Метод уравнений состояния примеры. Определение переменной состояния

  • 20.04.2019

Факультет автоматики и электромеханики

Кафедра теоретической и общей электротехники

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

(Метод переменных состояния)

Методические указания к выполнению курсовой работы

Составил Башев А.А.

Ред. проф. Алтунин Б.Ю.

Н.Новгород, 2010

Метод переменных состояния.

В основу метода переменных состояния положена принципиальная возможность замены дифференциального уравнения n -го порядка электрической цепи n дифференциальными уравнениями первого порядка. В качестве переменных состояния принимают токи индуктивностей и напряжения на ёмкостях , которые однозначно определяют запас энергии цепи в любой момент времени. Систему уравнений состояния можно представить в виде матричного уравнения:

где: – столбцевая матрица (вектор) n переменных состояния;

– столбцевая матрица (вектор) n первых производных переменных состояния;

- квадратная матрица размером , элементы которой определяются коэффициентами дифференциального уравнения цепи;

V(t) – столбцовая матрица (вектор) m независимых воздействий;

B – матрица размером , элементы которой зависят от параметров цепи и её структуры;

– столбцовая матрица, элементы которой зависят от независимых воздействий, структуры и параметров цепи.

Формирование системы дифференциальных уравнений цепи основано на использовании дифференциальных уравнений для переменных состояния, согласно которым

Расчёт цепей методом переменных состояний можно разделить на два этапа:

1) На первом этапе составляют систему дифференциальных уравнений цепи ;

2) На втором этапе решают составленную систему дифференциальных уравнений ;

Решение системы дифференциальных уравнений, составленных методом переменных состояния, можно выполнить двумя способами: аналитическим и численным.

При аналитическом способе решение уравнений состояния записывают в виде суммы матриц принуждённой и свободной составляющих:

где: – соответствует реакции цепи от внешних воздействий при нулевых начальных условиях ;

– матрица (вектор) начальных значений переменных состояния, полученных при ;

– матричная экспоненциальная функция.

– соответствует реакции цепи, обусловленной ненулевыми начальными условиями ; при отсутствии внешних воздействий V=0 ;

Если в цепи после коммутации нет источников энергии, т.е. , то решение матричного уравнения имеет вид:

Если же после коммутации есть источники независимых воздействий, то матрица , и интегрирование матричного уравнения приводит к решению в виде:

которое состоит из суммы двух слагаемых – реакции цепи при ненулевых начальных условиях и реакции цепи при нулевых начальных условиях и наличии источников внешних воздействий

При численном способе решения уравнений состояния используют различные программы численного интегрирования на ЭВМ: метод Рунге-Кутта, метод Эйлера, метод трапеций и др. Так, например, в пакете программ MathCAD приведены программы численного решения дифференциальных уравнений модифицированном методом Эйлера и методом Рунге-Кутта. Поскольку погрешность решения методом Эйлера достигает нескольких процентов, то более предпочтительным является метод Рунге-Кутта, который при решении уравнений четвёртого порядка даёт погрешность , где – шаг приращения переменной. Этот метод обеспечивает контроль точности вычислений на каждом шаге интегрирования и программную регулировку шага.

В системе MatchCAD программа интегрирования уравнений по методу Рунге-Кутта имеет имя rkfixed . Обращение к ней производится через операцию присваивания какой-либо переменной (в дальнейшем z ) имени программы:

где: x – вектор переменных состояния, размер которого определяется вектором начальных значений и соответствует числу уравнений состояния;

0 и – начало и конец временного интервала интегрирования;

N – число точек на интервале интегрирования;

D – функция, которая описывает правую часть уравнений, разрешённых относительно первых производных.

Для линейных цепей функция D имеет вид линейного матричного преобразования , где A – квадратная матрица коэффициентов, которые определяются структурой цепи и параметрами элементов; F – вектор независимых переменных, элементы которого определяются входными воздействиями. Все элементы матриц A и F должны быть определенны перед обращением к программе rkfixed .

Матрица z имеет размер , где первый столбец (нулевой) соответсвует дискретным значениям времени . Остальные столбцы этой матрицы соответствуют значениям переменных состояния: , где индекс i изменяется от 1 до N .

Для контоля правильности задания исходных данных можно (но не обязательно) обратиться к программе определения собственных чисел матрицы A : eigenvals (A ). Эта программа выводит информацию о собственных числах, которые совпадают с корнями характеристического уравнения цепи. Необходимым, но недостаточным условием правильности ввода данных, является набор отрицательных собственных чисел (или комплексно-сопряжённых чисел с отрицательно вещественной частью).



Рассмотрим теперь некоторые способы составления дифференциальных уравнений цепи по методу переменных состояния. Для этих целей наиболее часто применяют два основных способа:

1) использование законов Кирхгофа;

2) использование метода наложения.

Рассмотрим применение этих способов на некоторых примерах.

Пример 1. Требуется составить уравнения состояния и решить их для одноконтурной цепи второго порядка при отключении источника напряжения Е. Схема цепи приведена на рисунке 1(а), а параметры её элементов имеют следующие значения: Е=40 В; r=40 Ом; L=1 Гн; С=500мкФ.

Решение. Посмотрим схему замещения цепи для произвольного момента времени t , которая приведена на рисунке 1(б). На этой схеме ёмкость С заменена источником постоянного напряжения , а индуктивность L – источником тока . Результирующая схема замещения содержит только сопротивление r , источник тока и источник напряжения .

Рисунок 1. Исходная (а ) и расчётная (б ) схемы цепи к примеру 1.

Для полученной схемы можно составить уравнения, пользуясь законами Кирхгофа:

Откуда находим:

,

Из этих уравнений получаем значение первых производных переменных состояния:

.

Пользуясь которыми, запишем матричное уравнение цепи:

,

При использовании программы rkfixed это уравнение записывают в виде:

,

Это матричное уравнение необходимо ещё дополнить матрицей начальных состояний цепи, которая включает напряжение на ёмкости и ток в индуктивности на момент коммутации (т.е. при t=0_ ):

,

используемой для начала процесса интегрирования дифференциальных уравнений цепи.

Перед обращением к программе интегрирования rkfixed определяем через операцию присваивания значения следующих величин:

1) коэффициентов матрицы А :

2) значений вектора начальных состояний переменных

3) число точек интегрирования ;

4) формализованную матричную запись уравнений состояния при условии, что F=0 ;

5) конечное значение временного интервала .

Необходимый временной интервал интегрирования можно оценить по собственным числам матрицы А путём обращения к программе eigenvals (А ). В рассматриваемом примере имеются два комплексно сопряжённых числа , вещественные части которых одинаковы и равны . Эта часть комплексного числа определяет коэффициент затухания и непосредственно связана с длительностью переходного процесса формулой . Для наглядности в рассматриваемом примере интервал интегрирования выбран в два раза больше .

Форма записи исходных данных для программы rkfixed и результаты расчёта приведены на рисунке 2. Поскольку переменные состояния и измеряются в разных единицах и могут значительно отличаться друг от друга, то при построении графиков необходимо указать масштабные коэффициенты. Так, например, для графика переменной использован масштабный коэффициент, равный 100. Чтобы получить действительное значение тока , следует разделить значения, отсчитываемые по оси ординат, на 100.

Из полученных графиков следует, что переходный процесс в цепи носит колебательных характер, а обе функции постепенно затухают до нулевого значения при увеличении времени t .

Рисунок 2. Результаты расчёта к примеру 1.

Пример 2 . Составить уравнения для переменных состояния и рассчитать их при замыкании ключа К в цепи второго порядка, изображённой на рисунке 3(а). Параметры элементов цепи имеют следующие значения: А; r 1 =r 2 =50 Ом; L=5 мГн; С=0,1 мкФ.

Решение. Переходный процесс в рассматриваемой цепи возникает в результате перераспределения энергии между индуктивностью L и ёмкостью C после подключения сопротивления r 1 . Используя первый закон Кирхгофа, определим ток в ёмкости С :

.

а) б)

Рисунок 3. Исходная (а ) и расчётная (б ) схемы к примеру 2.

Аналогично, используя второй закон Кирхгофа, найдём напряжение на индуктивности:

.

Объединим эти уравнения в систему для переменных состояния:

.

Полученную систему уравнений запишем в матричной форме:

.

После подстановки числовых значений параметров элементов получим уравнения состояния в виде:

Для определения вектора начальных значений найдём напряжение на ёмкости и ток в индуктивности до замыкания ключа К:

Таким образом, вектор начальных значений переменных состояния имеет вид:

.

Схемы замещения для расчёта значений переменных состояния приведена на рисунке 3(б). На этой схеме ёмкость заменена источником напряжения , а индуктивность – источником тока . Значения этих величин изменяются на каждом шаге интегрирования.

Решение уравнений состояния выполним по программе rkfixed, входящей в систему MathCAD. Для этого присвоим переменным состояния следующие значения: и запишем уравнения состояния в виде:

,

где значения коэффициентов можно взять из уравнений состояния, рассчитанных выше, и включить в программу констант или определить через операции присваивания в самой программе.

Форма задания исходных данных для расчёта по программе rkfixed приведена на рисунке 4. Значение N=5000 указано произвольно, так как оно влияет только на время выполнения расчёта и точность. Косвенно оценить точность расчёта можно, сравнив результаты интегрирования для двух значений N=N 1 и N 1 /2 . Если результаты расчета в этих точках совпадают, то точность вычислений и число точек интегрирования на интервале t k находится в приемлемых пределах.

Через операцию присваивания определяем также вектор начальных значений х и вектор независимых источников F . Временной интервал t k может быть указан произвольно или приближённо выбран с помощью анализа чисел матрицы А .

Для апериодического процесса, который существует в рассматриваемой цепи, следует выбрать наименьшее по модулю собственное число p min и воспользоваться формулой t k =3/p min . Из двух собственных чисел p 1 =-1.888E5 1/c; p 2 =-2.118E4 1/c меньшее значение имеет p 2 , поэтому t k =3/2,118Е4=1,42Е-4 с.

Выбор интервала t k можно также выполнить, анализируя постоянные времени цепей первого порядка, которые можно построить на основе исходной цепи путём последовательного исключения реактивных элементов. При этом из найденных постоянных времени следует выбрать ту, которая имеет максимальное значение, и, используя её, рассчитать

Графики временных зависимостей и приведены на рисунке 4. Для переменной использован масштабный коэффициент, равный 100. Из этих графиков видно, что напряжение на ёмкости изменяется от до уровня , а ток в индуктивности – от до .

Рисунок 4. Результаты расчёта к примеру 2.

Пример 3 . Составить уравнения для переменных состояния и выполнить расчёт переходного процесса в цепи третьего порядка, приведённой на рисунке 5(а) при замыкании ключа К. Параметры элементов цепи имеют следующие значения: Е=120 В; r 1 =r 3 =r 4 =1 Ом; r 2 =r 5 =2 Ом; L 1 =1 мГн; L 2 =2 мГн; С=10 мкФ.

а) б)

Рисунок 5. Исходная (а ) и расчётная (б ) схемы к примеру 3.

Решение. Переходный процесс в схеме обусловлен перераспределением энергии реактивными элементами цепи после коммутации ключа К . На рисунке 5(б) изображена схема замещения цепи, на которой реактивные элементы заменены источниками напряжения и тока. Положительные направления этих источников согласованы с исходной схемой. При расчёте схемы замещения определению подлежат напряжения на источниках тока , и ток в ёмкости , так как именно они определяют производные от переменных состояния. При расчёте этих величин воспользуемся принципом наложения , в соответствие с которым реакцию линейной цепи можно определить в виде суммы реакций от отдельных источников. Для этого рассмотрим четыре частные схемы, приведённые на рисунке 6, в каждой из которых действует только один из источников, входящих в схему, приведённую на рисунке 5(б).

Основы > Теоретические основы электротехники

Метод переменных состояния
Уравнениями состояния можно назвать любую систему уравнений, определяющих режим цепи. В более узком смысле - это система дифференциальных уравнений первого порядка, разрешенная относительно производных.
Методом переменных состояния назовем анализ цепи, основанный на решении уравнений состояния (первого порядка), записанных в форме Коши. Таким образом, метод переменных состояния - один из методов расчета прежде всего переходных процессов. Далее предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее.
Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выбранными выводами, заряд на обкладках конденсатора и т. д. всегда можно найти как решение составленного для этого тока, напряжения, заряда и т. д. дифференциального уравнения (например, исключением других токов и напряжений из системы уравнений Кирхгофа):


Введением переменных это уравнение сводится к эквивалентной системе дифференциальных уравнений первого порядка:

Здесь переменными, которые называются переменными состояния , служат переменная х и ее производные.
Как известно, переходный процесс в любой цепи, кроме ее параметров (значений
r , L, С, М) и действующих источников [ e(t) и J(t)], определяется независимыми начальными (t = 0) условиями - токами в индуктивных элементах и напряжениями на емкостных элементах , которые должны быть известны или рассчитаны. Через них выражаются искомые величины во время переходного процесса. Они же определяют энергетическое состояние цепи. Поэтому в качестве переменных состояния целесообразно выбирать токи и напряжения . Действующие источники можно назвать входными величинами , искомые величины - выходными . Для цепи с n независимыми токами и напряжениями должны быть заданы еще n независимых начальных условий.

Сокращенно дифференциальные уравнения состояния запишем в матричной форме так:

или короче

где X матрица-столбец (размера n x 1) переменных состояния (вектор переменных состояния); F - матрица-столбец (размера m x 1) ЭДС и токов источников (внешних возмущений); А - квадратная матрица порядка n (основная); В - матрица размера п х m (матрица связи). Элементы этих матриц определяются топологией и параметрами цепи.
Для выходных величин (если определяются не токи в индуктивных и напряжения на емкостных элементах) в матричной форме система алгебраических уравнений имеет вид

или короче

где W - матрица-столбец (размера l x 1 ); M - матрица связи (размера l x n ); N - матрица связи (размера l x m ).
Элементы матриц зависят от топологии и параметров цепи. Для уравнений состояния разработаны и машинные алгоритмы формирования на основе топологии и значений параметров.
Уравнения в матричной форме (14.91) можно составить, например, с применением метода наложения. Для получения зависимостей между производными переменных состояния, т. е.
и переменными состояния , а также ЭДС и токами источников, действующими в цепи, будем считать, что переменные состояния заданы. Рассматриваемую цепь, например на рис. 14.41, а, заменим после коммутации эквивалентной (рис. 14.41,6), у которой каждый заданный ток представлен источником тока , а каждое заданное напряжение - источником напряжения (ЭДС) . Применив метод наложения (положительные направления выбраны), запишем напряжения и токи (сначала учитываем действие источников затем и далее источников, действующих в цепи):


Так как , то

Конечно, уравнения (14.93) можно получить и из уравнений Кирхгофа исключением токов и напряжений ре-зистивных элементов. Однако совместное решение уравнений Кирхгофа с увеличением числа ветвей цепи становится все более громоздким.
Уравнения состояния можно формировать и сразу в матричной форме.
Если источников тока и ЭДС нет, т. е. F = 0, то уравнения (14.91) упрощаются

и характеризуют свободные процессы в цепи. Решение запишем в виде

где X (0) - матрица-столбец начальных значений переменных состояния; - матричная экспоненциальная функция.
Подставив (14.94) в (14.91в), убедимся, что получается тождество.
При
решение уравнения (14.91) представим в виде

где Ф(t ) - некоторая матричная функция цепи. После дифференцирования (14.95) получим

Сравним (14.96) с (14.91а)

и, умножив на , после интегрирования найдем, что

где q - переменная интегрирования, или



Подставим это выражение в (14.95):



В частности, при t = 0 имеем

Следовательно, решение для переменных состояния записывается в виде


(реакция цепи равна сумме реакций при нулевом входе и при нулевом начальном состоянии).
Это решение можно получить и применив операторный метод расчета переходных процессов, рассматриваемый в разделе .
Выходные величины можно найти по (14.92).
Если состояние цепи задано не при t = 0, а при
, то в (14.97) первое слагаемое записывается так: , а нижний предел интеграла не 0, а t .
Главная трудность расчета заключается в вычислении матричной экспоненциальной функции. Один из путей такой: сначала находим собственные значения
l матрицы А, т. е. корни уравнения

где 1 - единичная матрица порядка n , которые определяются из уравнения


где - элементы матрицы А.
Собственные значения совпадают с корнями характеристического уравнения цепи.
Матричная экспонента, аргумент которой - матрица А t , имеющая порядок n , представима конечным числом n слагаемых. Если собственные значения различны, то

Где - функции времени; и т. д.
Далее для определения составляем алгебраическую систему n уравнений

Наконец, определив из (14.100), по (14.99) находим и затем X (t) по (14.97).

Пример 14.6. Определить ток в цепи на рис. 14.42 после коммутации при .

Решение. Выбираем положительные направления токов в индуктивных элементах, т. е. переменных состояния, и тока . Независимые начальные условия: . Дифференциальные уравнения цепи


Исключив ток , получим уравнения относительно производных переменных состояния:

т. е. согласно (14.91)

и матрица-столбец начальных значений

Вычислим собственные значения; по (14.98)

откуда . Если приравнять нулю главный определитель уравнений с переменными состояния, то получим те же значения .
Находим коэффициенты ак по (14.100), т. е. из системы уравнений


Значения тока вычисленные в моменты секунд для интервала времени 0 - 0,1 с, в конце которого ток отличается от установившегося менее чем на 1,5%, приведены в табл. 14.1. При вычислениях цифры записывались с 8 разрядами, а во всех приведенных в примере формулах и в табл. 14.1 указаны с округлением.

Таблица 14.1

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

1,079

1,213

1,343

1,455

1,550

1,628

1,692

1,746

1,790

1,827

0,055

0,060

0,065

0,070

0,075

0,080

0,085

0,090

0,095

0,100

, то для n - q разных корней составляется система (14.100), а для q кратных уравнения получаются после вычисления первых q - 1 производных по от обеих частей уравнения с корнем , т. е.

Если в цепи действует только один источник ЭДС (или тока), представляющий единичный скачок 1(

t ), т. е. F(t )=1(t ), и начальные условия нулевые, то решение (14.97) запишется в виде



Для выходных величин по (14.92а) получим

Это будут переходные функции цепи h(t). Импульсные переходные функции

k (t ) определяются по (14.84) или (14.85).
Более общим путем вычисления матричной экспоненциальной функции служит ее представление бесконечным рядом


но ряд при больших t медленно сходится. При ограничении конечным числом слагаемых вычисление сводится к умножению и суммированию матриц. Такие операции есть в математическом обеспечении ЭВМ. Известен метод вычисления матричной экспоненциальной функции, основанный на критерии Сильверста.
Уравнения состояния цепей, порядок которых больше двух-трех, проще решаются не аналитическими, а численными методами, дающими возможность автоматизировать расчет в случае применения ЭВМ.

Уравнениями состояния можно назвать любую систему уравнений, определяющих режим цепи. В более узком смысле - это система дифференциальных уравнений первого порядка, разрешенная относительно производных.

Методом переменных состояния назовем анализ цепи, основанный на решении уравнений состояния (первого порядка), записанных в форме Коши. Таким образом, метод переменных состояния - один из методов расчета прежде всего переходных процессов. Далее предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее.

Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выбранными выводами, заряд на обкладках конденсатора и т. д. всегда можно найти как решение составленного для этого тока, напряжения, заряда и т. д. дифференциального уравнения (например, исключением других токов и напряжений из системы уравнений Кирхгофа):

Введением переменных это уравнение сводится к эквивалентной системе дифференциальных уравнений первого порядка:

Здесь переменными, которые называются переменными состояния, служат переменная х и ее производные.

Как известно, переходный процесс в любой цепи, кроме ее параметров (значений r, L, С, М) и действующих источников , определяется независимыми начальными (t = 0) условиями - токами в индуктивных элементах и напряжениями на емкостных элементах , которые должны быть известны или рассчитаны. Через них выражаются искомые величины во время переходного процесса. Они же определяют энергетическое состояние цепи. Поэтому в качестве переменных состояния целесообразно выбирать токи и напряжения . Действующие источники можно назвать входными величинами , искомые величины - выходными . Для цепи с n независимыми токами и напряжениями должны быть заданы еще n независимых начальных условий.

Сокращенно дифференциальные уравнения состояния запишем в матричной форме так:

или короче

где X матрица-столбец (размера n x 1) переменных состояния (вектор переменных состояния); F - матрица-столбец (размера m x 1) ЭДС и токов источников (внешних возмущений); А - квадратная матрица порядка n (основная); В - матрица размера п х m (матрица связи). Элементы этих матриц определяются топологией и параметрами цепи.

Для выходных величин (если определяются не токи в индуктивных и напряжения на емкостных элементах) в матричной форме система алгебраических уравнений имеет вид

или короче

где W - матрица-столбец (размера l x 1); M - матрица связи (размера l x n); N - матрица связи (размера l x m).

Элементы матриц зависят от топологии и параметров цепи. Для уравнений состояния разработаны и машинные алгоритмы формирования на основе топологии и значений параметров.

Уравнения в матричной форме (14.91) можно составить, например, с применением метода наложения. Для получения зависимостей между производными переменных состояния, т. е. и переменными состояния , а также ЭДС и токами источников, действующими в цепи, будем считать, что переменные состояния заданы. Рассматриваемую цепь, например на рис. 14.41, а, заменим после коммутации эквивалентной (рис. 14.41,6), у которой каждый заданный ток представлен источником тока , а каждое заданное напряжение - источником напряжения (ЭДС) . Применив метод наложения (положительные направления выбраны), запишем напряжения и токи (сначала учитываем действие источников затем и далее источников, действующих в цепи):


Так как , то

Конечно, уравнения (14.93) можно получить и из уравнений Кирхгофа исключением токов и напряжений ре-зистивных элементов. Однако совместное решение уравнений Кирхгофа с увеличением числа ветвей цепи становится все более громоздким.

Уравнения состояния можно формировать и сразу в матричной форме.

Если источников тока и ЭДС нет, т. е. F = 0, то уравнения (14.91) упрощаются

и характеризуют свободные процессы в цепи. Решение запишем в виде

где X (0) - матрица-столбец начальных значений переменных состояния; - матричная экспоненциальная функция.

Подставив (14.94) в (14.91в), убедимся, что получается тождество.

При решение уравнения (14.91) представим в виде

где Ф(t) - некоторая матричная функция цепи. После дифференцирования (14.95) получим

Сравним (14.96) с (14.91а)

и, умножив на , после интегрирования найдем, что

где q - переменная интегрирования, или

Подставим это выражение в (14.95):

В частности, при t = 0 имеем

Следовательно, решение для переменных состояния записывается в виде

(реакция цепи равна сумме реакций при нулевом входе и при нулевом начальном состоянии).

Это решение можно получить и применив операторный метод расчета переходных процессов, рассматриваемый в разделе .

Выходные величины можно найти по (14.92).

Если состояние цепи задано не при t = 0, а при , то в (14.97) первое слагаемое записывается так: , а нижний предел интеграла не 0, а t.

Главная трудность расчета заключается в вычислении матричной экспоненциальной функции. Один из путей такой: сначала находим собственные значения l матрицы А, т. е. корни уравнения

где 1 - единичная матрица порядка n, которые определяются из уравнения

где - элементы матрицы А.

Собственные значения совпадают с корнями характеристического уравнения цепи.

Матричная экспонента, аргумент которой - матрица Аt, имеющая порядок n, представима конечным числом n слагаемых. Если собственные значения различны, то

где - функции времени; и т. д.

Наконец, определив из (14.100), по (14.99) находим и затем X (t) по (14.97).

Пример 14.6. Определить ток в цепи на рис. 14.42 после коммутации при .

Решение. Выбираем положительные направления токов в индуктивных элементах, т. е. переменных состояния, и тока . Независимые начальные условия: . Дифференциальные уравнения цепи

Исключив ток , получим уравнения относительно производных переменных состояния:

т. е. согласно (14.91)

и матрица-столбец начальных значений

Вычислим собственные значения; по (14.98)

откуда . Если приравнять нулю главный определитель уравнений с переменными состояния, то получим те же значения .

Находим коэффициенты ак по (14.100), т. е. из системы уравнений

Значения тока вычисленные в моменты секунд для интервала времени 0 - 0,1 с, в конце которого ток отличается от установившегося менее чем на 1,5%, приведены в табл. 14.1. При вычислениях цифры записывались с 8 разрядами, а во всех приведенных в примере формулах и в табл. 14.1 указаны с округлением.

Таблица 14.1

Если среди n собственных значений матрицы А есть q кратных , то для n - q разных корней составляется система (14.100), а для q кратных уравнения получаются после вычисления первых q - 1 производных по от обеих частей уравнения с корнем , т. е.

Изучите теоретический материал по учебной литературе: ; и ответьте на следующие вопросы:

1. Какие переменные в электрической цепи обычно принимают за переменные состояния?

2. Сколько систем уравнений составляют при решении задачи методом переменных состояния?

3. Какие зависимости устанавливаются в первой и во второй системах уравнений при решении задачи методом переменных состояния?

4. Какая из двух систем является системой дифференциальных уравнений, алгебраических?

5. Какие способы используются для получения уравнений состояния и уравнений выходных параметров?

При расчете переходного процесса методом переменных состояния рекомендуется следующий порядок:

1. Выбрать переменные состояния. В предложенных для расчета схемах это напряжения на емкостных элементах и токи в индуктивных катушках .

2. Составить систему дифференциальных уравнений для первых производных от переменных состояния.

Для этого описать послекоммутационную схему с помощью законов Кирхгофа и решить ее относительно первых производных от переменных состояния и в зависимости от переменных , и источников э.д.с. (в предлагаемых схемах источник э.д.с. – единственный).

В матричной форме эта система дифференциальных уравнений 1-го порядка будет иметь вид:

, (8.1)

где – столбец производных , ;

Х – вектор - столбец переменных состояния.

В цепях второго порядка:

– квадратная матрица порядка n , определяемая топологией электрической цепи и параметрами ее элементов. В цепях второго порядка эта матрица имеет порядок 2´2.

Матрица – прямоугольная матрица порядка , где n – порядок цепи.

Матрица – столбец – определяется источниками э.д.с. и источниками токов схемы и называется вектором входных величин .

3. Составить систему алгебраических уравнений для искомых переменных, которые называются выходными . Это токи в любых ветвях схемы (кроме тока ) и напряжения на любых элементах схемы (кроме напряжения ). Полученные алгебраические уравнения устанавливают связи между выходными переменными, с одной стороны, и переменными состояния и источниками напряжения и тока схемы – с другой. В матричной форме эта система алгебраических уравнений имеет вид

,

где – вектор выходных величин;

– матрицы, определяемые топологией электрической цепи, параметрами ее элементов и количеством искомых переменных.

Как указывалось выше САУ, независимо от природы составляющих его звеньев, может быть описана подобными дифференциальными уравнениями (2.1). Эти способы относятся к так называемым внешним описаниям системы. Наоборот, внутреннее описание дается в переменных состояния, предпочтительно используется для тех систем, которые имеют более одного входа и выхода. При этом под переменными состояния системы понимается набор переменных , производные первого порядка от которых входят в математическую модель САУ. С другой стороны, под переменными состояния понимается совокупность переменных, значения которых наряду с входным воздействием позволяет определить будущее состояние системы и выходные величины . Математическая модель системы в переменных состояния удобна для компьютерного анализа.

Пусть линейная система, характеризуется вектором состояния , составленным из n -переменных состояния. На вход системы поступают входные управляющие сигналы . Система описывается следующими уравнениями состояния в векторном виде:

(3.2)

где и - матрицы, составленные из постоянных коэффициентов, имеют вид:

, .

Кроме уравнения (3.2) для системы можно составить следующее матричное уравнение:

(3.3)

Здесь - вектор выходных величин. Матрицы постоянных величин имеют вид

.

Решение систем уравнений (3.2) и (3.3) для некоторого момента времени t = t 0 позволяет найти для времени t>t 0 , т. е. определить будущее состояние системы, а также дает возможность определить выходные величины .

Из системы уравнений (3.2) и (3.3) можно исключить вектор . В этом случае преобразование «вход-выход» может быть описан линейными дифференциальными уравнениями n-го порядка с постоянными коэффициентами в виде (2.1).

Все рассматриваемые виды описаний тесно взаимосвязаны, поэтому, зная одно из них, можно получить остальные. Например, связь между матрицами , , описания в пространстве состояний и комплексной передаточной функцией системы W(s) задается уравнением

W(s)= (sE- ) -1

где s  оператор Лапласа, E  единичная матрица.

Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0, переводящее изображающую точку в пространстве из подобласти G 1 в подобласть G 2 .

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости .

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n -1 ], D = [ , ,…, n -1 ]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrb и obsv .

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.

Лекция 4. Оценка функционирования САУ

Оценка статических свойств

В зависимости от процессов, происходящих в САУ различают два режима функционирования работы САУ и их элементов: динамический и статический.

Переходному процессу соответствует динамический режим функционирования САУ и их элементов. Этому режиму в ТАУ уделяется наибольшее время. В динамическом режиме величины, определяющие состояние САУ и их элементов изменяется во времени. Выше были представлены математические модели САУ в динамическом режиме в виде дифференциальных уравнений n -го (2.1) или в виде уравнений состояния (3.2, 3.3).

Наоборот, установившийся процесс в САУ соответствует статическему режиму функционирования, при котором величины, характеризующие состояние САУ не изменяются во времени. Для оценки САУ в статическом (установившемся) режиме используется показатель называемый точностью управления. Этот показатель определяется по статической характеристике САУ.

Рис. 4.1. Статические характеристики статических и астатических систем

Статическая характеристика САУ представляет зависимость установившегося значения выходного параметра – y 0 от входного параметра – u 0 при постоянном возмущении или же зависимость выходного параметра - y 0 в установившемся режиме от возмущения–f при постоянном входном параметре. Уравнения статики САУ имеют вид или . В общем случае уравнения могут быть нелинейным. Рассмотрим статическую характеристику элементов или САУ в целом (рис. 4.1) построенную по второму уравнению. Если установившееся значение ошибки в системе зависит от установившегося значения возмущения f , то система называ­ется статической (Рис.4.1,а), а если не зависит - то астатической (Рис.4.1,б).

Относительная статическая ошибка, или статизм, системы равен

Также, статизм можно характеризовать коэффициентом статизма , равным тангенсу угла наклона статической характеристики (Рис. 3.1, а).

Эффективность статического регулирования САУ в установившемся режиме оценива­ют по так называемой степени точности управления, равной отношению абсолютной статической ошибки неавтоматизированного объек­та управления (без регулятора) к абсо­лютной статической ошибке автоматической системы.

В некоторых случаях статическая ошибка нежелательна, тогда переходят к астатическому регулированию или вводят компенсирующие воздействия на возмущения.