Встраиваемый цифровой вольтметр-амперметр. Самодельный блок питания из китайского вольтамперметра

  • 13.09.2019

Для многих целей часто нужно применять вольтамперметр. Будь то лабораторный блок питания или зарядное устройство. В этой статье речь пойдет о довольно дешевом, но очень распространенном китайском вольтамперметре с маркировкой dsn-vc288. Этот довольно миниатюрный прибор может измерять напряжение от 0 до 100 Вольт и ток в диапазоне от 0 до 10 Ампер. Разрешение (шаг) по напряжению составляет 0.1 Вольт по току — 0.01 Ампер.

Подключается прибор просто: трех контактный разъем — это подача питания и подача измеряемого напряжения. Питание в диапазоне от 5 до 36 Вольт, а измеряемое напряжение собственно это то, которое будем замерять. Второй двух контактный разъем — предназначен для измерения тока включается в разрыв измеряемой цепи. Также на плате находятся два переменных резистора с обозначениями I_ADJ и V_ADJ. Это калибровка тока и напряжения соответственно.

Первое включение вольтамперметра dsn-vc288 выявило некоторые проблемы. Напряжение он измеряет отлично, а вот ток не очень. Измерения нестабильны цифры постоянно скачут, и что самое плохое нелинейность (калибруем при токе 100 мА, а при токе 1 А показания уплывают и чем дальше тем больше). Первым делом подозрения упали на шунт. Вместо него я взял несколько резисторов типоразмера 2512 и сопротивлением 0.02 Ом, и начал поочередно параллельно их впаивать, для подбора нужного сопротивления (кстати этим способом можно уменьшить верхний предел измерения по току, но увеличить точность на малых токах).

Но такая замена шунта не дала нужного эффекта — нелинейность сохранялась. И тогда на просторах интернета я обнаружил еще одну доработку этого вольтамперметра, которая заключалась в установке дополнительной перемычки (на фото видно куда и откуда она идет). Делать ее нужно проводом потолще.

У меня это провод сечением 0.75 мм, сложенный вдвое и обтянут термоусадкой. После этого показания тока вольтамперметра стали стабильны и линейны. С помощью подстроечного резистора я откалибровал ток, затем измерил получившееся его сопротивление и заменил его на сборку из двух постоянных резисторов. Это было сделано для того чтобы в будущем не приходилось снова калибровать прибор если настройка поплывет.


После таких доработок собрал вольтамперметр dsn-vc288. Теперь прибор готов к применению.

Изучая как-то бескрайние просторы Интернета на предмет китайских полезностей, наткнулся я на модуль цифрового вольтметра:

Китайцы "выкатили" вот такие ТТХ: 3-digit red color display; Voltage: 3.2~30V; Working temperature: -10~65"C. Application: Voltage testing.

Не совсем он мне подходил в блок питания (показания не от нуля - но это расплата за питание от измеряемой цепи), зато недорого.
Решил взять и разбираться на месте.

Схема модуля вольтметра

На поверку модуль оказался не так уж и плох. Выпаял индикатор, срисовал схему (нумерация деталей показана условно):

К сожалению, чип остался неопознанным - маркировка отсутствует. Возможно, это какой-то микроконтроллер. Номинал конденсатора С3 неизвестен, выпаивать мерять не стал. С2 - предположительно 0.1мк, тоже не выпаивал.

Обработать напильником по месту...

А теперь о доработках, которые необходимы, чтоб довести этот "показиметр" до ума.


1. Чтобы он начал измерять напряжение менее 3 Вольт, нужно выпаять резистор-перемычку R1 и на ее правую (по схеме) контактную площадку подать напряжение 5-12В с внешнего источника (выше можно, но нежелательно - стабилизатор DA1 сильно греется). Минус внешнего источника подать на общий провод схемы. Измеряемое напряжение подавать на штатный провод (который был изначально припаян китайцами).

2. После доработки по п.1 диапазон измеряемого напряжения увеличивается до 99.9В (ранее он был ограничен максимальным входным напряжением стабилизатора DA1 - 30В). Коэффициент деления входного делителя около 33, что дает нам максимально 3 вольта на входе DD1 при 99,9В на входе делителя. Я подавал максимум 56В - больше у меня нету, ничего не сгорело:-), но и погрешность возросла.

4. Чтобы переместить или совсем выключить точку, нужно выпаять ЧИП-резистор R13 10кОм, который находится рядом с транзистором и вместо него запаять обычный резистор 10кОм 0.125Вт между дальней от подстроечного ЧИП-резистора контактной площадкой и соответствующим управляющим сегментным выводом DD1 - 8, 9 или 10.
Штатно точка засвечивается на средней цифре и база транзистора VT1 соответственно через ЧИП 10кОм подключена к выв. 9 DD1.

Ток, потребляемый вольтметром, составил около 15мА и менялся в зависимости от количества засвеченных сегментов.
После описанной переделки весь этот ток будет потребляться от внешнего источника питания, не нагружая измеряемую цепь.

Итого

И в заключении еще несколько фото вольтметра.


Заводское состояние


С выпаяным индикатором, вид спереди


Ампервольтметр из Поднебесной. Лабораторная работа.


В Интернет-магазинах Китая доступны недорогие цифровые вольтметры с использованием трехразрядных цифровых светодиодных индикаторов.

Вольтметры попадались двух типоразмеров: 48 x 30 x 22мм и 36.6 х 14.8 х12мм.

Более крупный выполнен в черном пластмассовом корпусе и просто устанавливается в окно, вырезанное в передней панели блока питания. Маленький вольтметр бескорпусной и крепится за «ушки» печатной платы.

Питаются приборы постоянным током при напряжении от 4 до 30 В (через встроенный интегральный стабилизатор) и измеряют постоянное напряжение до 30 или 99,9 В.

Подробные характеристики вольтметров выложены на сайтах продавцов. На одном из сайтов приводится принципиальная схема одного из таких вольтметров.

Вольтметр собран на микроконтроллере STM8. В приведенной схеме входной делитель напряжения состоит из последовательно соединённых резисторов R1 и R2 (390 кОм и 10 кОм). Нетрудно посчитать, что при подаче 1 В на вход делителя на измерительный вход процессора подается напряжение 0,025 В. (Ток делителя I=U:R = 1: (390k+10k)=0,0025 mA; падение напряжения на R2=I*R=0,0025 mA * 10k= 0,025B).

Если в блоке питания в цепь выходного тока поставить измерительный резистор величиной 0,025 Ома, то при протекании по нему тока в 1А, на измерительном резисторе упадет напряжение 0,025 В. И если это напряжение подать на R2, то индикатор вольтметра покажет единицу (1 Ампер). Таким образом, вольтметр превратился в амперметр.

Можно установить тумблер и переключать измеритель в режим вольтметра или амперметра по приводимой ниже схеме. Коммутировать приходится три цепи:

Штатный вход вольтметра;

Дополнительный вход измерителя (измерительный вход процессора);

Общий провод вольтметра.

Для того, чтобы использовать в качестве переключателя двухполюсный тумблер, пришлось пойти на некоторое ухищрение - добавить «свой» резистор Rдоб 330кОм в цепи входного делителя напряжения. Штатный вход вольтметра при этом не используется и не коммутируется.


На схеме показано включение в «минусовую» цепь источника питания. Так Rизмер включается в импульсных (компьютерных) блоках питания (при их переделке в различные блоки питания, используемые для радиолюбительских целей), где этот измерительный резистор одновременно используется как датчик тока в схеме регулировки выходного тока.

Вывод «-Uпит», показанный на схеме, никуда не подключается, «минус» питания прибор получает через переключатель измерительной цепи. Поскольку при этом коммутируется «минусовой» провод питания вольтметра, то в момент переключения индикаторы прибора кратковременно гаснут.

Следует учесть, что при встраивании измерителя в лабораторный блок питания, прибор начнет работать только при достижении минимального напряжения на его выходе около 4 Вольт. Для зарядного аккумуляторного устройства это несущественно. Для лабораторного блока питания измеритель придется запитать от автономного источника питания, гальванически не связанного с блоком питания.

Решения могут быть различные - выпрямители на отдельной обмотке на трансформаторе, на отдельном маленьком трансформаторе от, так называемых, «адаптеров» питания, плата из телефонной зарядки или просто подходящая батарейка.

В принципе, измерительный резистор Rизмер можно включить и в «плюсовую» цепь блока питания с учетом того, что при этом вольметр-амперметр также придется «запитать» от автономного источника питания, гальванически не связанного с блоком питания (иначе на измерительный вход процессора в режиме измерения тока подается весь потенциал выходного напряжения и процессор выйдет из строя).

При коротком замыкании выходных клемм источника питания, при «переполюсовке» подключения аккумуляторной батареи к зарядному устройству (если выпрямитель собран по мостовой схеме) через измерительный резистор до сгорания защитного предохранителя протекает большой ток короткого замыкания и на резисторе выделяется импульс напряжения, который может повредить процессор.

На первый взгляд, видны два решения по защите процессора.

Первый («организационный» и наиболее простой) - вместо тумблера, переключающего измеритель в режимы «вольтметр» - «амперметр» установить не фиксируемую кнопку и ток измерять при нажатом состоянии кнопки. Так как «переполюсовка» и короткое замыкание происходят чаще всего при подключении-отключении нагрузки и руки оператора заняты этим процессом, то кнопка переключения измерителя будет в отжатом состоянии «вольтметр» и прибор не пострадает.

Второй - схемотехнический. Установить параллельно измерительному резистору (входу измерителя) быстродействующее электронное устройство, защищающее от превышения допустимого напряжения на входе измерительного входа процессора, например, супрессор или стабилитрон.

Мне попадались вольтметры с делителем 330 кОм и 10 кОм. Поскольку в качестве измерительного резистора в схеме переделанного компьютерного блока питания у меня уже использовался стандартный 5-тиВаттный резистор 0,1 Ома в керамическом корпусе, то падение напряжения на нем было слишком большим для подачи на процессор. Пришлось параллельно измерительному резистору подключить многооборотный малогабаритный потенциометр («под руку подвернулся» на 100 Ом) и по «образцовому» тестеру выставить показания на индикаторе.

Этот способ можно использовать и в случае применения самодельного некалиброванного измерительного резистора.

В продаже имеются вольтметры, позиционируемые изготовителем как «вольтметры для встраивания на панель автомобиля для измерения напряжения бортовой сети» с верхним измеряемым пределом 24В. У них всего два вывода (черный «минус» и красный «плюс»). В этих вольтметрах вход делителя соединен с «плюсом» питания печатным проводником, который легко перерезать. В таком вольтметре делитель стоит 91 кОм и 10 кОм. То есть в качестве измерительного резистора хорошо подходит 5-Ваттный резистор в керамическом корпусе номиналом 0,1 Ом.

Вольтметры различных изготовителей отличаются принципиальными схемами и применяемыми процессорами, но принцип их использования в качестве амперметра остается прежним.

Ниже по тексту приведены фотоснимки плат вольтметров, попавших в руки автора. На них указано расположение резисторов входного делителя и место входа измерителя.

Для своего очередного проекта (переделка ATX БП 580W в лабораторный), купил вышеназванный индикатор . Не сразу и не вовремя выяснилось, что вход питания у него гальванически связан с минусовым входом шунта. Это вносит ощутимую погрешность при питании индикатора от того-же источника, с которого измеряется ток (погрешность вплоть до ампера с моим шунтом на 50А!). Можно было, конечно, нагородить ещё одну дежурку и от неё запитать индикатор, но мне показалось это слишком жирным и я решил колупнуть сам индикатор.

Поиском в интернете нашёл его брата близнеца YB27VA и его типовую схему. Сразу скажу, что схема моего прибора немного отличается. Суть переделки заключается в отвязывании дифференциального входа операционного усилителя ad8605 (маркирован как B3A) от общего провода питания. Для переделки потребуются начальные навыки реверс инженеринга (чтобы убедиться, что схема та самая), пайки мелких деталей и знание закона Ома:)

Схема до переделки:


Схема после:



Красным обозначены перерезанные дорожки. От резистора R6 решил отказаться, поскольку, похоже, он нужен только для того, чтобы амперметр показывал «0» при отключенном шунте. Так же перенос питания ad8605 (2 ножка) не является необходимым (судя по испытаниям в симуляторе).

Вторая переделка решает проблему, связанную с тем, что индикатор не «видит» первые ~180мА тока, то есть при подаче на шунт 1А прибор показывает 0,8А, если подать 0,2, то ноль и тд. Это связано со смещением входа ОУ и АЦП. Его можно посчитать, зная сопротивление шунта и величину, на которую прибор «врёт». У меня вышло 270мкВ на входе ОУ. Это смещение легко создать искусственно, добавив один резистор в схему, в результате прибор начнёт измерять от нуля.

В моём случае потребовалось добавить резистор 1140кОм от интегрального стабилизатора на 3В до "+" входа ОУ. Этот резистор, совместно с R7 и шунтом образовывает делитель, задающий начальное смещение.

Составной резистор получился ровно столько, сколько нужно, за счёт погрешности одного из них:)

В результате он теперь измеряет, начиная с 50мА, до 50А с минимальным шагом примерно 20мА (0 тоже показывает). Линейность тоже не подкачала, но, иногда, пропускает единицу, например с 0,12 сразу на 0,14 перескакивает.

Достигнутая точность приятно меня удивила, получился настоящий измерительный прибор, который можно использовать в лабораторном БП в качестве основного индикатора. Которому даже можно верить:) (это касается, по крайней мере, тока). Непонятно, почему китайцы решили сэкономили на паре копеечных деталей. Их стоимость явно на порядок ниже остальных комплектующих, того же ad8605, например. Пользуйтесь хорошими приборами:)

Ещё фотки с результатами измерений:

P.S. Уже хотел было опубликовать статью, но решил проверить - а как там с напряжением дела обстоят? Оказалось, что тоже не хорошо обстоят - на 0,1В прибор врёт, и элегантно это не пофиксить, потому что нижний резистор подстроечный. Но я всё равно запаял туда резистор на 20МОм и результат меня устроил)