Что такое лед подсветка в телевизоре. Что такое LED-подсветка? Типы подсветки. Белые или составные светодиоды

  • 17.05.2019

Производители телевизионной продукции регулярно знакомят пользователей с новыми технологиями, улучшающими качество передачи изображения. Подходы к совмещению ТВ-экранов и светодиодных элементов давно осваиваются крупнейшими компаниями. В последнее время источник яркого и мягкого свечения переходит также на дисплеи мобильных устройств. Оценить достоинства такого решения могут и пользователи традиционного освещения на основе светодиодов, но, разумеется, наиболее привлекательно смотрится подсветка LED-экранов в телевизорах. Тем более что ее дополняют и другие высокотехнологичные включения, используемые разработчиками данной техники.

Устройство подсветки

В создании модулей для реализации подсветки применяются LED-массивы, которые могут состоять из белых элементов светодиодного свечения или разноцветных, типа RGB. Конструкция платы для оснащения матрицы специально проектируется с целью интеграции в устройство конкретной модели носителя. Как правило, с левой стороны платы располагаются контактные разъемы, один из которых обеспечивает питание LED подсветки, а другие предназначены для управления ее рабочими настройками. Также для используется специальный драйвер, функция которого сопряжена с контроллером.

В готовом виде представляет собой ряд из миниатюрных ламп, которые подключаются группами по 3 штуки. Конечно, производители не рекомендуют вмешиваться в устройство таких лент, но при желании можно физически укоротить или, напротив, сделать длиннее устройство. Также стандартная подсветка LED-экрана предусматривает возможность регулировки яркости, поддерживает плавный пуск и снабжается защитой от напряжения.

Классификация подсветки по типу установки

Существует два способа интеграции светодиодной подсветки - прямая и торцевая. Первая конфигурация предполагает, что массив будет располагаться позади жидкокристаллической панели. Второй вариант позволяет создавать очень тонкие панели экранов и носит название Edge-LED. В этом случае выполняется размещение лент по периметру внутренней стороны дисплея. При этом равномерное распределение светодиодов осуществляется при помощи отдельной панели, которая расположена за жидкокристаллическим дисплеем - обычно такой тип подсветки LED-экрана используется при разработке мобильных устройств. Приверженцы прямой подсветки указывают на качественный результат работы свечения, который достигается благодаря большему количеству светодиодов, а также локальному затемнению с целью сокращения цветовых разводов.

Применение светодиодной подсветки

Рядовой потребитель может найти данную технологию в моделях телевизоров Sony, LG и Samsung, а также в продукции Kodak и Nokia. Конечно, светодиоды получили более широкое распространение, но именно в моделях этих производителей наблюдаются качественные сдвиги в сторону улучшения потребительских качеств данного решения. Одной из главных задач, которая стояла перед конструкторами, являлась поддержка работоспособности экрана с оптимальными характеристиками в условиях прямого воздействия солнечных лучей. Также за последнее время улучшилась в плане повышения контрастности. Если говорить о продвижениях в направлении конструкции экрана, то наблюдаются заметные сокращения в толщине панелей, а также совместимость с большой диагональю. Но остаются и нерешенные задачи. Светодиоды не способны в полной мере раскрывать свои возможности в процессе отображения информации. Впрочем, это не помешало LED-технологии вытеснить CCFL-лампы и успешно конкурировать с новым поколением плазменных экранов.

Стереоскопические эффекты

Модули на основе светодиодов имеют немало способностей к обеспечению различных эффектов. На данном этапе развития технологии производители активно используют два стереоскопических решения. Первый предусматривает угловое отклонение потоков излучения с поддержкой дифракционного эффекта. Пользователь может воспринимать данный эффект в ходе просмотра с применением очков или без них, то есть в режиме голографии. Второй эффект предусматривает смещение светового потока, который выделяет подсветка LED-экрана по направлению заданной траектории в жидкокристаллических слоях. Использовать эту технологию можно в сочетании с 2D и 3D-форматами после соответствующей конвертации или перекодировки. Впрочем, относительно возможностей комбинации с трехмерными изображениями у светодиодных подсветок не все гладко.

Совместимость с технологией 3D

Нельзя сказать, что у экранов с LED-подсветкой наблюдаются серьезные проблемы взаимодействия с форматом 3D, но для оптимального восприятия зрителем такой «картинки» требуются специальные очки. Одним из самых перспективных направлений этой разработки являются стереоочки. К примеру, инженеры nVidia несколько лет назад выпустили затворные 3D-очки с жидкокристаллическими стеклами. Для отклонения потоков света LED-подсветка ЖК-экрана предусматривает использование фильтров поляризации. При этом очки выполняются без специальной оправы, в виде ленты. Встроенная линза состоит из широкого массива полупрозрачных которые воспринимают информацию с управляющего устройства.

Преимущества подсветки

По сравнению с другими вариантами подсветки, светодиоды заметно улучшают потребительские качества телевизионных экранов. В первую очередь улучшаются непосредственные характеристики изображения - это выражается в повышении контрастности и цветопередаче. Наивысшее качество обработки цветового спектра обеспечивает RGB-матрица. Кроме этого, подсветка LED-экрана отличается пониженным энергопотреблением. Причем в некоторых случаях достигается сокращение расхода электричества до 40%. Также стоит отметить возможность производства сверхтонких экранов, которые при этом обладают небольшой массой.

Недостатки

Пользователи телевизоров с присутствующей светодиодной подсветкой критикуют их за вредные воздействия сине-фиолетового излучения на глаза. Также синеватость наблюдается и в самой «картинке», что искажает естественную цветопередачу. Правда, в последних версиях телевизоров с высокой разрешающей способностью LED-подсветка экрана практически не имеет подобных дефектов. Но есть проблемы с управлением яркостью, в которой участвует широтно-импульсная модуляция. В ходе таких настроек можно заметить мерцания экрана.

Заключение

На сегодняшний день сегмент моделей телевизоров с LED-технологией находится на этапе становления. Потребитель пока оценивает возможности и достоинства, которые способно обеспечить инновационное решение. Надо отметить, что эксплуатационные недостатки, которыми обладает светодиодная LED-подсветка, не так смущают пользователей, как высокая стоимость. Многие специалисты именно этот фактор считают главным барьером для широкой популяризации технологии. Впрочем, перспективы светодиодов все равно остаются многообещающими, поскольку их стоимость будет сокращаться по мере увеличения спроса. Параллельно с этим совершенствуются и другие качества подсветки, что еще больше увеличивает привлекательность этого предложения.

Модели телевизоров с LED подсветкой доминируют на рынке вполне заслуженно. В этой статье мы рассмотрим разновидности LED подсветок современных телевизоров и оценим их эффективность.

LED телевизоры

Начнем с того, что LED TV не является новым типом HDTV. В отличие от плазменных и OLED телевизоров, которые изготавливаются на основе излучающих технологий, где каждый пиксель является отдельным источником света, в жидкокристаллических моделях каждый пиксель LCD матрицы требует освещения (сзади, или сбоку через систему линз). Так что модели LED HDTV являются теми же жидкокристаллическими (LCD или ЖК) телевизорами, но несут в себе встроенную светодиодную (LED) подсветку, которая заменяет стандартную на люминесцентных лампах с холодным катодом (обозначается аббревиатурой CCFL).

2 разновидности LED подсветки по конструктивному исполнению: матричное и боковое


LED подсветка с локальным затемнением.
Сперва, телевизоры обладающие LED подсветкой , использовали для освещения ячеек LCD матрицы «полный массив » (full array) из светодиодов, по аналогии со стандартными телевизорами на основе подсветки с использование CCFL ламп. Но для изменения толщины телевизоров в меньшую сторону, разработчики отказались от применения полного массива LED светодиодов сзади экрана, установив линейки источников света сбоку от LCD панели. Таким образом распределение света от LED источников по всей площади экрана осуществляется с помощью светодиодов специальной формы. Данные модели LCD телевизоров называют ТВ с боковой или краевой LED подсветкой , которые как раз-таки доминируют сегодня.

LED подсветка, обладающая системой местного затемнения позволяет автоматически снижать яркость или полностью отключать отдельные группы источников подсветки. Большинство современных LCD телевизоров с задней LED подсветкой в виде размещаемого позади LCD панели массива LED источников (full array) оснащаются динамической технологией подсветки называемой еще локальным или местным затемнением. Используя локальное затемнение, определенные участки общего массива светодиодов подсветки становятся темнее или светлее в зависимости от яркости и цвета соответствующей части изображения на экране.

Возможность затемнения определенной области экрана способно уменьшить количество света, которое проходит через закрытые пиксели LCD панели, что положительно сказывается на передаче черного цвета, который становится более темным и весьма реалистичным. По той причине, что уровни черного имеют определяющее значение для контрастности, восприятия глубины черных поверхностей, полноцветное изображение становится более выразительным и четким. Технология локального затемнения обладает единственным минусом – эффектом местного помутнения, который образуется когда часть света из более ярких зон просачивается в соседние более темные, что в последствии осветляет на границе темный цвет. Заметить эффект помутнения на большинстве моделей довольно трудно, так как недостаток непосредственно связан с количеством зон локального затемнения позади экрана, а производители предоставляют подобную информацию далеко не всегда.

При использовании стандартной подсветки с использованием CCFL ламп и в большинстве LCD телевизоров с боковой LED подсветкой, все источники подсветки светлеют или тускнеют одновременно (так называемое «глобальное затемнение» ), но среди моделей телевизоров Samsung и LG редко встречаются дисплеи с боковой LED подсветкой, которые также могут работать по принципу локального затемнения (» precision dimming » у Samsung и «LED Plus» у LG). Говоря проще, это бутафория локального затемнения.

Тонкие модели с боковой LED подсветкой конечно страдают от неравномерности засветки экрана, но далеко не все. Основная особенность телевизоров с боковой LED подсветкой – тонкий корпус, в связи с этим трудно обеспечить равномерность распределения светового потока по всей плоскости экрана. При покупке телевизора воспроизведите на экране дисплея с боковой LED подсветкой изображение белой поверхности, чтобы проверить отсутствие по краям экрана более яркие областей. Аналогично, когда экран заполнен черным полем, края не должны выглядеть более светлыми (серыми).

Стоит также отметить, что LED подсветка вне зависимости от разновидности не улучшает углы обзора LCD панели. Уровень черного цвета при использовании LED подсветки и возможном смещении угла зрения на 1-2 метра влево или вправо падает.

Нельзя забывать и о энергоэффективности LED подсветки. Конечно, на потребление любой модели значительно влияют размер экрана и яркость источников подсветки. LCD модели телевизоров обеих разновидностей LED подсветки значительно более энергоэкономичны, в сравнении с плазменными моделями.

Светодиодные подсветки для ЖК-дисплеев делятся на категории по следующим признакам:

  • цвет свечения: белый или RGB;
  • равномерность освещения: статическая или динамическая;
  • конструктив: матричное либо боковое (об этом более подробно написано выше)

RGB-подсветка применяется для осуществления возможности тонкой подстройки спектра свечения. Кроме того, часто применяется дополнительная компенсация изменения спектра излучения светодиодов со временем. В LED-телевизорах с подсветкой RGB LED разные участки экрана подсвечиваются в зависимости от цвета изображения. Цветная подсветка обеспечивает усиленный контраст и глубокий черный цвет, что наглядно демонстрируют многие LED-телевизоры Sony.

Edge LED: лучшая цветопередача

Компания Sony в новых флагманских моделях телевизоров - например, линейке W905 - использует технологию Triluminos . Встроенная в рамку телевизора со всех сторон экрана светодиодная подсветка (Edge LED) дополняется так называемыми квантовыми точками - фрагментами полупроводника размером в несколько сотен атомов, излучающими свет в строго заданном диапазоне. Технология Triluminos призвана минимизировать цветовые искажения и обеспечить усиление оттенков красного и зеленого. Это позволит добиться передачи исключительно однородного и естественного изображения со значительно более широким цветовым охватом. Тесты первых устройств с поддержкой Triluminos нас не разочаровали: цветовой охват модели Sony KDL-46W905A сопоставим с охватом решений на базе органических светодиодов (OLED) и недостижим для ЖК-телевизоров со светодиодной подсветкой. В устройствах серий W805 и W605, которые также появились в продаже в этом году, Triluminos не используется, благодаря чему их стоимость существенно ниже. В будущем производители смогут полностью отказаться от светодиодной подсветки в пользу квантовых точек.

OLED телевизоры: яркость и красочность на высоте

Телевизоры с OLED-экранами уже добрались до магазинов, а разработчики поспешили для вас выпустить новые модели с вогнутыми дисплеями. Компания LG еще в прошлом году планировала вывести на рынок OLED-телевизор с диагональю экрана 55 дюймов, однако в продаже он появился только этим летом. В России модель 55EM9600 и ее усовершенствованный аналог 55EM9700 обойдутся покупателю в 500 000 рублей. Помимо этого устройство продается в Европе, США и некоторых других странах.

Преимущества OLED телевизоров: это не тип подсветки, а иная технология

  • точная передача цвета
  • больший запас яркости относительно других технологий
  • высокая контрастность по сравнению с ЖК-моделями (другая технология формирования изображения).
  • отсутствие ЖК-матрицы и светодиодной подсветки - их место заняла матрица, изготовленная из светоизлучающих органических диодов.

Компании Samsung и LG независимо друг от друга разработали OLED-телевизоры с вогнутыми экранами (Curved OLED). Подобная конструкция призвана минимизировать искажения по краям изображения и повысить детализацию. Новинки пока доступны в ограниченных количествах в Южной Корее, США и некоторых европейских странах. 55-дюймовая модель Samsung KN55S9C оценена производителем в $9000 (300 000 рублей).

Особый интерес также вызывает технология Multi-View, реализованная во многих моделях OLED-телевизоров как с плоским, так и вогнутым экранами. Ввиду исключительно малого времени отклика подобные устройства позволяют одновременно демонстрировать две или четыре программы в формате высокой четкости (Full HD) либо два различных фильма в формате 3D. Для разделения изображения используются очки затворного типа. Каждый зритель с помощью расположенных на очках элементов управления может выбрать индивидуальную программу для просмотра. При этом благодаря встроенным наушникам обеспечивается воспроизведение соответствующей фильму звуковой дорожки.

Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.

Разбираем монитор

На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса


2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:


Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):


5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:


По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке - т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:


И блок с подсветкой отдельно:


Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все - мы разобрали монитор.

Подсветка светодиодной лентой

Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 - 120 светодиодов на метр. Первое что оказалось - ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) - 7 мм (на самом деле бывают лампы подсветки двух стандартов - 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано - сделано:


Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится - прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.


On - сигнал с платы управления на включение подсветки (+5V)
Dim - ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):


В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off - нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:


Расчет выходного напряжения для LM2941 производится по формуле:

Vout = Vref * (R1+R2)/R1

Где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

R2=R1*(Vout/Vref-1)

Максимальное необходимое нам напряжение для ленты - 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится - около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм - 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 - 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты

Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):


Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):


После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:




Питание и сигнал управления On заводились с платы блока питания:


Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

Для моего случая составляет Pd = (13.6-13)*0.7 +13.6*0.006 = 0.5 Ватт поэтому было решено обойтись самым маленьким радиатором для LM2941 (посажен через диэлектрическую прокладку т.к. от земли он в LM2941 не изолирован).
Окончательная сборка показала вполне себе работоспособность конструкции:


Из достоинств:

  • Используется стандартная светодиодная лента
  • Простая плата управления
Из недостатков:
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)
Вполне хороший, простой и бюджетный вариант ремонта подсветки. Вполне комфортно смотреть фильмы или использовать монитор в качестве кухонного телевизора, но для каждодневной работы наверное не подойдет.

Регулировка яркости с помощью ШИМ

Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:


Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)

Более плотная LED подсветка

Для решения проблемы недостаточной яркости (а заодно и равномерности) подсветки было решено поставить больше светодиодов и чаще. Поскольку оказалось что покупать светодиоды поштучно дороже чем купить 1.5 метра ленты и выпаять их оттуда был выбран более экономный вариант (выпаивать светодиоды из ленты).
Сами светодиоды 3528 разместились на 4-х полосках 6 мм шириной и 238 мм длиной по 3 светодиода последовательно в 15 параллельных сборках на каждой из 4-х полосок (разводка плат для светодиодов прилагается). После припайки светодиодов и проводов получается следующее:




Полоски закладывается по две вверху и внизу проводами к краю монитора в стык в центре:




Номинальное напряжение на светодиодах 3.5В (диапазон от 3.2 до 3.8 В), так что сборка из 3-х последовательных светодиодов должна питаться напряжением порядка 10.5В. Так что параметры регулятора нужно пересчитать:


Максимальное необходимое нам напряжение для ленты - 10.5В. Т.е. максимальное значение R2 = 1000*(10.5/1.275-1) = 7.23кОм. Минимальное напряжение при котором сборка из светодиодов еще хоть как-то светится - около 4.5 вольт, т.е. минимальное значение R2 = 1000*(4.5/1.275-1) = 2.53кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 7.23кОм - 2.53кОм = 4.7кОм, а RV2 выставляем примерно в 7.23-4.7 = 2.53 кОм и регулируем в собранной схеме для получения 10.5В на выходе LM2941 при максимальном сопротивлении RV1.
В полтора раза больше светодиодов потребляют 1.2А тока (номинально), поэтому рассеиваемая мощность на LM2941 будет равна Pd = (13.6-10.5)*1.2 +13.6*0.006 = 3.8 Ватт, что уже требует более солидного радиатора для отвода тепла:


Собираем, подключаем, получаем гораздо лучше:


Достоинства:
  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления
Недостатки:
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса

Плата управления на основе Step-down регулятора

Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:


Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Vout=Vref*(1+R2/R1)

Где Vref = 1.23V. При заданном R1 можно получить R2 по формуле:

R2=R1*(Vout/Vref-1)

В расчетах R1 эквивалентно R4 в схеме, а R2 эквивалентно RV1+RV2 в схеме. В нашем случае для регулировки напряжения в диапазоне от 7.25В до 10.5В возьмем R4=1.8кОм, переменный резистор RV1=4.7кОм а подстроечный резистор RV2 на 10кОм с начальным приближением в 8.8кОм (после сборки схемы лучше всего выставить его точное значение измеряя напряжение на выходе LM2576 при максимальном сопротивлении RV1).
Для этого регулятора решил сделать плату (размеры значения не имели, т.к. в мониторе достаточно место для монтажа даже габаритной платы):


Плата управления в сборе:


После монтажа в мониторе:


Все в сборе:


После сборки вроде все работает:


Итоговый вариант:


Достоинства:

  • Достаточная яркость
  • Step-down регулятор не греется и не греет монитор
  • Нет ШИМ а значит ничего не моргает ни с какой частотой
  • Аналоговая (ручная) регулировка яркости
  • Нет ограничений на минимальную яркость (для тех кто любит работать по ночам)
Недостатки:
  • Немного смещен баланс белого в сторону зеленых тонов (но не сильно)
  • При малой яркости (очень малой) видна неравномерность в свечении светодиодов разных сборок из-за разброса параметров

Варианты улучшения:

  • Баланс белого регулируется как в настройках монитора, так и в настройках почти любой видеокарты
  • Можно попробовать поставить другие светодиоды, которые не будут заметно сбивать баланс белого
  • Для исключения неравномерного свечения светодиодов при малой яркости можно использовать: а) ШИМ (регулировать яркость с помощью ШИМ всегда подавая номинальное напряжение) или б) соединить все светодиоды последовательно и питать их регулируемым источником тока (если соединить последовательно все 180 светодиодов, то понадобится 630В и 20мА), тогда через все светодиоды должен проходить один и тот же ток, а на каждом будет падать свое напряжение, яркость регулируется изменением тока а не напряжения.
  • Если хочется сделать схему на основе ШИМ для LM2576 можно использовать схему И-НЕ на входе On/Off этого Step-down регулятора (по аналогии с приведенной схемой для LM2941), но лучше поставить диммер в разрыв минусового провода светодиодов через logic-level mosfet

Хотя по написанию LED схожа с OLED, но обозначает она совсем другую технологию. Жидкокристаллический LED телевизор, что это значит – это аппарат с использованием другой системы подсветки по сравнению с обычными lcd моделями. И если OLED (Organic Light-Emitting Diode) это значит, что экран состоит из органических светоизлучающих диодов, то LED (Light Emitting Diode) – это использование диодов для подсветки матрицы жидкокристаллического телеприемника.

LED (Light Emitting Diode) – светоизлучающий диод, а в телевизионной технике эта аббревиатура означает экран на жидкокристаллической матрице (LCD) и с подсветкой от этих светоизлучающих диодов . После введения нового вида подсветки производители телевизоров в названиях моделей стали заменять "LCD" на "LED".

Это делалось скорее с маркетинговой точки зрения. На самом деле это была не новая технология экрана, а только другой вид подсветки. Но это название телевизоров сохранилось и применяется сегодня.

Если в обычных жк телевизорах используется лампа с холодным катодом, те же флуоресцентные (люминесцентные) лампы (Cold Cathode Fluorescent Lamps, CCFL) , то lcd led используют светоизлучающие диоды. Как известно жк (lcd) экраны в телевизорах состоят из ячеек (пикселей) с жидкими кристаллами и в зависимости от положения кристалла в ячейке пропускает или нет свет. Так создается свечение экрана.

От качества жк матрицы зависят такие параметры как статическая контрастность, уровень черного, углы обзора, частота обновления, время отклика. Различают такие технологии производства матрицы на жидких кристаллах для телевизоров: TN, IPS (S-IPS, IPS-Pro, P-IPS, AH-IPS), VA/MVA/PVA, PLS.


От подсветки зависят такие параметры как яркость, цветопередача, цветовой охват, динамическая контрастность. Хотя правильнее рассматривать именно систему матрица+подсветка в телевизоре и для нее измерять параметры.


Производители утверждают, что применение светодиодной подсветки может увеличить:

  • яркость,
  • контрастность,
  • четкость изображения,
  • цветовую гамму.

Еще снижается энергопотребление LED телевизора примерно на 40%. Так же в лед телевизорах не используется ртуть, которая применяется в лампах дневного света, что сказывается на экологии.

Действительно, современные сверхяркие светодиоды могут обеспечить высокую яркость изображения на дисплее.

Контрастность увеличивается и вводится понятие динамической контрастности, когда регулируется яркость свечения светодиодов локально для разных участков экрана, и засчет этого растет показатель динамической контрастности. При этом уровень статической контрастности телевизора остается одним и тем же, он зависит от матрицы дисплея.

Уровень черного так же улучшается за счет регулирования свечения диодов во время просмотра видео. На темной сцене уровень подсветки снижается и экран становится темнее, а отсюда и улучшается уровень черного.

А вот насчет увеличения цветовой гаммы телевизора, то здесь нужно рассматривать все подробнее.

Белые или составные светодиоды

Технологически подсветка дисплея в LCD телевизоре осуществляется от светодиодов. Для этого используют белые диоды, свет от которых попадает на светофильтры и получают синий, зеленый и красный цвета. Подобный вид называется WLED.

Для улучшения цветового охвата сначала стали использовать в качестве подсветки сразу три вида светодиодов: красные, зеленые, синие. Такая технология называется RGB LED.

Но получить с помощью таких технологий нужный спектр света не получалось. И цветовой охват был недостаточен для использования в телевизорах UHD. Для решения этой проблемы были изобретены новые виды светодиодов в телевизорах.

Сейчас в премиум моделях телевизоров используются составные диоды (GB-R LED, RB-G LED) или квантовые точки.

В составных светодиодах объединяют синий и зеленый в один и покрывают красным люминофором (GB-R), или в другом случае объединяют красный и синий и покрывают зеленым люминофором (RB-G).

Квантовые точки в LED телевизоре

Совсем другую технологию изменения подсветки WLED предложила компания Nanosys.

Квантовые точки в телевизоре заменяют часть диодов, в данном случае красные и зеленые. Остается только синий светодиод, который формирует поток света и для возбуждения квантовых точек и для работы синих суб-пикселей на экране. А поток света на красные и зеленые суб-пиксели формируют квантовые точки.

Методы лед подсветки

Для повышения качества изображения на экране телевизора появилась технология локального затемнения local dimming , по которой управление светодиодами происходит группами из нескольких диодов. Система local dimming имеет несколько недостатков:

  1. плохая однородность цвета на изображении, то есть заметны яркие и темные пятна на участках где ярко включена и выключена подсветка;
  2. на контрастных переходах появляются цветные ореолы;
  3. на темных участках пропадают детали изображения.

Эти недостатки трудно определить по обычной видео картинке на экране телевизора, поэтому сегодня метод локального затемнения широко используется в моделях с led подсветкой.




Так же можно разделить LED телевизоры по способу расположения светодиодов: Direct и Edge.

Direct - это когда диоды располагаются сзади экрана равномерно, в виде матрицы.

Edge – это когда они располагаются по периметру экрана совместно с рассеивающей панелью. При подобном расположении нельзя сделать эффективное локальное затемнение по методу local dimming.

При прямом (Direct) методе можно получить более равномерную подсветку, по сравнению с методом Edge, но увеличится толщина телевизора и энергопотребление за счет увеличения количества светодиодов. Сверхтонкие телевизоры (толщина может быть меньше 3 сантиметров) можно получить, только применяя расположение диодов Edge.

Из-за своей экономичности и при этом показывающей достаточно хорошие результаты, наиболее часто используется боковая (Edge) подсветка с локальным затемнением.

На 2015 год LED телевизоры выиграли конкуренцию у плазменных телевизоров, а OLED панели пока по стоимости не могут сравняться с лед моделями. Поэтому в 2015 году у всех мировых производителей в модельном ряде телевизоров все места занимают LED аппараты. Только некоторые производители решились выпустить OLED телевизоры, особенно здесь лидерство держит LG. Так что покупая телевизор этого года, вы наверняка купите именно LED модель.

LED подсветка в современных телевизорах с экранами на жидких кристаллах на сегодня имеет несколько технологических решений. Стремясь увеличить цветовой охват, для лучшего отображения цветов, производители дисплеев для телевизоров разработали новые методы подсветки, отличающиеся от обычных светодиодов.

RGB LED

Для получения широкого спектра белого света стали использовать в подсветке триады светодиодов состоящих из синих, зеленых и красных цветов.

Это была альтернатива WLED с белым светодиодом и с меньшим цветовым охватом. Система подсветки с трех разных светодиодов называется RGB LED. Цветовая гамма экранов с подсветкой RGB была больше, чем с применением только белых светодиодов или с использованием люминесцентной лампы CCFL. Но были и недостатки: цена, размер, вес, разное время старения светодиодов разного цвета, что со временем приводило к расстройке цвета изображения. Поэтому отказались от RGB LED подсветки в пользу WLED.

RGB LED

WLED

Учитывая недостатки RGB подсветки, производители телевизоров остановились на использовании «белых» светодиодов. Они располагаются или по бокам корпуса или одним массивом сзади жк матрицы. С помощью специальных диффузоров свет от диодов равномерно распределяется по всему экрану.

Хотя мы и называем такие светодиоды «белыми», но на самом деле они излучают синий свет, который проходит через желтый светофильтр и преобразуется в белый. Поэтому использование белых светодиодов в экранах еще 2010 года давала синеватый оттенок на изображении.

Со временем производители улучшили компоненты, и WLED подсветка стала вполне работоспособной, но что касается спектра света, то заметны некоторые диспропорции в отображении цветов.




Спектр света от WLED

Такой пик на синем получается из-за синего светодиода. Используя светофильтр можно получить белый свет. И этот отфильтрованный свет попадает на субпиксели красного, синего и зеленого цветов для формирования всего спектра ограниченного цветовым охватом. Проходя через фильтры, теряется часть спектра, а интенсивность потока на частоте, соответствующей синему будет больше, чем на красном и зеленом. С помощью калибровки экрана можно получить правильные цвета, но эти причины позволяют экрану с WLED подсветкой отображать цвета в пространстве только sRGB .



Цветовое пространство sRGB

Если дисплей с WLED будет отображать цвета на картинке близкие к синему (оттенки синего), то преимущество в спектре именно синего цвета может оказать давление на другие цвета, которые будут подмешиваться для создания оттенка. Поэтому отображение оттенков близких к синему может оказаться не правильным.

Такая проблема была и при использовании лампы CCFL, но там проблема была с зеленым цветом. Именно на зеленом был виден пик интенсивности.




Спектр света от подсветки CCFL

Увеличение цветового охвата

Что бы расширить цветовую гамму за пределы sRGB и перейти к следующему стандарту цветности были внесены изменения в подсветку WLED.

И после изменений стали использовать название GB-R LED или GB-r LED . Теперь вместо белого светодиода используют объединенный синий и зеленый светодиоды покрытые красным люминофором.

Такая технология позволяет получить на спектре пики на красном, зеленом и синем.




Спектр света от GB-r LED

Такая технология сегодня используется в LG на матрицах AH-IPS и в Samsung на PLS. Использование технологии GB-r LED позволяет получить 99 % охвата Adobe RGB.

Некоторые производители в своих экранах используют другой способ увеличения цветовой гаммы. Они берут смесь синего и красного светодиода и используют зеленый люминофор для светофильтра. Такая технология называется RB-LED или RB-G LED .