Как проверить диод и стабилитрон мультиметром. Как проверить различные типы диодов тестером – полная инструкция

  • 17.10.2019

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.

Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.

Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод , наиболее часто выполняемый из кремния, может носить название:

  • Супрессора;
  • Ограничительного стабилитрона;
  • Диодный предохранитель;
  • TVS-диода;
  • Трансила;
  • Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

  • Защита наземных приборов от воздействия природных явлений (удары молний);
  • Защита авиатехники;
  • Страховка от воздействия импульсов электрической природы при неисправности питающего блока.

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода —

Существует два типа ограничительных стабилитронов:

  • Симметричные.

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

  • Несимметричные.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С » или «СА «. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода .

Значимые характеристики защитных диодов

  • Uпроб . (пробоя)

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

  • Iобр .

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

  • Uобр .

Значение является показателем постоянного обратного напряжения. VRWM.

  • U огр.имп.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

  • Iогр.max.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

  • Pимп.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2 ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением .

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

  • Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
  • Телекоммуникации;
  • Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
  • Цифровой интерфейс.

Как правильно подобрать защитный диод?

Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

  1. Определиться с типом напряжения (будет оно переменным или постоянным?);
  2. TVS потребуется одно- или двунаправленный;
  3. Узнать каков уровень номинального напряжения на линии, которую надо будет защищать;
  4. Осведомиться о максимальном значении Iогр. и Uогр.max. в условиях нагрузки;
  5. Выявить верхнюю и нижнюю температурную границу, при которой будет работать прибор;
  6. Решить, каким образом будет монтироваться элемент (поверхностно/с помощью отверстий);
  7. С опорой на все выявленные данные необходимо определиться с подходящей серией и оптимальным вариантом диода.

Кроме того, нужно учесть:

  • Насколько велико обратное напряжение диода (оно должно превышать номинальное напряжение схемы, если данный момент не учитывается, то диод будет «включаться» даже не имея на то причин);
  • Уровень Uогр. обязан быть меньше Umax. на линии, которую требуется защищать;
  • Что даже если диод выбран в соответствии со всеми нуждами, его действие всё равно нужно проверить во всём необходимом температурном диапазоне;
  • Удостовериться в том, что размеры диода и прочие нюансы позволяют его адекватный монтаж.

Самый эффективный способ проверить светодиод на работоспособность заключается в применении специального прибора - мультиметра, который иначе нередко называется тестером. Устройство представляет собой измерительный прибор, который может выполнять несколько функций. Выбирать их можно с помощью ручки, расположенной на передней панели.

Тестирование в режиме прозвонки

У каждого мультиметра, независимо от того, насколько дорогостоящим он является и какой фирмой был произведен, обязательно имеется функция проверки работоспособности светодиода. Это так называемая прозвонка.

Перед тем как прозвонить светодиод мультиметром, необходимо ручку переключения режимов тестера установить на режим прозвонки. Затем к контактам проверяемого прибора приложить черный и красный щупы мультиметра. Благодаря такому способу проверки, можно также определить, какой мощностью обладает светодиод.

При подключении тестера необходимо учитывать полярности проверяемого объекта. Его анод должен быть соединен со щупом красного цвета, а катод - с черным. Если подключить щупы неправильно, прибор ничего не покажет. При верном подключении светодиод должен начать излучать свет.

Проверяя диод на работоспособность, важно учитывать такую особенность: электроток тестера, настроенного на режим прозвонки, довольно слабый, поэтому он может не оказать никакого воздействия на лампочку. Проверяемый объект может быть вполне работоспособны м, но светиться не будет из-за недостаточной силы тока.

Может быть и другое последствие слабого тока: светодиод начнет светиться, но излучение его будет настолько мизерным, что при обычном дневном свете разглядеть его не удастся. Перед тем как приступать к проверке, рекомендуется уменьшить яркость внешнего света. Если же по каким-либо причинам этого сделать нельзя, следует обращать внимание не на сам прибор, а на измерительный прибор, точнее, на его показания. Если он исправен, то цифра, показываемая тестером, должна отличаться от единицы.

Можно даже очень мощный диод прозвонить мультиметром. Однако недостаток способа состоит в том, что провести проверку элементов, которые впаяны в микросхему, не получится. Для проверки светодиода, находящегося в микросхеме, нужно использовать специальные переходники, которые присоединяются к щупам тестера.

Проверка без выпаивания

Чтобы проверить мультиметром, не выпаивая светодиод из микросхемы, можно использовать небольшие металлические наконечники, роль которых могут играть, например, обычные канцелярские скрепки. Для надежной изоляции проводов, к которым присоединены наконечники, следует использовать текстолитовую прокладку. Вся конструкция при этом должна быть обмотана изолентой.

После выполнения всех этих простых действий получится надежный переходник , посредством которого легко можно добиться контакта щупов тестера с катодом и анодом проверяемого на работоспособность светодиода.

Также без выпаивания из микросхемы можно проверить диод на исправность . Для этого достаточно:

  1. Установить измерительный прибор в режим прозвонки.
  2. Присоединить щупы посредством переходника к контактам проверяемого объекта.
  3. Проверить, засветится лампочка или нет.

Как и в случае с обычной прозвонкой, которая проводится без переходника, возможно, придется выключить внешнее освещение или ослабить его, чтобы заметить неяркое свечение лампочки прибора.

Работоспособность светоизлучающих диодов в фонариках

Проверить на работоспособность светодиод, находящийся в маленьком фонарике, можно без особых сложностей.

Такая проверка проводится в несколько этапов :

Сразу после этого станет ясно, является ли исправным проверяемый элемент. Если он засветится, значит, с ним все в порядке. Если же излучения нет, значит, светодиод в неисправном состоянии.

Чтобы проверить светодиод тестером, важно уметь различать катод и анод. На самом деле различие легко обнаруживается визуально: катод обычно заметно короче, чем анод. Можно запомнить так: слово «катод» начинается с буквы «к», следовательно, этот контакт короткий. Впрочем, даже если подключить мультиметр без соблюдения полярности, ничего страшного не произойдет. Просто светодиодный элемент не получит ток и поэтому не будет светиться.

Вместо того, чтобы всякий раз при проверке угадывать, какой контакт является «положительным», а какой «отрицательным», лучше один раз запомнить навсегда. Это позволит сэкономить время. Нередко, чтобы проверить, работает ли светодиод, измеряют сопротивление. Однако такой метод проверки не очень широко распространен, ведь перед его применением необходимо определить технические параметры прибора.

Как видно, проверка на работоспособность светодиода с помощью тестера - довольно простая процедура . Для этого не понадобится много времени. Никаких физических усилий также прикладывать не придется. Да и финансовые затраты на такую проверку практически ничтожны, так как используемый прибор продается по очень низкой цене.

Как и большинство измерительных приборов, мультиметры (тестеры) делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране.

Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком - неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.

Все варианты тестеров обладают как минимум двумя выводами - красным и черным .

  1. Первый используется непосредственно для измерений, также иногда называется потенциальным,
  2. Второй является общим. В современных моделях обычно также есть переключатель, благодаря которому возможно установить максимальные предельные значения.

Как проверять диод мультиметром?

Диод является элементом, проводящим электричество в одном направлении. Если же развернуть это направление, диод будет закрыт. Т олько в случае выполнения этого условия элемент считается работоспособным. В большинстве моделей тестеров уже есть такая функция, как проверить диод тестером.

Перед началом проверки рекомендуется соединить между собой два щупа мультиметра, чтобы убедиться в его работоспособности, а затем выбрать “режим проверки диодов”. Если тестер аналоговый, данная операция производится с помощью режима омметра.

Проверка диодов мультиметром не требует дополнительных навыков. Чтобы убедиться в функционировании элемента, необходимо произвести прямое включение, следовательно, подключить анод к плюсовому значению (красный щуп), а катод - к минусовому (черный). На экране или шкале прибора должно появиться значение пробивного напряжения диода, эта цифра в среднем составляет от 100 до 800 мВ . Если же произвести обратное включение (поменять местами электроды), значение будет не больше единицы. Из этого можно сделать вывод, что сопротивление прибора огромно и электричество он не проводит. Если все происходит именно так, как описано выше, электронный элемент исправен и дееспособен.

Бывают ситуации, когда при подключении щупов диод пропускает ток в обоих направлениях, либо же не пропускает вообще (значения при прямом и обратном включениях равны единице). В первом случае это означает, что диод пробит, а во втором - он перегорел либо же находится в обрыве. Такие электронные элементы являются неисправными и это легко проверить тестером.

Как проверять светодиод?

Если речь идет о светодиоде, алгоритм проверок аналогичен, но дополнительно облегчит задачу тот факт, что при прямом включении этот вид диода будет светиться . Разумеется, это позволит окончательно убедиться в том, что он в порядке.

Но случается такое, что необходима проверка стабилитронов. Стабилитрон является одной из разновидностей диодов, его главное предназначение - сохранение стабильного выходного напряжения вне зависимости от изменений уровня тока.

К сожалению, выделенной функции для проверки данного вида электронных элементов пока не внедрили в мультиметры . Тем не менее часто прозвонить их можно с помощью такого же принципа, как с диодами. Но многие опытные радиолюбители заявляют, что произвести проверку стабилитрона с помощью цифрового тестера весьма проблематично. Причиной этого является тот факт, что напряжение стабилитрона должно быть ниже, чем напряжение на выходах мультиметра. Это связано с тем, что из-за низкого напряжения возможно посчитать рабочей неисправную модель, точность показаний падает.

Если при проверке диода необходимо обратить внимание на значение пробивного напряжения, в случае со стабилитронами показательным станет сопротивление. Эта цифра должна составлять от 300 до 500 Ом . И аналогично алгоритму действий с диодами:

  • Если ток пропускается в обе стороны это называется пробивом,
  • Если сопротивление слишком велико это обрыв.

Также немаловажно помнить, что цифровое значение при прозвоне стабилитрона будет выше значения обычных диодов. Если нужно отличить один элемент от другого, такая проверка окажет помощь.

Как проверить стабилитрон

Стабилитроны, проверка которых не принесла желаемых результатов, изобретатели часто тестируют с помощью дополнительных приборов, иногда конструируя их самостоятельно . Одним из наиболее простых способов является использование для проверки блока питания с возможностью переключения напряжения. Необходимо сначала подсоединить к аноду резистор, имеющий значение сопротивления, оптимальное для стабилитрона, а затем подключить блок питания . Затем замеряется напряжение на диоде, параллельно поднимается на блоке. По достижении уровня напряжения стабилизации, эта цифра должна перестать расти. В этом случае стабилитрон в норме, при любых отличиях от вышеприведенной схемы он неисправен.

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.


Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.


Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.


Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).


Обозначения:

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения.

Проверка супрессора (TVS-диода)

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.


Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.


Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Видео: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.


Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока в течение пары минут.


Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.