Многомерный статистический контроль процессов. STATISTICA Multivariate Exploratory Techniques Многомерные технологии анализа данных

  • 23.04.2019

В предыдущей секции мы рассматривали двухмерную диаграмму переходов состояний. Для увеличивающегося числа потоков нагрузки число состояний (и следовательно уравнений) увеличивается очень быстро. Однако, можно упростить проблему, используя структуру диаграммы переходов состояний. Рассмотрим двухмерную диаграмму переходов состояний, показанную в рис. 10.2. Для четырех соседних состояний поток в направлении по часовой стрелке должен равняться потоку в противоположном направлении (Kingman, 1969 ), (Sutton, 1980 ). Взглянем на рис. 10.2.


Рис. 10.2.

По часовой стрелке :


Против часовой стрелки :


Мы можем сократить оба выражения на вероятности состояния и затем получить условие (10.12). Необходимое и достаточное условие для обратимости - что следующие два выражения являются равными.

По часовой стрелке :

(10.12)

Против часовой стрелки :

Если эти два выражения равны, то имеется локальное или частичное равновесие . Таким образом, необходимым условием для обратимости является то, что если есть поток (стрелка) от состояния i к состоянию j , тогда должен также быть поток (стрелка) от состояния j до состояния i . Мы можем применить уравнения сечения между любыми двумя подключенными состояниями. Итак, из рисунка 10.2 мы получаем:

(10.13)

Мы можем выразить любую вероятность состояния с помощью вероятности состояния , выбирая любой путь между этими двумя состояниями (критерии Колмогорова ). Мы можем, например, выбрать путь :

Тогда получаем следующее уравнение равновесия:

(10.17)

Если мы рассматриваем многомерную систему с потерями, имеющую N потоков нагрузки, то любым потоком нагрузки может быть зависимый от состояния Пуассоновский процесс. В конкретном потоке могут быть нагрузки типа BPP (Бернулли, Пуассон, Паскаль ). Для N - мерных систем условия обратимости аналогичны (10.12). Критерий Колмогорова должен выполняться для всех возможных путей. Практически, мы не испытываем никаких проблем, потому что решение, полученное согласно предположению об обратимости, будет правильным решением тогда и только тогда, когда выполнены уравнения равновесия узла. В следующей секции мы используем это как основание , чтобы ввести общую многомерную модель нагрузки.

Многомерные Системы с потерями

В этой секции мы рассматриваем обобщения классической теории телетрафика для систем, которые состоят из нескольких типов потоков нагрузки, поступающих на единственный канал или группу каналов или пучков каналов. Каждый поток нагрузки может иметь отдельные параметры и может быть зависимыми от состояния Пуассоновскими потоками вызовов с ограниченными классами и мультислотовым трафиком. Этот общий класс моделей нечувствителен к распределению времени пребывания в системе, которое может быть классом. Мы вводим обобщения по одному и представляем маленькое социологическое исследование, чтобы проиллюстрировать основные идеи.

Ограничение класса

По сравнению со случаем, который рассматривают в секции 10.1, мы теперь ограничим число одновременных запросов для каждого потока нагрузки (класса). Таким образом, не будет полной доступности, но в отличие от систем перегрузки, где физически существует доступ только к заданным каналам, теперь возможно использование всех каналов, но в любой момент мы можем занять только ограниченное их число. Это обеспечивает сервисная защита (защита числа виртуальных каналов = ограничение на класс обслуживания = приоритетная пороговая стратегия). Таким образом, мы вводим ограничения числа одновременных вызовов в классе j следующим образом:

(10.18)

Если последнее ограничение не выполнено, то мы получаем отдельные группы, соответствующие N обычным независимым одномерным системам с потерями . Из-за ограничений диаграмма переходов состояний усечена. Для двух потоков нагрузки она показана на рис.10.3 .


Рис. 10.3.

Заметим, что усеченная диаграмма переходов состояний все еще является обратимой и что значение относительно значения при усечении не изменяется. Изменяется только нормировочная константа. Фактически, из-за локального свойства равновесия мы можем удалить любое состояние, не изменяя вышеупомянутые свойства. Можно рассмотреть больше общих ограничений класса к наборам потоков нагрузки так, чтобы любой поток нагрузки имел минимум (гарантируемый) числа распределенных каналов.

Обобщенные процессы обслуживания нагрузки

Мы можем рассматривать PCT -I нагрузку только как в секции 10.1. Каждый поток нагрузки может быть зависимым от состояния, например, Пуассоновский поток вызовов с линейной зависимостью от состояния и своей скоростью выхода из системы (гибели), см. (10.16) и (10.17)

Система удовлетворяет условиям обратимости, см. (10.12). Таким образом, форма произведения также существует для BPP -потоков нагрузки и более общих Пуассоновских процессов, зависимых от состояния. Если все потоки нагрузки - энгсетовские (Биноминальные) процессы, то мы получаем многомерную формулу Энгсета (Jensen, 1948). Как уже упомянуто выше, система нечувствительна к распределениям времени пребывания в системе. Каждый поток нагрузки может иметь свое собственное отдельное распределение времени пребывания в системе.

Мультислотовая нагрузка

В системах с интеграцией служб требуемая пропускная способность может зависеть от типа обслуживания. Например, для обслуживания телефонного соединения с передачей только речи требуется один канал (слот), тогда как, например, для передачи видеоизображения может потребоваться каналов одновременно. Мы получаем дополнительные ограничения:

(10.19)
(10.20)

где - фактическое число вызовов типа . Результирующая диаграмма переходов состояний будет обратима, и будет иметь форму произведения.

Страницы 513-523

Многомерные процессы

До сих пор мы рассматривали модели, которые состоят только из одного соотношения, связывающего временные ряды. При этом мы выбирали одну из переменных в качестве эндогенной, а остальные переменные являлись экзогенными. Такое разделение не всегда является естественным, часто приходится рассматривать одновременно несколько соотношений, в которые одни и те же переменные входят и как эндогенные, и как экзогенные. Как видно из прошлой лекции, переменная не всегда может рассматриваться как экзогенная, и мы фактически должны рассматривать модель DGP, состоящую из нескольких уравнений. Это означает моделирование нескольких временных рядов одновременно, другими словами - моделирование многомерного случайного процесса.

Начнем с определении. Рассмотрим вектор =(х t 1 ,х t 2 ,...,х t k) T , каждая компонента которого является временным рядом. верхним индексом будем обозначать номер компоненты, а нижним по-прежнему - момент времени. распределение компонент характеризуется семейством совместных плотностей распределения вида: f n (х t1 i1 ,х t2 i2 ,..., х tn in )‚ n=1‚2,.... Условием стационарности в узком смысле по-прежнему является независимость от сдвига во времени всего семейства совместных плотностей распределения. Только теперь кроме всевозможных комбинаций значений случайного процесса в различные моменты времени аргументами плотностей вероятности также являются всевозможные комбинации различных компонент в различные моменты времени. Например, для двухмерной плотности получаем из условия стационарности: f 2 t 1 t 2 ) = f 2 (х 1 t + r , х 2 t + r ) для любого τ. Совместное распределение компонент для одного и того же момента времени не зависит от времени. Рассмотрим другую функцию распределения, например трехмерную, в которую входят значения первой компоненты в два разных момента времени и второй компоненты в некоторый третий момент времени. Стационарность означает, чтоf 3 t 1 t + h 1 t + s 2 ) = f 3 (х 1 t + τ , х 2 t + s + τ ) . Можно сказать, что это свойство инвариантности к сдвигу во времени. То есть, если к каждому моменту времени прибавить величину τ, то функция плотности не изменится. Понятно, что стационарность многомерного процесса влечет за собой стационарность каждой из его компонент.

Как и в одномерном случае, стационарность в узком смысле влечет за собой ряд свойств характеристик случайных процессов. Прежде всего, начнем с математического ожидания. Математическое ожидание для каждой компоненты не зависит от других компонент. Поэтому если многомерный процесс стационарен, математическое ожидание каждой компоненты не зависит от времени. Вектор математических ожиданий E( не зависит от времени.

Теперь рассмотрим моменты второго порядка. Каждая компонента характеризуется дисперсией и автокорреляционной функцией. Если одномерный ряд стационарен, его автокорреляционная и автоковариационная функции зависят только от сдвига τ: Corr(τ) = Corr(х t i j t + r ) = р i (τ), однако теперь можно рассмотреть второй смешанный момент для различных компонент, а также Corr(х t i j t + r ). Такую величину естественно назвать кросс-корреляционной функцией. Если компоненты образуют многомерный стационарный процесс, то кросс-корреляция будет функцией сдвига во времени τ. Обозначим эту функцию R ij (τ) . Довольно очевидно, что R ij (τ) = R ji (- τ) . При фиксированном значении τ элементы R ij (τ) образуют матрицу R, зависящую от τ. Значению τ, равному нулю, соответствует корреляционная матрица вектора

Многомерный стационарный случайный процесс определяется как совокупность стационарных и стационарно связанных между собой случайных процессов . Такой процесс принято обозначать в виде случайного вектора-столбца, зависящего от времени:

.

Многомерные случайные процессы используются при описании многомерных (многоканальных) систем. В настоящем параграфе рассматривается задача цифрового моделирования нормальных многомерных стационарных случайных процессов. Результатом решения этой задачи, как и в одномерном случае, является алгоритм, позволяющий формировать на ЦВМ многомерные дискретные реализации заданного процесса. -мерный непрерывный нормальный стационарный случайный процесс задается обычно либо в виде его корреляционной матрицы

либо в виде спектральной матрицы

где - автокорреляционные (при ) и взаимно корреляционные (при ) функции случайных процессов - преобразование Фурье от . При этом, поскольку , элементы и спектральной матрицы комплексно-сопряженные,

.

Дискретные многомерные нормальные случайные процессы задаются аналогично непрерывным с помощью корреляционных и спектральных матриц (35, 70]

где , причем .

Задачу цифрового моделирования многомерного нормального случайного процесса целесообразно сформулировать следующим образом. Задана корреляционная или спектральная матрица случайного процесса. Требуется отыскать алгоритм для формирования на ЦВМ дискретных реализаций случайного процесса с заданными корреляционными (спектральными) свойствами.

Для решения этой задачи воспользуемся, как и ранее, идеей формирующего линейного фильтра. В рассматриваемом случае речь идет о синтезе многомерного формирующего фильтра.

Мерный линейный фильтр определяется как линейная динамическая система с входами и выходами . Если - входное воздействие и - реакция системы, то связь между входом и выходом -мерного линейного непрерывного фильтра описывается с помощью передаточной матрицы в виде

где и - изображения входного и выходного сигналов соответственно в смысле преобразования Лапласа; - передаточная матрица -мерного фильтра, у которой элементы являются передаточными функциями каналов -й вход - -й выход.

Аналогично описывается связь вход - выход в дискретных -мерных линейных фильтрах:

,

где и - изображения в смысле дискретного преобразования Лапласа входного и выходного сигналов; - передаточная матрица дискретного -мерного фильтра.

Структурная схема многомерного фильтра на примере двумерного фильтра приведена на рис. 2.9, согласно которому

(2.107)

Видим, что каждый из выходных сигналов и является суммой линейных операторов от входных сигналов и . Аналогичные соотношения имеют место и в общем случае. В этом и состоит идентификация передаточных матриц .

Пусть воздействие на входе -мерного линейного фильтра представляет собой -мерный белый шум, т. е. случайный процесс с корреляционной матрицей вида

для непрерывного времени и

для дискретного времени, где - дельта-функция. -мерный белый шум определен здесь как совокупность независимых между собой -коррелированных случайных процессов.

Можно показать (см., например, ), что при воздействии белого шума спектральная матрица процесса на выходе - мерного фильтра для непрерывного и дискретного времени соответственно связана с передаточной матрицей фильтра соотношениями

(2.108)

где символом обозначена транспонированная матрица.

Следовательно, для получения -мерного случайного процесса с заданной спектральной матрицей нужно пропустить -мерный белый шум через -мерный формирующий фильтр, передаточная матрица которого удовлетворяет уравнениям (2.108). Для нахождения передаточной матрицы по заданной спектральной матрице требуется разбиение последней на два сомножителя вида (2.108). Эта процедура называется факторизацией спектральных матриц. Она может быть реализована по известным алгоритмам .

Многомерная фильтрация белого шума осуществляется достаточно просто: каждая составляющая случайного процесса на выходе -мерного фильтра с передаточной матрицей получается путем суммирования по составляющих входного процесса , профильтрованных одномерными фильтрами с передаточными функциями [см. формулу (2.107)]. Алгоритмы одномерной фильтрации рассмотрены выше.

При данном способе моделирования возможны два пути: 1) заданную спектральную матрицу непрерывного -мерного случайного процесса можно непосредственно подвергнуть факторизации для получения передаточной матрицы непрерывного формирующего фильтра, а затем, используя описанные выше точные или приближенные методы дискретизации непрерывных, фильтров, осуществить многомерную фильтрацию непрерывного белого шума; 2) по заданной спектральной матрице непрерывного -мерного процесса , используя -преобразование, можно найти спектральную матрицу соответствующего дискретного случайного процесса (см. § 2.3), далее путем факторизации найти передаточную, функцию дискретного формирующего фильтра, а затем произвести многомерную фильтрацию дискретного белого шума.

Наибольшие трудности встречаются при факторизации спектральных матриц. В настоящее время разработаны алгоритмы факторизации лишь рациональных спектральных матриц, т. е. таких матриц, элементы которых являются дробно-рациональными функциями аргументов или .

Опишем, опуская доказательства, один из алгоритмов факторизации рациональных спектральных матриц, взятый из .

Пусть задана рациональная спектральная матрица

.

Матрица может быть приведена к виду

путем следующих преобразований.

1. Определяется ранг матрицы , затем один из главных миноров порядка располагается в левом верхнем углу матрицы .

2. Матрица приводится к диагональному виду. Для этого к -й строке матрицы , , прибавляется первая строка, умноженная на - , затем к -му столбцу прибавляется первый столбец, умноженный на ; получается матрица

, (2.109)

где элементы матрицы

имеют вид

(2.110)

С матрицей проделываются те же преобразования, что с исходной матрицей . При продолжении этого процесса на -м шаге получается диагональная матрица

такая, что .

3. Находится вспомогательная матрица

элементы которой имеют следующий вид:

(2.111)

где определяются из рекуррентных соотношений

(2.112)

4. Находятся вспомогательные полиномы

где - нули полиномов , лежащих в нижней полуплоскости, считаемые столько раз, какова их максимальная кратность, причем - знаменатели дробно-рациональных функций, представляющих собой элементы матрицы :

.

5. По способу, рассмотренному в § 2.9, п. 2, дробно-рациональные функции

представляются в виде

,

где полиномы и не имеют нулей в нижней полуплоскости.

На этом процесс факторизации заканчивается. Окончательно передаточная матрица формирующего фильтра записывается в виде

(2.113)

Здесь описан алгоритм факторизации рациональных спектральных матриц непрерывных многомерных процессов. Факторизация спектральных матриц дискретных процессов осуществляется аналогично, только вместо корней, расположенных в нижней полуплоскости, берутся корни, расположенные в единичном круге.

Пример 1. Пусть задан двумерный непрерывный стационарный центрированный случайный процесс с корреляционной матрицей

, (2.114)

где - некоторые положительные константы, причем .

Корреляционная матрица, соответствующая спектральной матрице (2.114), имеет вид

, (2.115)

где и - автокорреляционные и взаимно корреляционный моменты процессов и соответственно; - коэффициент взаимной корреляции процессов и совпадающие моменты времени. Коэффициенты и представляют собой в данном случае ширину (на уровне 0,5) энергетических спектров и взаимного энергетического спектра процессов и .

Требуется произвести факторизацию спектральной матрицы (2.114) для получения передаточной матрицы формирующего фильтра.

Будем осуществлять процедуру факторизации поэтапно в соответствии с приведенным выше алгоритмом факторизации.

1. В данном случае ранг спектральной матрицы .

2. Для приведения матрицы к диагональной требуется один шаг. По формулам (2.109) и (2.110) получаем

.

3. В соответствии с выражениями (2.111) и (2.112) вспомогательная матрица имеет вид

4. В рассматриваемом случае нужно найти лишь один вспомогательный полином . Для этого требуется найти корни знаменателя у элемента матрицы , т. е. корни полинома . Эти корни равны

Следовательно,

.

5. На заключительном этапе требуется произвести факторизацию дробно-рациональных функций

В данном случае корни числителей и знаменателей у дробно-рациональных функций и легко вычисляются. Используя корни, лежащие в верхней полуплоскости (корни с положительными мнимыми частями), получим и к переменной :

.

На рис. 2.9 показана структурная схема двумерного формирующего фильтра, на выходе которого образуется двумерный случайный процесс с требуемыми спектральными характеристиками, если на вход фильтра воздействует белый шум. Заменяя непрерывный двумерный фильтр соответствующим дискретным фильтром, получим алгоритм для формирования на ЦВМ дискретных реализаций двумерного случайного нормального процесса, т. е. дискретных реализаций двух стационарных и стационарно-связанных нормальных случайных процессов с экспоненциальными авто- и взаимно корреляционными функциями вида (2.115).

При другом подходе к синтезу формирующего фильтра нужно сначала найти спектральную матрицу соответствующего дискретного многомерного случайного процесса . В рассматриваемом примере эта матрица имеет вид

И матрицы (2.116).

Рассмотренный пример показывает, что факторизация спектральных матриц осуществляется сравнительно просто, если удается аналитически найти нули соответствующих полиномов. При факторизации спектральной матрицы непрерывного двумерного процесса это не представляло труда, так как для определения нулей требовалось решать только квадратные и биквадратные уравнения. При факторизации спектральной матрицы дискретного двумерного процесса были квадратные уравнения и возвратное уравнение четвертой степени, также допускающее аналитическое решение.

В других, более сложных случаях нули полинома не всегда удается найти аналитически. В этих случаях прибегают к численным методам решения уравнений - й степени. В общем виде процесс факторизации можно реализовать на ЦВМ как стандартную программу. Для этой цели кроме приведенного здесь могут быть использованы и другие алгоритмы факторизации .

Следует заметить, что все существующие в настоящее время алгоритмы факторизации спектральных матриц, вообще говоря, весьма трудоемки.