Процесс запуска спутника. Как устроены спутники? Когда были изобретены спутники

  • 05.03.2020

4 октября 1957 года для человечества началась космическая эра. В этот день был запущен первый искусственный спутник Земли — советский «Спутник-1». Тысячи конструкторов, инженеров и учёных работали над этой задачей почти 10 лет. Сегодня запустить орбитальный спутник под силу даже школьникам — мы расскажем, как это сделать.

​Зачем нужны спутники

Если хочется сделать что-то космическое, начать можно со спутников, причём небольших. Инженеры классифицируют их по весу: мини-спутники (до 500 кг), микроспутники (до 100 кг), наноспутники (до 10 кг), пикоспутники (до 1 кг) и фемтоспутники (до 100 г). Несмотря на миниатюрные размеры и вес, малые космические аппараты решают много задач, нередко дополняя большие спутники и в чём-то даже заменяя их.

Во-первых, эти малютки нужны для наблюдений за планетой и съёмок — дистанционного зондирования Земли. Во-вторых, они обеспечивают интернет в местах, где нет ретрансляционных вышек. В-третьих, на небольших спутниках испытываются новые технологии и ставятся эксперименты. Всё это возможно благодаря относительно небольшой стоимости этих аппаратов — от пары сотен до нескольких десятков тысяч долларов. Как следствие, собственными космическими приборами обзавелись многие университеты и энтузиасты. Всего было запущено более 1823 малых спутников, 587 из них всё ещё на орбите.

​Доступность

Запуск небольшого спутника не требует специальной квалификации и больших денежных затрат. К тому же можно использовать доступные технологические устройства, которые с каждым днём становятся всё более совершенными — это отлично видно, например, по мобильным телефонам. Так, на современных спутниках можно установить огромное количество датчиков и приборов, начиная с антенн и заканчивая спектрометрами.

Согласно расчётам NASA, более 95% всех объектов на около­земной орбите — это мусор. На рисунке представ­лена компью­терная модель его распреде­ления.

Если вы собираетесь запустить спутник, необходимо как следует обдумать задачу, которую вы хотите решить. В интернете можно найти много организаций и энтузиастов, которые имеют нужный вам опыт и могут подсказать, как действовать. Ваша цель должна быть осуществимой и хорошо продуманной, чтобы аппарат принёс пользу, а не стал мусором на орбите. Бездумные запуски приближают так называемый — ситуацию, когда космический мусор на околоземной орбите сделает ближний космос полностью непригодным для практического использования. Феномен назван в честь консультанта NASA Дональда Кесслера, который первым описал эту проблему.

В одиночку запустить спутник будет сложно. Поэтому сразу же ищите единомышленников — можно кинуть клич в социальных сетях, на профильных форумах, в университетах, где есть аэрокосмические специальности. Существуют даже летние космические лагеря, где команда вашей мечты уже собрана в полном составе. Для создания спутника потребуются конструкторы, электронщики, программисты, специалисты по баллистике и эксперименту, который вы планируете провести на орбите. Не забудьте о менеджере — он будет взаимодействовать с предприятиями и возьмёт на себя управление проектом.

Центр управления полётами NASA. ­Реакция диспетчеров на успешное завершение миссии «Аполлон-11» (16–24 июля 1969 года), в ходе которой человек впервые высадился на Луну.

​Техническое задание

Ни один космический аппарат не будет спроектирован, изготовлен и протестирован без технического задания. Это основной документ проекта, где описано всё: сроки выполнения, цель создания, технические требования, наполнение (полезная нагрузка), перегрузки, которые аппарат должен выдерживать, условия испытаний, материалы (они должны соответствовать стандартам), этапы выполнения работы, численные характеристики, которым должен удовлетворять спутник, распределение задач внутри команды, планы-графики и прочее. Именно этот документ вы будете показывать коллегам и представите в космическое агентство, чтобы получить разрешение на запуск.

Параметры

Пришло время определиться с параметрами спутника. От того, какими будут его конфигурация и полезная нагрузка (научное наполнение), зависят форма, размер и множество иных характеристик. Для школьного или студенческого аппарата подойдёт формат наноспутника, а именно CubeSat — «кубик» размером 10 х 10 х 10 см. Прелесть кубсатов в том, что это конструктор. Составные части — кубики — можно собирать, то есть ставить друг на друга и соединять, чтобы увеличить количество отсеков для оборудования. Таким образом, размер CubeSat напрямую зависит от объёма научных задач, которые будет решить ваш спутник.

Партнёры

Необходимо понимать, с какими предприятиями ракетно-космической области вам предстоит сотрудничать и кто может оказаться полезен для реализации вашего проекта. Не исключено, что построить спутник вы сможете и сами, но дальше нужно будет его испытывать и получать лицензию на запуск, поэтому придётся взаимодействовать с космическими предприятиями. Без их помощи не обойтись: необходим опытный взгляд со стороны, хороший консультант, а лучше несколько. Плюс, как уже говорилось, спутник, будучи технически сложным объектом, должен пройти ряд испытаний и согласований. А для всего этого нужна база.

Во время своей двухлетней миссии спутник NEA Scout приблизится к исследуемому астероиду на солнечном парусе

​Финансирование

Создание наноспутника — дело затратное, но осуществимое. По разным оценкам, вам потребуется от 50 000 до 100 000 долларов. Необходимо изготовить корпус, купить электронные компоненты, оплатить труд специалистов. Где взять деньги? У родителей не попросишь, по друзьям такую сумму не насобираешь. Но варианты есть.

Средняя стоимость запуска CubeSat в 2012 году оценивалась в 40 тысяч долларов. Но в то же время в рамках проектов NASA стоимость запуска может быть вдое меньше.

Если сумма не очень большая, можно запустить краудфандинговую кампанию, как сделали, например, создатели российского спутника «Маяк». Или попробовать найти инвестора и убедить его, что ваш проект классный и к тому же потенциально прибыльный. Можно подать заявку на грант от космических организаций. Можно стать исполнителем заказа частной фирмы, но для этого требуется опыт. Самый дешёвый и простой вариант — ­ сделать спутник в образовательном учреждении, например вузе или школе, а может, вообще в лагере, где есть космическая смена.

​Закупка компонентов и производство

Модульность конструкции и относительная дешевизна малых спутников вскоре сделают их запуск общедоступным развлечением. По оценкам экспертов, лет через пять — десять позволить себе спутник сможет любая школа. А через двадцать — любой человек.

Уже сейчас с мобильного телефона можно заказать все комплектующие для спутника прямо на дом. После закупки компонентов начинается основной процесс — сборка. Вам нужно арендовать помещение с оборудованием (например, фрезерными станками и 3D-принтерами). Для этой цели подойдут фаб­лабы университетов, лаборатории, дедушкин гараж, в конце концов (главное — соблюдать технику безопасности!). Найдите помещение с оборудованием и собирайте спутник. Только помните: сразу несколько штук. Почему? Часть из них придёт в негодность во время испытаний.

Инженеры устанавливают датчики температуры на внутренние компоненты спутника для тестирования в полевых условиях

Получив документ, в котором написано: «Испытания успешно пройдены, можно запускать», можете приступать к поиску оператора — организации, которая выведет ваш космический аппарат на орбиту. Учтите, чем больше он весит, тем дороже процедура. Но если спутник образовательный, вы можете избежать этих расходов. У «Роскосмоса», например, есть программа, предусматривающая бесплатный запуск нескольких аппаратов, сделанных по заказу учебных заведений Российской Федерации.

Установка солнечной панели на мини-спутник Marco CubeSats

Приблизительно за месяц до старта нужно приехать на космодром, чтобы установить аппарат в контейнер. Есть два варианта выведения наноспутника на орбиту: запуском-выбросом из специального контейнера с ракеты-носителя или руками космонавтов во время работы в открытом космосе с борта МКС. Большая часть наноспутников летает на той же орбите, что и МКС (примерно 400 км, максимум 600). Хотя есть два кубсата (MarCO), которые летят к Марсу. Управляются небольшие спутники благодаря гиродинам — маховикам, применяемым для стабилизации устройства и предотвращения его закрутки.

Корректировать траекторию можно за счёт вращения спутника: своим корпусом он способен как тормозить, так и ускоряться. На больших спутниках орбиту меняют с помощью двигателей, но на малые аппараты их почти не ставят: технология миниатюрных двигателей пока не очень развита. Однако есть кубсаты, которые перемещаются за счёт холодного газа, химических реакций или электрической силы.

Испытания

27 февраля 2015 года с МКС была запущена серия небольших экспериментальных спутников CubeSat. Пуск произведён с помощью специального устройства, смонтированного на японском экспериментальном модуле JEM.

Если аппарат готов, приступайте к испытаниям — от них зависит, полетит спутник в космос или нет. Обычно происходит так: вы собираете свой летательный аппарат, испытываете его, что-то ломается или обнаруживается ошибка — процесс начинается заново. Необходимо проверить, как работают все системы по отдельности и в совокупности, стоимость ошибки велика. Конструк­ция должна выдерживать большие перегрузки и вибрации, возникающие при выходе на орбиту. Речь не только о том, чтобы спутник не развалился, но и о том, чтобы не отошли контакты.

Японский космонавт-бортинженер Коити Ваката готовится запустить CubeSat с борта МКС

На вибрационном стенде спутник тестируют на перегрузки (как во время настоящего полёта): колебания, ускорения, удары. Затем проводят термовакуумное испытание (может длиться несколько дней): получение данных со спутника тестируют в вакууме и с перепадами температур на контактной поверхности. Параллельно можно проверить электромагнитную совместимость оборудования. Всё это очень трудоёмкие процессы. Но можно запустить спутник в стратосферу — условия там максимально приближены к космическим.

​После запуска

Ракета «Минотавр-1» среди прочего доставит на орбиту 11 небольших спутников в рамках четвёртого учебного запуска по программе NASA «Наносателлит» (ELaNa)

Счастливый день настал: ракета взлетела, спутник выведен на орбиту — вас можно поздравить. Что дальше? Чтобы спутник передавал сигналы, надо выкупить определённые радиочастоты обычного УКВ-диапазона в Министерстве связи. Многие вузы в своих стенах создают центр управления полётами — специа­лизированное помещение со множеством больших экранов и рабочими местами, где принимают сигналы аппарата.

Спутники-близнецы MarCO-A и MarCO-B будут обслуживать исследовательский посадочный аппарат с сейсмометром InSight, предназначенным для изучения строения и состава Марса

Предположим, всё идёт как нельзя лучше: спутник вышел на расчётную орбиту, стабилизировался, включился и заработал. Что делаете вы? Запрограммировав станцию на приём данных в нужное время, сидите и ждёте, когда аппарат пролетит мимо. А дальше принимаете и обрабатываете сигналы. Иными словами, команда инженеров может выдохнуть — на вахту заступают учёные. Но это уже другая история.

Первый эстонский спутник ESTCube-1 — единственный в мире, использующий электрический парус. Стоимость аппарата составила 70 тысяч евро.

Если ваш спутник не заработал на орбите (такое тоже бывает), не грустите! Вы запустили в космос аппарат, а этим далеко не каждый может похвастаться. Нужно собрать как можно больше данных о запуске и попытаться найти причины сбоя. Ведь именно так и развивается ракетостроительная индустрия — учится на ошибках.

Материал подготовлен при участии заведующего лабораторией «Космические системы» образовательного центра «Сириус» Ивана Шекова и инженера «НПО Машиностроения» Дмитрия Галкина

Запуск спутника в космос ознаменовался новой эрой и стал прорывом в области техники и космонавтики. Необходимость создания спутника определилась ещё в начале двадцатого века. Однако с самого начала на пути запуска спутника в космическое пространство стояло множество проблем, над которыми трудились самые лучшие инженеры и учёные. Эти проблемы были связаны с необходимостью создания двигателей, способных работать в тяжелейших условиях и при этом, они должны быть необычайно мощными. Так же проблемы были связаны с правильным определением траектории движения спутника.

Итак, советские ученые решили поставленные задачи, и 4 октября 1957 года в СССР успешно был запущен искусственный спутник, за движением которого наблюдал весь мир. Это событие стало мировым прорывом и обозначило новый этап, как в науке в целом, так и во всем мире.

Прямая трансляция запуска Союз-Прогресс (миссия к МКС)

Задачи, решаемые спутником

Задачи, решаемые запуском спутника можно определить как следующие:

1. Изучение климата;

Всем известно, какое влияние климат оказывает на сельское хозяйство, на военную инфраструктуру. Благодаря спутникам можно предсказать появление разрушающих стихий, избежать большого количества жертв.

2. Изучение метеоритов;

В космическом пространстве находится огромное количество метеоритов, вес которых достигает нескольких тысяч тонн. Метеориты могут представлять опасность не только для спутников, космических кораблей, но и для людей. Если при пролете метеорита сила трения невелика, то несгоревшая часть способна достигнуть Земли. Диапазон скорости метеоритов достигает от 1220 м/сек до 61000 м/сек.

3. Применение телевизионного вещания;

В настоящее время роль телевидения велика. В 1962 году был запущен первый телевизионный транслятор, благодаря ему мир впервые увидел видеокадры через Атлантику в течение нескольких минут.

4. Система GPS.

Система GPS играет огромную роль почти в каждой сфере нашей жизни. GPS подразделяется на гражданскую и военную. Она представляет собой электромагнитные сигналы, излучаемые в радиоволновом участке спектра антенной, установленной на каждом из спутников. Состоит из 24 спутников, которые находятся на месте орбиты на высоте 20200 км. Время обращения вокруг Земли составляет 12 часов.

Телекоммуникационный спутник “Арабсат-5Б”

Запуск «Союз»

Запуск спутников и выход их на орбиту

Для начала важно обозначит траекторию полета спутника. На первый взгляд, кажется, что логичнее запустить ракету перпендикулярно (по кратчайшему расстоянию до цели), однако, такой вид запуска оказывается невыгодным, как с инженерной точки зрения, так и с экономической. На спутник, запущенный вертикально действуют силы притяжения Земли, которые значительно сносят её от назначенной траектории, и, сила тяги становится равной силе тяжести Земли.

Чтобы избежать падения спутника, сначала, его запускают вертикально, чтобы он смог преодолеть упругие слои атмосферы, такой полет продолжается на протяжении всего 20 км. Далее спутник с помощью автопилота наклоняется и в горизонтальном направлении движется к орбите.

Кроме того, задача инженеров состоит в том, чтобы рассчитать траекторию полета таким образом, чтобы скорость, затрачиваемая на преодоление атмосферных слоёв, а так же на затрату топлива составляли лишь несколько процентов от характеристической скорости.

Немаловажным является и то, в какую сторону запустить спутник. При запуске ракеты в сторону вращения Земли, происходит приращение скорости, которое зависит от местоположения запуска. Например, в экваторе оно является максимальным и составляет 403 м/с.

Орбиты спутников бывают круговыми и эллиптическими. Эллиптической орбита будет являться в том случае, если скорость ракеты будет выше окружной. Точка, находящаяся в ближайшем положении называется перигеем, а наиболее отдаленная апогеем.

Сам запуск ракеты со спутником производится в несколько ступеней. При прекращении работы двигателя первой ступени, угол наклона ракета-носителя составит 45 градусов, на высоте 58 км, затем производится её отделение. В работу включаются двигатели второй ступени, с возрастанием угла наклона. Далее, вторая ступени отделяется на высоте 225 км. Затем, ракета по инерции достигает высоты 480 км и оказывается в точке, находящейся на расстоянии 1125 км от старта. Затем начинает работать двигатели третьей ступени.

Возвращение спутника на землю

Возвращение спутника на Землю сопровождается некоторыми проблемами, связанными с торможением. Торможение может осуществляться двумя способами:

  1. Благодаря сопротивлению атмосферы. Скорость спутника, вошедшего в верхние слои атмосферы, будет уменьшаться, но из-за аэродинамической формы подскочит рикошетом обратно в космическое пространство. После этого, спутник уменьшит свою скорость и войдет глубже в атмосферу. Так повторится несколько раз. После снижения скорости, спутник будет осуществлять спуск с помощью выдвижных крыльев.
  2. Автоматический ракетный двигатель. Ракетный двигатель должен быть направлен в сторону противоположную движению искусственного спутника. Плюс данного способа заключается в том, что скорость торможения можно регулировать.

Заключение

Итак, спутники всего за полвека вошли в жизнь человека. Их участие помогает исследовать новые космические пространства. Спутник, как средство бесперебойной связи помогает сделать удобной повседневную жизнь людей. Прокладывающие путь в космические просторы, они помогают сделать нашу жизнь такой, какая она есть сейчас.

И частные компании, и некоммерческие организации, и отдельные энтузиасты всё чаще собирают деньги на космические проекты через краудфандинговые платформы. Рассказываем о наиболее интересных идеях.

Увидеть следы «Аполлонов»

Вопрос, были ли американцы на Луне, волнует огромное число людей по всему миру. А уж россиян — особенно.

Четыре года назад известный популяризатор космонавтики, блогер Виталий Егоров предложил получить ответ на «проклятый» вопрос самым что ни на есть прямым способом — отправить на орбиту Луны спутник, который сфотографирует места посадки «Аполлонов». Всего их, напомним, было шесть, и в окрестностях должно сохраниться много следов астронавтов, оставленных ими артефактов (вплоть до луномобилей), да и просто мусора.

«Сейчас на орбиту чуть ли не каждый месяц запускают частные и студенческие спутники, — рассказал Виталий Егоров на недавней презентации проекта, проходившей в Музее космонавтики. — Мы решили замахнуться на что-нибудь посложнее. А это Луна. Как известно, общество волнуют два вопроса: существуют ли инопланетяне и были ли американцы на Луне. Я лично не сомневаюсь, что американцы на Луне были. С инопланетянами непонятно, но мы их отложили на потом, а пока решили сконцентрироваться на более реальной цели».

В октябре 2015 года Егоров объявил о сборе средств на постройку «народного» микроспутника. Тогда менее чем за три дня блогер со своей командой собрал свыше миллиона рублей. Первая версия космического аппарата была весьма скромной — с небольшим двигателем и солнечными батареями. Но затем, изучив все нюансы предстоящей миссии, участники проекта были вынуждены увеличить массу спутника, добавить ему полноценный жидкостный двигатель и мощную антенну. Зонд оснастят фотоаппаратурой, которая сделает очень чёткие снимки: каждый пиксель будет соответствовать 25 см поверхности Луны.

С 2015 года аппарат всячески упрощали, и нынешняя его версия — уже четвёртая. Но чтобы построить спутник, средств понадобится примерно в тысячу раз больше, чем было собрано с помощью краудфандинга. Участники рассчитывают на разные варианты финансирования — на частных спонсоров, рекламные контракты, а также на помощь со стороны общества, бизнеса и государства.

«Если сегодня к нам придёт потенциальный спонсор и подарит грузовик, наполненный деньгами, мы сможем подготовить аппарат и доставить его на Байконур или Восточный в ближайшие три года, — отметил Виталий Егоров. — Когда его запустят, будет зависеть от того, какие ракеты окажутся доступны. Но на этот запуск будут смотреть все, ведь людей, верящих в лунный заговор, хватает».

На что скидываются на Западе?

Первым космическим проектом англоязычной краудфандинговой платформы Kickstarter была предпринятая девять лет назад попытка запустить в атмосферу очень большой воздушный шар, чтобы сфотографировать Землю с высоты 40 км (это уже считается ближним космосом). Удалось собрать 296 долларов.

Наиболее шумной кампанией сбора средств на той же платформе стоит признать Arkyd-100. Это проект «космического телескопа для всех». О нём в 2013 году объявила фирма Planetary Resources, которая намеревалась заняться добычей полезных ископаемых на астероидах. В общей сложности было собрано более 1,5 млн долларов. Жертвователям обещали «космические селфи» на борту телескопа и съемку астрономических объектов по желанию. Однако в 2016 году было объявлено, что запуск телескопа не состоится. Деньги должны были вернуть.

10 фантастических снимков телескопа «Хаббл»

Ещё одна компания собирается отправить на Луну космический зонд, чтобы он просверлил скалы на её Южном полюсе. Уже привлечено более миллиона долларов. А некоммерческое «Планетарное общество» (Planetary Society) 10 лет собирало средства на миссию крошечного спутника с солнечным парусом LightSail. Цель проекта была проста — показать, что создание такого космического аппарата в принципе возможно. Его стоимость оценивалась в 1,8 млн долларов, и эти деньги, в конце концов, были собраны. 25 июня 2019 года солнечный парусник отправился на орбиту.

Среди других космических проектов, получивших финансирование от интернет-общественности, можно упомянуть SkyCube (сверхмалый спутник, «надувающий» блестящий воздушный шар, видимый с Земли), KickSat (на орбите он должен выпустить рой крохотных спутников размером с почтовую марку) и Plasma Jet Electric Thrusters (плазменный двигатель, который найдёт применение в космонавтике будущего).

...и на что — у нас?

В России тоже собирали деньги на запуск стратосферного зонда. Автор идеи — спасатель и фотограф Денис Ефремов . Сначала он вместе с другом отправил в стратосферу видеокамеру в честь юбилея полёта Юрия Гагарина . А затем объявил о сборе средств на запуск стратостата. Достигнув критического размера на большой высоте, этот шар должен лопнуть, а платформа с оборудованием — спуститься на парашюте.

«Моя цель — устроить детский научный фестиваль на базе крупной образовательной программы, — сообщал Денис Ефремов. — Ядро проекта — запуски в ближний космос на высоту до 40 км. Отправить что-то своё в космос, следить за полётом, искать место приземления и снова взять в руки то, что побывало „там“, — это чудо! Дети получают стимул интересоваться наукой. Они своими глазами видят и могут придумать сами, как применить знания на практике. И, наконец, запуск и поиски платформы на природе — это настоящее приключение, которое вытащит из соцсетей любого школьника!»

Проект стал успешным. Планировалось собрать 140 тыс. рублей, в итоге удалось привлечь 155 тыс.

В 2014 году группа энтузиастов создала сообщество «Твой сектор космоса», которое впервые на практике доказало, что в России любители космонавтики могут запустить на орбиту свой собственный космический аппарат. Им стал спутник «Маяк». Cредства собирали методом краудфандинга за две кампании, в 2014 и 2016 годах. Всего собрали около 2,5 млн рублей. Непосредственно на создание лётного экземпляра аппарата, его дублёра и их испытания ушло порядка 1 млн рублей.

«Мы показали, что можно придумать спутник вместе с друзьями, без огромных заводов и сложных лабораторий построить его и запустить в самый настоящий космос, — делится впечатлениями руководитель проекта Александр Шаенко , инженер и кандидат технических наук. — Идея была в том, чтобы создать яркий светящийся объект, видимый невооруженным глазом».

Было решено снабдить спутник солнечным отражателем в виде пирамиды из металлизированной плёнки, который после выхода на орбиту должен развернуться. «Маяк» должен был почти на месяц стать самой яркой мерцающей звездой на ночном небе. Аппарат запустили 14 июля 2017 года с космодрома «Байконур» и успешно вывели на орбиту одновременно с 72 другими спутниками. К сожалению, отражатель так и не раскрылся. Вместе с «Маяком» отказали ещё 9 спутников, запущенных на ракете-носителе.

Вторым проектом сообщества «Твой сектор космоса» стал фотобиореактор для выращивания микроскопических зелёных водорослей. Его назвали 435nm. В дальнейшем на основе созданной установки планируется построить космическую систему жизнеобеспечения и испытать её в орбитальном полёте.

«Россия наряду с другими странами участвует в марсианской гонке, и мы заинтересованы в том, чтобы наша страна вышла из неё победителем, — говорит Александр Шаенко. — Одна из важных частей проекта по освоению Красной планеты — разработка космических кораблей, а для них необходимы технологии жизнеобеспечения. Поэтому в нашем сообществе и зародился проект биореактора 435nm».

Сбор средств завершили в марте 2018, команде удалось привлечь 407 тыс. рублей. Был создан прототип, проведены его испытания. Примечательно, что технология найдёт применение не только в космосе, но и на Земле. Такие фотобиореакторы можно будет использовать для очистки стоков или воздуха, выработки сырья для биотоплива и других практических задач.


Продолжаем наш цикл статей «Все обо всем». В этот раз поговорим о спутниках.

Не так давно спутники были экзотикой и сверх-секретными устройствами. В основном они использовались в военных целях, навигации и шпионаже. Теперь же они является неотъемлемой частью современной жизни. Мы может увидеть их в прогнозировании погоды, телевидении и даже в обычных телефонных звонках. Спутники также часто играют вспомогательную роль в некоторых областях:

  • Некоторые газеты и журналы быстры потому, что они отправляют материалы на печать в разные типографии через спутники, чтобы ускорить локальную дистрибьюцию.
  • Перед тем как передать сигнал по проводам пользователям кабельного телевидения, компании-провайдеры используют спутники для передачи сигнала.
  • В последнее время небывалую популярность преобрели геолокационные возможности, предоставляемые системами GPS и ГЛОНАСС. С помощью них мы может быстрее и точнее добраться до необходимого месяца.
  • Товары, которые мы покупаем, доставляются производителями поставщика более эффективно, благодаря логистики с использованием геолокации с помощью GPS и ГЛОНАСС.
  • Радиомаяки с упавших самолетов и терпящих бедствие кораблей отправляют через спутник сигналы командам спасения.
В этой статье мы постараемся рассмотреть принципы функционирования спутников и то, что они делают. Мы посмотрим внутрь спутника, исследуем различные типы орбит и то, как задачи спутника воздействуют на выбор орбиты. И постараемся рассказать как увидеть и проследить за спутником самостоятельно!

Что такое Спутник?

Спутник в общем - это объект, которые вращается вокруг планеты по круговой или эллиптической орбите. Например, Луна - это природный естественный спутник Земли, однако существует еще много сделанных человеком (искусственных) спутников, которые как правило ближе к Земле.

Путь по которому следует спутник называется орбитой. Самая далекая от Земли точка орбиты называется апогеем, ближайшая - перигеем.

Искусственные спутники не являются продуктами массового производства. Большинство спутников были специально произведены для выполнения предназначенных им функций. Исключение составляют спутники GPS/ГЛОНАСС (которых около 20 копий для каждой из систем) и спутники системы Iridium (которых больше 60 копий, они используются для передачи голосовой связт).

Существует также около 23 000 объектов, которые являются космическим мусором. Эти объекты имеют достаточный размер для того, чтобы улавливаться радаром. Они либо случайно оказались на орбите, либо исчерпали свою полезность. Точное число зависит от того, кто считает. Полезный груз, который попал на неправильную орбиту, спутники у которых сели батареи и также остатки разгонных блоков ракет - все это составляет космический мусор. Например, этот онлайн каталог спутников насчитывает около 26 000 объектов.

Хотя любой объект на орбите земли вообще-то можно назвать спутником, термин «спутник» обычно используется для описания полезного объекта размещенного на орбите для выполнения некоторых важных задач. Нам часто приходится слышать о погодных спутниках, спутниках связи и научных спутниках.

Чей спутник первым оказался на орбите Земли?

Вообще, самым первым спутником Земли по праву стоит считать Луну:)

Для нашей общей радости, первым искусственным спутником Земли был «Спутник 1», запущенный Советским Союзом 4 октября 1957 года. Ура, товарищи!

Однако, из-за существовавшей в то время строжайшей секретности, в свободном доступе нет фотографий того знаменитого запуска. Спутник-1 имел длину 23-дюйма (58 сантиметров), весил 184 фунта (83 килограмма) и имел форму металлического шара. Однако, для того времени это было важное достижение. Содержимое спутника по современным меркам кажется скудным:

  • Термометр
  • Батарея
  • Радио передатчик - изменял тон своих звуков согласно показаниям термометра
  • Азот - создавал давление внутри спутника
На внешней части было размещено четыре тонких антенны, которые передавали сигнал на коротковолновых частотах, которые сейчас используются как гражданские (27 МГц). Согласно настольной книге космических спутников Энтони Кертиса:

После 92 дней, гравитация сделала свое дело и Спутник-1 сгорел в атмосфере Земли. Тридцать дней спустя после запуска Спутник-1, собака Лайка совершила полет на полутонном спутнике с воздухом. Этот спутник сгорел в атмосфере в апреле 1958 года.

Спутник-1 это хороший пример того, каким простым может быть спутник. Как мы увидим дальше, современные спутники гораздо более сложными, но основная идея проста.

Как спутники запускают на орбиту?


Все современные спутники попадают на орбиту с помощью ракет. Некоторые доставлялись на орбиту в грузовом отсеке шаттлов. Возможность запуска спутников на орбиту имеют несколько стран и даже коммерческих компаний, и теперь нет ничего необычного в доставке на орбиту спутника весом несколько тонн.

Для большинства запланированных запусков, ракета как правило располагается вертикально вверх. Это позволяет ей пройти плотные слои атмосферы быстро и с минимальными затратами топлива.

После того, как ракета запущена вертикально вверх, система управления ракетой используется инерциальную систему наведения для управления соплами ракеты и наводит ее на расчетную траекторию. В большинстве случаев ракета направляется на восток, потому что сама Земля вращается на восток, что позволяет добавить ракете «бесплатное» ускорение. Сила такого «бесплатного» ускорения зависит от скорости вращения Земли в месте запуска. Самое большое ускорение - на экваторе, там где расстояние вокруг Земли наибольшее, а следственно и скорость вращения тоже.

Насколько велико ускорение при экваториальном запуске? Для грубой оценки мы можем вычислить длину экватора Земли путем умножения ее диаметра на число пи (3.141592654...). Диаметр земли примерно 12 753 километра. Умножая на пи получаем длину окружности около 40 065 километров. Для прохождения всей окружности в 24 часа точка на поверхности Земли должна двигаться со скоростью 1 669 км/ч. Запуск с Байконура в Казахстане не дает такого большого ускорения от вращения Земли. Скорость вращения Земли в районе Байконура около 1 134 км/ч, а в районе Плесецка вообще 760 км/ч. Таким образом запуск с экватора дает большее «бесплатное» ускорение. Вообще Земля имеет не совсем форму сферы - она приплюснута. Поэтому наша оценка Длины окружности Земли несколько неточна.

Но подождите, скажете Вы, если ракеты способы достигать скоростей в тысячи километров в час, то что даст небольшой прирост? Ответ состоит в том, что ракеты, вместе с топливом и полезным грузом, очень тяжелые. Например, ракета-носитель протон согласно данным википедии имеет стартовую массу 705 тонн. Для ускорения такой массы даже до 1 134 км/ч требуется огромное количество энергии, а следовательно и большой объем топлива. Поэтому запуск с экватора дает ощутимые выгоды.

Когда ракета достигает очень разреженного воздуха на высоте примерно 193 километра, система управления ракетой включает небольшие двигатели, достаточные для поворота ракеты в горизонтальное положение. Затем спутник отделяется от ракеты. Затем ракета снова включает двигатели для обеспечения некоторого разделения ракеты и спутника.

Инерциальный системы наведения

Ракета должна управляться очень точно для выведения спутника на требуемую орбиту, и ошибки в этом деле очень дорого стоят (вспомните неудачи Роскосмоса со спутниками ГЛОНАСС или зондом Фобос-Грунт, которые оказались не на той орбите, на какой следовало бы). Инерциальные системы наведения внутри ракет делают такое управление возможным. Такая система определяет точное положение ракеты и ее направления путем измерения ускорения ракеты с использованием гироскопов и акселерометров. Расположенные в кардановом подвесе , оси гироскопа всегда показывают в одном направлении. Кроме того, платформа гироскопов содержит акселерометры, которые измеряют ускорение в трех разных осях. Если системе управления известно первоначальное местоположение ракеты в момент запуск и ускорения в момент полета, она сможет рассчитать положение ракеты и ориентацию в пространстве.

Орбитальная скорость и высота


Ракета должна разогнаться до скорости как минимум 40 320 км/ч (11.2 км/с) чтобы полностью выйти из Земной гравитации и отправиться в космос. Эта скорость называется второй космической скоростью и для разных небесных тел она разная.

Вторая космическая скорость земли куда больше, чем скорость требуемая для помещения спутников на орбиту. Спутникам не требуется выходить из гравитации Земли, им нужно балансировать относительно нее. Орбитальная скорость - это скорость требуемая для достижения равновесия между гравитационным притяжением и инерцией движения спутника. В среднем эта скорость составляет 27 359 км/ч на высоте примерно 242 километра. Без гравитации, инерция спутника будет выталкивать его в космос. Хотя даже если гравитация присутствует, то слишком большая скорость спутника выведет его с орбиты Земли в открытый космос. С другой стороны, если спутник будет двигаться медленно, то под действием гравитации он упадет обратно на Землю. Если спутник будет иметь определенную правильную скорость, то гравитации будет уравновешена инерцией спутника, сила тяжести Земли будет достаточна для того, чтобы спутник двигался по круговой или эллиптической орбите, а не улетел в космос по прямой линии.

Орбитальная скорость спутника зависит от того, на какой высоте последний находится. Чем ближе к Земли - тем больше требуемая скорость. На высоте 200 километров, требуемая орбитальная скорость составляет около 27 400 км/ч. Для поддержания орбиты в 35 786 км, спутник должен двигаться по орбите со скоростью около 11 300 км/ч. Такая орбитальная скорость позволит спутнику сделать один оборот вокруг Земли за 24 часа. Так как сама Земля вращается со скоростью 24 часа, спутник на высоте 35 786 км будет оставаться строго над одной и той же точкой на поверхности Земли. Такая орбита носит название «геостационарная». Геостационарные орбиты идеальны для погодных спутников и спутников связи.

Луна имеет «высоту» относительно Земли 384 400 километров, а ее орбитальная скорость составляет 3 700 км/ч. Она совершает полный оборот по своей орбите за 27.322 дня. Заметьте, что ее орбитальная скорость ниже, потому что она находится дальше искусственных спутников.

Вообщем, чем выше орбита, тем дольше спутник может находится на орбите. На низких высотах, спутник входит в слои атмосферы, которая создает трение. Трение отнимает часть энергии движения спутника, и он попадает в более плотные слои и, падая на Землю, сгорает в атмосфере. На больших высотах, где почти вакуум, трения не возникает и спутник может оставаться на орбите веками (возьмем Луну, например).

Спутники, как правило, сначала имеют эллиптическую орбиту. Наземные станции управления используют небольшие реактивные двигатели спутника для корректировки орбиты. Цель - сделать орбиту круговой настолько, насколько это возможно. Включение реактивного двигателя в апогее орбиты (наиболее удаленная точка), и приложение силы в направлении полета смещают перигей дальше от Земли. В результате орбита приближается по форме к круговой.

Продолжение следует…

В январе 2018 года произошел первый в истории человечества успешный нелегальный запуск спутника в космос, вернее сразу четырех небольших экспериментальных орбитальных дронов.

Провернуть нелегальный запуск спутников под названием SpaceBee-1, 2, 3 и 4 в космос удалось американской компании Swarm Technologies, которая договорилась с индийскими специалистами о том, что они дополнительно загрузят четыре дрона размером с книгу на ракету-носитель Polar Satellite Launch Vehicle вместе с тремя десятками других спутников.

Индийская организация космических исследований (ISRO) еще в 2000-х годах задалась целью вывести на орбиту сотни спутников для нужд государства и бизнеса, и добилась в этом направлении заметных успехов, так что «прихватить» с собой несколько коммерческих устройств для них не составило особого труда.


Согласно открытым данным, последний успешный пуск ракеты PSLV со спутниками Индии, США, Канады, Финляндии, Франции и Южной Кореи состоялся 12 января 2018 года.

Лишь после того, как спутники Swarm Technologies оказались в космосе, надзорные органы США подняли тревогу: нормально отслеживать мелкие объекты на орбите сложно, но при этом они представляют смертельную опасность любому устройству или кораблю, с которым могут столкнуться.

Правовая коллизия с Swarm Technologies заключается в том, что ответственность за ее действия в космосе несет не Индия, а США, где зарегистрирована эта компания. Особенно негодует по этому поводу научное сообщество, которое требует разобраться, каким образом группа частных лиц в тайне от государства вывела свои спутники на орбиту в то время, когда строго отчитываться о подобных вещах, за редчайшим исключением, обязан даже Пентагон.

Как пишет другое сетевое издание IEEE Spectrum, спутники SpaceBee-1, 2, 3 и 4 предназначены для «двусторонней спутниковой связи и передачи данных из США». Про саму компанию Swarm Technologies известно, что она «выросла» из известного в профессиональных кругах стартапа Silicon Valley в Калифорнии.

Компания была основана два года назад канадским аэрокосмическим инженером, бывшим сотрудником NASA и Google Сарой Спанджело и преподавателем Мичиганского университета, независимым разработчиком Бенджамином Лонгмайером, который продал свою предыдущую компанию Aether Industries корпорации Apple.

В компании всего пять сотрудников, и вся эта команда работает над системой, которая позволит бизнесу использовать возможности спутникового интернета для создания единой сети из морских судов, грузовиков, автомобилей, сельскохозяйственной техники и вообще чего угодно, чему можно присвоить IP-адрес. Интернет всем этим устройствам в любой точке земного шара и должны раздавать SpaceBee-1, 2, 3 и 4, а также их будущие аналоги.

Предположительно, собственные спутники понадобились Swarm Technologies для того, чтобы показать потенциальным инвесторам, насколько дешевым может быть спутниковый интернет при правильном подходе к делу в рамках концепции «Интернета вещей».

Все бы ничего, но в декабре 2017 года Федеральная комиссия по связи США официально отклонила заявку компании на запуск экспериментальных спутников по соображениям безопасности, после чего стартаперы просто проигнорировали это решение, создав тем самым опасный прецедент, который в будущем может обернуться катастрофой или гибелью космонавтов. Накажут ли предприимчивых инженеров или им удастся завершить работу над своим проектом, пока неизвестно.

источники