тока, схема применения которого изображена на рис. 12. Опорное напряжение устанавливает уровень, относительно которого изменяется выходное напряжение. Выходной сигнал схемы увеличивается с ростом тока положительного направления и, соответственно, уменьшается с ростом тока отрицательного направления. Аналогичный результат можно получить с использованием дифференциальных и инструментальных усилителей, подключив вывод REF к источнику опорного напряжения, как показано на рис. 6.

    Рис. 11. Схема контроля тока заряда–разряда аккумулятора

    Рис. 12. Схема двунаправленного монитора тока

    Мониторы тока можно использовать и при напряжении источника питания, превышающем максимальное входное синфазное напряжение, как описано в документации . В последнем документе показано использование микросхемы MAX4172 с источником питания напряжением 100–250 В.

    Микросхемы - мониторы тока с минимальным значением входного синфазного напряжения, равным нулю, можно использовать для контроля тока в отрицательном полюсе нагрузки, а INA193–INA198 - и для контроля тока в нагрузке, включенной в цепь источника отрицательного напряжения до –16 В.

    Некоторые из мониторов тока обеспечивают дополнительные функции. Переключаемое усиление позволяет менять коэффициент передачи монитора «на лету», увеличивая точность измерения в начале шкалы. Наличие вывода отключения дает возможность экономить энергию, когда нет необходимости измерять ток. Встроенный источник опорного напряжения служит для задания либо выходного уровня двунаправленного монитора, либо порога срабатывания встроенных или внешних компараторов.

    Микросхема MAX4210 позволяет одновременно контролировать как ток, так и потребляемую нагрузкой мощность, а MAX4211 содержит еще и два компаратора для организации пороговых устройств.

    Монитор тока IA2410 может работать и как датчик температуры с переключением из режима монитора тока в режим контроля температуры подачей комбинации импульсов на вход SHDN.

    Мониторы тока с ШИМ-выходом

    Широтно-импульсная модуляция выходного сигнала имеет преимущества при сопряжении монитора тока с микропроцессором. Характеристики микросхем с ШИМ приведены в таблице 5, а пример применения монитора тока IR2175 для контроля тока фазы электродвигателя - на рис. 13.

    Рис. 13. Схема контроля тока с IR2175

    Таблица 5. Мониторы тока с ШИМ-выходом

    Следует упомянуть и правила выбора токоизмерительных шунтов. Естественно, что чем меньше сопротивление шунта, тем большее влияние оказывает сопротивление подводящих проводов. Для точных измерений используются четырехвыводные резисторы.

    Если особых требований к точности не предъявляется, шунт может быть выполнен в виде дорожки на печатной плате. При этом отклонение сопротивления от расчетного значения в серии изделий может достигать ±5%, кроме того, температурный коэффициент сопротивления меди достаточно велик. Последнее обстоятельство в некоторых случаях не является критичным. Например, микросхемы ZXCT1008–ZXCT1010 имеют отрицательный температурный дрейф коэффициента передачи в положительном диапазоне температур, что в некоторой степени компенсирует положительный температурный коэффициент сопротивления меди.

    Измерение переменного тока

    Linear Technology производит микросхемы прецизионных преобразователей среднеквадратичного значения переменного напряжения в постоянное - LTC1966 и LTC1967, характеристики которых приведены в таблице 6. Коэффициент передачи микросхем определяется формулой

    На рис. 14 изображена схема включения LTC1966 для измерения переменного тока с использованием трансформатора тока.

    Рис. 14. Схема измерения переменного тока с LTC1966

    Таблица 6. Микросхемы для измерения переменного тока

    Большое количество практических схем контроля и регулирования тока применения микросхем-мониторов тока приведено в документах .

    Существуют и другие микросхемы датчиков тока, основанные на использовании эффекта Холла и «гигантского» магниторезистивного эффекта. Они применяются для бесконтактного измерения тока. Тем не менее, рассмотрение их характеристик и применения выходит за рамки данной статьи.

    Литература

    1. AN-39. Current Measurement Applications Handbook. Zetex Semiconductor.
    2. AN-3331. High-Side Current-Sense Amplifier Operates at High Voltage. Maxim Integrated Products.
    3. AN-105. Current Sense Circuit Collection. Linear Technology.
    4. AN-746. High-Side Current-Sense Measurement: Circuits and Principles. Maxim Integrated Products.