Амплитудная модуляция на пальцах. Амплитудно-модулированные сигналы и их спектры

  • 29.07.2019

Сигналы, поступающие из источника сообщений (микрофон, передающая телевизионная камера, датчик телеметрической системы), как правило, не могут быть непосредственно переданы по радиоканалу. Дело не только в том, что эти сигналы недостаточно велики по амплитуде. Гораздо существеннее их Относительная низкочастотностъ. Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перемести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

4.1. Сигналы с амплитудной модуляцией

Прежде чем изучать этот простейший вид модулированных сигналов, рассмотрим кратко некоторые вопросы, касающиеся принципов модуляции любого вида.

Понятие несущего колебания. Идея способа, позволяющего переносить спектр сигнала в область высоких частот, заключается в следующем. Прежде всего в передатчике формируется вспомогательный высокочастотный сигнал, называемый несущим колебанием. Его математическая модель такова, что имеется некоторая совокупность параметров определяющих форму этого колебания. Пусть - низкочастотное сообщение, подлежащее передаче по радиоканалу. Если, по крайней мере, один из указанных параметров изменяется во времени пропорционально передаваемому сообщению, то несущее колебание приобретает новое свойство - оно несет в себе: информацию, которая первоначально была заключена в сигнале

Физический процесс управления параметрами несущего колебания и является модуляцией.

В радиотехнике широкое распространение получили системы модуляции, использующие в качестве несущего простое гармоническое колебание

имеющее три свободных параметра

Изменяя во времени тот или иной параметр, можно получать различные виды модуляции.

Принцип амплитудной модуляции.

Если переменной оказывается амплитуда сигнала причем остальные два параметра и неизменны, то имеется амплитудная модуляция несущего колебания. Форма записи амплитудно-модулированного, или АМ-сигнала, такова:

Осциллограмма АМ-сигнала имеет характерный вид (см. рис. 4.1). Обращает на себя внимание симметрия графика относительно оси времени. В соответствии с формулой (4.2) AM-сигнал есть произведение огибающей и гармонического заполнения . В большинстве практически интересных случаев огибающая изменяется во времени гораздо медленнее, чем высокочастотное заполнение.

Рис. 4.1. АМ-сигналы при различных глубинах модуляции: а - неглубокая модуляция: б - глубокая модуляция; в - перемодуляция

При амплитудной модуляции связь между огибающей и модулирующим полезным сигналом принято определять следующим образом:

Здесь - постоянный коэффициент, равный амплитуде несущего колебания в отсутствие модуляции; М - коэффициент амплитудной модуляции.

Величина М характеризует глубину амплитудной модуляции. Смысл этого термина поясняется осциллограммами АМ-сигналов, изображенными на рис. 4.1, а-в.

При малой глубине модуляции относительное изменение огибающей невелико, т. е. во все моменты времени независимо от формы сигнала

Если же в моменты времени, когда сигнал достигает экстремальных значений, имеются приближенные равенства

то говорят о глубокой амплитудной модуляции. Иногда вводят дополнительно относительный коэффициент модуляции вверх

и относительный коэффициент модуляции вниз

AM-сигналы с малой глубиной модуляции в радиоканалах нецелесообразны ввиду неполного использования мощности передатчика.

В то же время 100%-ная модуляция вверх в два раза повышает амплитуду колебаний при пиковых значениях модулирующего сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика.

Не менее опасна слишком глубокая амплитудная модуляция вниз. На рис. 4.1, в изображена так называемая перемодуляция Здесь форма огибающей перестает повторять форму модулирующего сигнала.

Однотональная амплитудная модуляция.

Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой . Такой сигнал

называется однотоншьным АМ-сигналом.

Выясним, можно ли такой сигнал представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (4.4) сразу получаем

Формула (4.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: - несущая частота, - верхняя боковая частота, - нижняя боковая частота.

Строя по формуле (4.5) спектральную диаграмму однотонального АМ-сигнала, следует прежде всего обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания.

Энергетические характеристики АМ-сигнала.

Рассмотрим вопрос о соотношении мощностей несущего и боковых колебаний. Источник однотонального АМ-сигнала эквивалентен трем последовательно включенным источникам гармонических колебаний:

Положим для определенности, что это источники ЭДС, соединенные последовательно и нагруженные на единичный резистор. Тогда мгновенная мощность АМ-сигнала будет численно равна квадрату суммарного напряжения:

Чтобы найти среднюю мощность сигнала, величину необходимо усреднить по достаточно большому отрезку времени Т:

Легко убедиться в том, что при усреднении все взаимные мощности дадут нулевой результат, - поэтому средняя мощность АМ-сигнала окажется равной сумме средних мощностей несущего и боковых колебаний:

Отсюда следует, что

Так, даже при 100%-ной модуляции (М = 1) доля мощности обоих боковых колебаний составляет всего лишь 50% от мощности смодулированного несущего колебания. Поскольку информация о сообщении заключена в боковых колебаниях, можно отметить неэффективность использования мощности при передаче АМ-сигнала.

Амплитудная модуляция при сложном модулирующем сигнале.

На практике однотональные AM-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма

Здесь частоты , образуют упорядоченную возрастающую последовательность в то время как амплитуды и начальные фазы Ф, - произвольны.

Подставив формулу (4.9) в (4.3), получим

Введем совокупность парциальных (частичных) коэффициентов модуляции

и запишем аналитическое выражение сложномодудированного (многотонального) АМ-сигнала в форме, которая обобщает выражение (4.4):

Спектральное разложение проводится так же, как и для однотонального АМ-сигнала:

На рис. 4.2, а изображена спектральная диаграмма модулирующего сигнала построенная в соответствии с формулой (4.9). Рис. 4.2,б воспроизводит спектральную диаграмму многотонального АМ-сигнала, отвечающего этому модулирующему колебанию.

Рис. 4.2. Спектральные диаграммы а - модулирующего сигнала; б - АМ-сигнала при многотональной модуляции

Итак, в спектре сложномодулированного АМ-сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величину Спектр нижних боковых колебаний также повторяет спектральную диаграмму сигнала располагается зеркально относительно несущей частоты

Из сказанного следует важный вывод: ширина спектра АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Пример 4.1. Оценить число вещательных радиоканалов, которые можно разместить в диапазоне частот от 0.5 до 1.5 МГц (примерные границы средневолнового вещательного диапазона).

Для удовлетворительного воспроизведения сигналов радиовещания необходимо воспроизводить звуковые частоты от 100 Гц до 12 кГц. Таким образом, полоса частот, отводимая одному АМ-каналу, равна 24 кГц. Чтобы избежать перекрестных помех между каналами, следует предусмотреть защитный интервал шириной в 1 кГц. Поэтому допустимое число каналов

Амплитудно-манипулированные сигналы.

Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это - последовательности радиоимпульсов, отделенных друг от друга паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретной информации по радиоканалам.

Если s(t) - функция, в каждый момент времени принимающая значение либо 0, либо 1, то амплитудио-манипулированный сигнал представляется в виде

Пусть, например, функция отображает периодическую последовательность видеоимпульсов, рассмотренную в примере 2.1 (см. гл. 2). Считая, что амплитуда этих импульсов на основании (4.14) имеем при

где q - скважность последовательности.

Векторная диаграмма АМ-сигнала.

Иногда полезным может оказаться графическое изображение АМ-сигнала посредством суммы векторов, вращающихся в комплексной плоскости.

Для простоты рассмотрим одиотональную модуляцию. Мгновенное значение несущего колебания есть проекция неподаижного во времени вектора на ось отсчета углов, которая вращается вокруг начала координат с угловой скоростью в направлении часовой стрелки (рис. 4.3).

Верхнее боковое колебание отображается на диаграмме вектором длиной причем его фазовый угол при равен сумме начальных фаз несущего и модулирующего сигналов [см. формулу (4.5).

Рис. 4.3. Векторные диаграммы однотонального АМ-сигнала: а - при ; б - при

Такой же вектор для нижнего бокового колебания отличается лишь знаком в выражении для его фазового угла. Итак, на комплексной плоскости необходимо построить сумму трех векторов

Легко видеть, что эта сумма будет ориентирована вдоль вектора йнес. Мгновенное значение АМ-сигнала при окажется равным проекции конца результирующего вектора на горизонтальную ось (рис. 4.3,а).

С течением времени, помимо отмеченного вращения оси отсчета углов, будут наблюдаться следующие трансформации чертежа (рис. 4.3,6): 1) вектор будет вращаться вокруг точки своего приложения с угловой скоростью в направлении против часовой стрелки, поскольку фаза верхнего бокового колебания возрастает быстрее фазы несущего сигнала; 2) вектор будет вращаться также с угловой скоростью , но в противоположном направлении.

Строя суммарный вектор и проецируя его на ось отсчета углов, можно найти мгновенные значения и в любой момент времени.

Балансная амплитудная модуляция.

Как было показано, значительная доля мощности обычного АМ-сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ-сигналы с подавленным несущим колебанием, реализуя так называемую балайсную амплитудную модуляцию. На основании формулы (4.4) представление однотонального АМ-сигнала с балансной модуляцией таково:

Имеет место перемножение двух сигналов - модулирующего и несущего. Колебания вида (4.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами и частотами, равными верхней и нижней боковым частотам.

При многотональной балансной модуляции аналитическое выражение сигнала принимает вид

Как и при обычной амплитудной модуляции, здесь наблюдаются две симметричные группы верхних и ннжних боковых колебаний.

Если рассмотреть осциллограмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой.

Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180°, поскольку функция имеет разные знаки слева и справа от нуля. Если такой сигнал подать на высокодобротную колебательную систему (например, -контур), настроенную на частоту то выходной эффект будет очень мал, стремясь к нулю при возрастании добротности. Колебания в системе, возбужденные одним периодом биений, будут гаситься последующим периодом. Именно так с физических позиций принято рассматривать вопрос о реальном смысле спектрального разложения сигнала. К этой проблеме вернемся вновь в гл. 9.

Однополосная амплитудная модуляция.

Еще более интересное усовершенствование принципа обычной амплитудной модуляции заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот.

Сигналы с одной боковой полосой (ОБП или SSB-сигналы - от англ. single sideband) по внешним характеристикам напоминают обычные AM-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде

Проводя тригонометрические преобразования, получаем

Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая - быстро. Принимая во внимание, что «быстрые» сомножители находятся по отношению друг к другу во временной квадратуре, вычисляем медленно изменяющуюся огибающую ОБП-сигнала:

Рис. 4.4. Огибающие однотональных модулированных сигналов при - ОБП-сигнала; 2 - обычного АМ-сигнала

График огибающей ОБП-сигнала, рассчитанный по формуле (4.18) при изображен на рис. 4.4. Здесь же для сравнения построена огибаюшая обычного однотонального АМ-сигнала с тем же коэффициентом модуляции.

Сравнение приведенных кривых показывает, что непосредственная демодуляция ОБП-сигнала по его огибающей будет сопровождаться значительными искажениями.

Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется еще более эффективно.

Если переменной оказывается амплитуда сигнала U(t), причём остальные два параметра и неизменны, то имеется амплитудная модуляция (АМ) несущего колебания. Форма записи АМ-сигнала, такова:

В соответствии с формулой (5.2) АМ-сигнал есть произведение огибающей U(t) и гармонического заполнения . В большинстве практических случаев огибающая изменяется во времени гораздо медленнее, чем высокочастотное заполнение.

При АМ связь между огибающей U(t) и модулирующим полезным сигналом S(t) определяется следующим образом:

Здесь постоянный коэффициент, равный амплитуде несущего колебания в отсутствие модуляции; М – коэффициент АМ. Величина М – характеризует глубину АМ.

При малой глубине модуляции относительное изменение огибающей невелико, то есть во все моменты времени независимо от формы сигнала S(t).

Если же в момент времени, когда сигнал S(t) достигает экстремальных значений, имеются приближённые равенства.

то говорят о глубокой АМ.

АМ-сигналы с малой глубиной модуляции нецелесообразны ввиду неполного использования мощности передатчика. В то же время 100%-ная модуляция (М=1) в два раза повышает амплитуду колебаний при пиковых значениях модулированного сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика.

Не менее опасна слишком глубокая АМ (при М>1) называемая перемодуляцией. Здесь форма огибающей перестаёт повторять форму модулированного сигнала.

Однотональная АМ.

Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой Такой сигнал

называется однотональным АМ-сигналом. Такой сигнал можно представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (5.4) сразу получаем:

(5.5)

Формула (5.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: - несущая частота, - верхняя боковая частота, нижняя боковая частота.

Строя по формуле (5.5) спектральную диаграмму однотонального АМ-сигнала, следует обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания.

Если рассмотреть вопрос о соотношении мощностей несущего и боковых колебаний, то путём несложных математических преобразований можно убедиться, что средняя мощность АМ-сигнала равна сумме средних мощностей несущего и боковых колебаний.


Откуда следует:

(5.7)

Даже при 100%-ной модуляции (М=1) доля мощности обоих боковых колебаний составляет лишь 50% от мощности немодулированного несущего колебания.

А поскольку информация о сообщении заключена в боковых колебаниях, можно сделать вывод о неэффективности использования мощности при передаче АМ-сигнала.

АМ при сложном модулирующем сигнале

На практике однотональные АМ-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма.

(5.8)

Здесь частоты образуют упорядоченную возрастающую последовательность , В то время как амплитуды и начальные фазы произвольны.

Подставив формулу (5.8) в (5.3), получим:

Введём совокупность парциальных (частичных) коэффициентов модуляции: и запишем аналитическое выражение сложномодулированного сигнала (многотонального) АМ-сигнала в форме, которая обобщает выражение (5.4)

Спектральное разложение проводится так же, как и однотонального АМ-сигнала:

(5.12)

На рисунке а) изображена спектральная диаграмма модулирующего сигнала S(t), построенная в соответствии с формулой (5.8). Рисунок б) воспроизводит диаграмму многотонального АМ-сигнала, где помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. С целью упрощения изображены только физические спектры.

Спектр верхних боковых колебаний является масштабной копией спектра модулированного сигнала, сдвинутой в область высоких частот на величину . Спектр нижних боковых колебаний так же повторяет спектральную диаграмму сигнала S(t), но располагается зеркально относительно несущей частоты . Отсюда следует важный вывод: ширина спектра АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Амплитудно-манипулированные сигналы.

Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это – последовательности радиоимпульсов, отделённых друг от друга паузами. Такие сигналы широко используются в технике связи. Если S(t) – функция, в каждый момент времени принимающая значение либо 0, либо1, то амплитудно-манипулированный сигнал представляется в виде:

Пусть, например, функция S(t) отображает периодическую последовательность видеоимпульсов. Считая, что амплитуда этих импульсов A=1, на основании (5.14) имеем при

Где q - скважность последовательности (,– длительность одного импульса).

Балансная АМ.

Как видно из предыдущего, значительная доля мощности АМ – сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ – сигналы с подавленным несущим колебанием, реализуя так называемую балансную АМ(БМ). На основании формулы (5.4) представление однотонального АМ – сигнала с БМ таково:

(5.16)

Имеет место перемножение двух сигналов – модулирующего и несущего. Колебания вида (5.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами и частотами, равными верхней и нижней боковым частотам.

При многотональной БМ аналитическое выражение сигнала принимает вид:

Рассмотрим спектральную и временную диаграмму БМ – сигнала.

Как и при обычной АМ, в спектре БМ наблюдается две симметричные группы верхних и нижних боковых колебаний.

Если рассмотреть временную диаграмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой.

Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180 градусов, поскольку функция имеет разные знаки слева и справа от нуля. Если такой сигнал подать на высокодобротную колебательную систему (например,LС-контур), настроенную на частоту , то выходной эффект будет очень мал, стремясь к нулю при возрастании добротности. Колебания в системе, возбуждённые одним периодом биений, будут гаситься последующим периодом.

Однополосная амплитудная модуляция.

Ещё более интересное усовершенствование принципа обычной АМ заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот (ОБП).

Сигналы с одной боковой полосой (SSB - singl side band) по внешним характеристикам напоминают обычные АМ-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде:

Проводя тригонометрические преобразования, получаем:

Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая – быстро.

Основное преимущество ОБП-сигналов – двукратное сокращение полосы занимаемых частот, что оказывается существенным для частотного уплотнения каналов связи.

Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется ещё более эффективно.

Для передачи звука в эфир необходимо высокочастотное несущее колебание, или просто несущая, на которую с помощью процесса модуляции накладываются звуковые, низкочастотные колебания.

Несущая вырабатывается задающим генератором, работающим на отведенной для радиостанции частоте (рис. 1.21) и имеющим очень высокую стабильность. Его синусоидальные колебания 1 поступают на модулятор, где взаимодействуют со звуковыми колебаниями 2, образуя модулированный сигнал 3. Последний подается на усилитель мощности, а с его выхода - на антенну радиостанции.

Очень часто амплитудную модуляцию (AM) осуществляют непосредственно в усилителе мощности, изменяя напряжение питания в такт со звуковыми колебаниями.

Очевидно, что при отрицательной полуволне звукового напряжения амплитуда может упасть только до нуля, а при положительной полуволне - возрасти не более чем в два раза (иначе будет перемодуляция и искажения). Это соответствует коэффициенту модуляции (отношению амплитуды колебаний звуковой частоты к амплитуде несущей) m = 1. Такая ситуация возможна только на пиках звукового сигнала, в среднем же модуляция получается мелкой, a m ‹‹ 1. При испытаниях, контроле и настройке передатчиков с помощью синусоидального звукового сигнала устанавливают m = 0,3.

Разберем теперь спектры сигналов при амплитудной модуляции. Говорят, что радиостанция работает на какой-то определенной частоте, например 549 кГц («Маяк» в диапазоне СВ). Но только ли одну эту частоту занимает сигнал радиостанции? Оказывается, нет. Радиостанция занимает некоторую полосу частот вокруг указываемой в справочниках и волновых расписаниях. Для более подробного рассмотрения данного вопроса допустим, что модуляция производится чистым тоном, то есть звуковым сигналом с одной единственной частотой F.

В этом разделе нам удобнее будет пользоваться не циклическими частотами f и F, соответствующими числу колебаний в секунду, а угловыми частотами ω и Ω, связанными с циклическими простыми соотношениями: ω = 2πf и Ω = 2πF. Модулированный AM сигнал записывается в виде: s(t) = (1 + m cos Ω t) cos ω t, где m - коэффициент модуляции, m < 1. Это выражение в точности описывает форму сигнала 3 на рис. 1.21. Но его можно представить и в другой форме, раскрыв скобки и воспользовавшись известными тригонометрическими формулами для произведения двух косинусов:

s(t) = cos ω t + (m/2) cos (ω+ Ω) t + (m/2) cos (ω - Ω) t.

Теперь мы видим, что излучается не один сигнал, а целых три, в соответствии с тремя слагаемыми этого выражения.

Спектральная диаграмма излучаемого сигнала показана на рис. 1.22. Слева на ней в виде вертикальной линии показана звуковая частота F, в середине - несущая частота f 0 , соответствующая первому слагаемому, а по бокам от нее еще две частоты, соответствующие остальным слагаемым, на частотах f 0 + F и f 0 - F. Их так и называют: боковые частоты, верхняя и нижняя. Боковых частот нет в отсутствии модуляции, когда m = 0, но они возрастают до половины уровня несущей (который для простоты рассуждений принят единичным) при полной модуляции, когда m = 1. Мощность же каждой из боковых частот пропорциональна квадрату их амплитуды и изменяется при возрастании коэффициента модуляции от нуля до четверти от мощности несущей.

Что же получится, если модулировать несущую не чистым тоном, а некоторым спектром звуковых частот, соответствующим речи или музыке? Каждый компонент звукового спектра образует свою пару боковых частот, и получается сложный спектр модулированного сигнала, содержащий несущую, верхнюю и нижнюю боковые полосы, как показано на рис. 1.23. Верхняя боковая полоса (ВБП) в точности соответствует спектру звуковых частот (ЗЧ), но смещена по оси частот вверх на интервал, соответствующий значению несущей.

Нижняя боковая полоса (НБП) также точно отображает спектр звуковых частот, но инвертирована, то есть зеркально отражает верхнюю боковую полосу относительно несущей. По-прежнему боковые полосы исчезают при отсутствии модуляции и их суммарная мощность возрастает до половины мощности несущей на пиках модуляции.

Теперь мы, наконец, можем с определенностью ответить на вопрос о том, какую полосу частот занимает сигнал радиостанции. В справочниках указывают частоту несущей f 0 , расположенной в середине спектра AM сигнала, а полная ширина полосы сигнала соответствует удвоенной верхней модулирующей частоте F B . В соответствии с отечественными ГОСТ верхняя модулирующая частота принята равной 10 кГц, следовательно ширина спектра частот сигнала радиостанции составляет 20 кГц.

Как сравнить различные методы модуляции с точки зрения производительности и применений? Давайте посмотрим.

Важно понимать основные характеристики трех типов радиочастотной модуляции. Но эта информация не существует изолировано - цель заключается в разработке реальных систем, которые эффективно отвечают требованиям производительности. Таким образом, мы должны иметь общее представление о том, какой метод модуляции подходит для конкретного приложения.

Амплитудная модуляция

Амплитудная модуляция проста в плане реализации и анализа. Кроме того, AM сигналы довольно легко демодулировать. В целом, тогда AM можно рассматривать как простую, недорогую схему модуляции. Однако, как обычно, простота и низкая стоимость сопровождаются компромиссами в производительности - мы никогда не ожидаем, что более простое и дешевое решение будет самым лучшим.

Возможно, я буду неточным, если опишу AM системы как «редкие», поскольку AM приемники присутствуют на бесчисленных транспортных средствах. Однако применения аналоговой амплитудной модуляции в настоящее время весьма ограничены, поскольку AM имеет два существенных недостатка.

Амплитудный шум

Шум - это постоянная проблема в беспроводных системах связи. В определенном смысле качество радиочастотного проекта можно суммировать по отношению сигнал/шум демодулированного сигнала: меньше шума в принятом сигнале означает более высокое качество (для аналоговых систем) или меньшее количество битовых ошибок (для цифровых систем). Шум присутствует всегда, и мы всегда должны признавать в нем основную угрозу для производительности системы.

Шум - случайный электрический шум, помехи, электрические и механические переходные процессы - воздействует на уровень сигнала. Другими словами, шум может создавать амплитудную модуляцию. И это является проблемой, поскольку случайную амплитудную модуляцию, возникающую из-за шума, нельзя отличить от преднамеренной амплитудной модуляции, выполняемой передатчиком. Шум является проблемой для любого радиосигнала, но AM системы особенно восприимчивы.

Линейность усилителя

Одной из основных проблем в разработке радиочастотных усилителей мощности является линейность (более конкретно, трудно добиться и высокой эффективности, и высокой линейности одновременно). Линейный усилитель применяет к входному сигналу определенный фиксированный коэффициент усиления; графически это выглядит так: передаточная функция линейного усилителя представляет собой просто прямую линию с наклоном, соответствующим коэффициенту усиления.


Прямая линия представляет собой отклик идеального линейного усилителя: выходное напряжение всегда равно входному напряжению, умноженному на фиксированный коэффициент усиления

У реальных усилителей всегда есть некоторая степень нелинейности, что означает, что на усиление, применяемое к входному сигналу, влияют характеристики входного сигнала. Результатом нелинейного усиления являются искажения, т.е. создание энергии на частотах гармоник.

Любая схема модуляции, которая включает в себя изменения амплитуды, более восприимчива к влиянию нелинейности. Это включает в себя как обычную аналоговую амплитудную модуляцию, так и широко используемые цифровые схемы, известные в совокупности как квадратурная амплитудная модуляция (QAM).

Угловая модуляция

Частотная и фазовая модуляции кодируют информацию во временны́х характеристиках передаваемого сигнала и, следовательно, устойчивы к амплитудному шуму и нелинейности усилителя. Частота сигнала не может быть изменена шумом или искажением. Могут быть добавлены дополнительные частотные составляющие, но исходная частота всё равно будет присутствовать. Разумеется, шум оказывает негативное влияние на FM и PM системы, но шум напрямую не искажает характеристики сигнала, которые использовались для кодирования низкочастотных данных.

Как упоминалось выше, разработка усилителя мощности включает в себя компромисс между эффективностью и линейностью. Угловая модуляция совместима с низколинейными усилителями, и эти низколинейные усилители более эффективны с точки зрения энергопотребления. Таким образом, угловая модуляция является хорошим выбором для маломощных радиочастотных систем.

Ширина полосы частот

Эффекты в частотной области от амплитудной модуляции более просты, чем от частотной и фазовой модуляций. Это можно считать преимуществом AM: важно иметь возможность прогнозировать ширину полосы частот, занимаемую модулированным сигналом.

Однако сложность прогнозирования спектральных характеристик FM и PM актуальна больше для теоретической части проектирования. Если мы сосредоточимся на практических соображениях, угловая модуляция может считаться выгодной, поскольку она может преобразовывать заданную ширину полосы частот низкочастотного сигнала в несколько меньшую (по сравнению с AM) ширину полосы частот передаваемого сигнала.

Частота против фазы

Частотная и фазовая модуляции тесно связаны; тем не менее, есть ситуации, когда одна из них лучше другой. Различия между ними более выражены при цифровой модуляции.

Аналоговые частотная и фазовая модуляции

Как мы видели в статье про фазовую модуляцию , когда низкочастотный модулирующий сигнал является синусоидой, PM сигнал представляет собой просто сдвинутую версию соответствующего FM сигнала. Поэтому неудивительно, что ни у FM, ни у PM нет никаких серьезных плюсов или минусов, связанных со спектральными характеристиками или восприимчивостью к помехам.

Однако аналоговая частотная модуляция гораздо более распространена, чем аналоговая фазовая модуляция, и причина в том, что схемотехника FM модуляции и демодуляции более проста. Например, частотная модуляция может быть реализована чем-то простым, таким как генератор, построенный с использованием катушки индуктивности и конденсатора, управляемого напряжением (т.е. конденсатора, который изменяет свою емкость в зависимости от напряжения низкочастотного модулирующего сигнала).

Цифровые частотная и фазовая модуляции

Различия между PM и FM становятся весьма значительными, когда мы входим в область цифровой модуляции. При первом рассмотрении - это частота битовых ошибок. Очевидно, что частота битовых ошибок любой системы будет зависеть от разных факторов, но если мы математически сравниваем двоичную PSK систему с эквивалентной двоичной FSK системой, мы обнаружим, что для двоичной FSK требуется передавать значительно больше энергии для достижения той же частоты битовых ошибок. Это является преимуществом цифровой фазовой модуляции.

Но обычная цифровая фазовая модуляция также имеет два существенных недостатка:

  • Как обсуждалось в статье про цифровую фазовую модуляцию , обычная (то есть недифференциальная) PSK несовместима с некогерентными приемниками. FSK, напротив, не требует когерентного детектирования.
  • Обычные схемы PSK, особенно QPSK, включают в себя резкие изменения фазы, которые приводят к резким изменениям амплитуды модулированного сигнала, а участки с высоким наклоном формы сигнала уменьшаются по амплитуде, когда сигнал обрабатывается фильтром нижних частот. Эти изменения амплитуды в сочетании с нелинейным усилением приводят к проблеме, называемой внеполосным излучением. Чтобы уменьшить внеполосное излучение, мы можем использовать более линейный (и, следовательно, менее эффективный) усилитель мощности или реализовать специализированную версию PSK. Или мы можем перейти на FSK, которая не требует резких изменений фазы.

Резюме

  • Амплитудная модуляция проста, но она очень чувствительна к шуму и требует высоколинейного усилителя мощности.
  • Частотная модуляция менее восприимчива к амплитудному шуму и может использоваться с более высокоэффективными усилителями с более низкой линейностью.
  • Цифровая фазовая модуляция обеспечивает лучшую теоретическую производительность с точки зрения частоты битовых ошибок, чем цифровая частотная модуляция, но цифровая FM более выгодна в маломощных системах, поскольку не требует усилителя с высокой линейностью.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.