Коммутаторы в локальной сети. Коммутатор локальной сети

  • 29.07.2019

Коммутатор

Коммутатор (switch) – устройство, осуществляющее выбор одного из возможных вариантов направления передачи данных.

Рис. 9.1 Внешний вид коммутатора Switch 2000

В коммуникационной сети коммутатор является ретрансляционной системой (система, предназначенная для передачи данных или преобразования протоколов), обладающей свойством прозрачности (т.е. коммутация осуществляется здесь без какой-либо обработки данных). Коммутатор не имеет буферов и не может накапливать данные. Поэтому при использовании коммутатора скорости передачи сигналов в соединяемых каналах передачи данных должны быть одинаковыми. Канальные процессы, реализуемые коммутатором, выполняются специальными интегральными схемами. В отличие от других видов ретрансляционных систем, здесь, как правило, не используется программное обеспечение.

Рис. 9.2 Структура коммутатора

Вначале коммутаторы использовались лишь в территориальных сетях. Затем они появились и в локальных сетях, например, частные учрежденческие коммутаторы. Позже появились коммутируемые локальные сети. Их ядром стали коммутаторы локальных сетей.

Коммутатор (Switch) может соединять серверы в кластер и служить основой для объединения нескольких рабочих групп. Он направляет пакеты данных между узлами ЛВС. Каждый коммутируемый сегмент получает доступ к каналу передачи данных без конкуренции и видит только тот трафик, который направляется в его сегмент. Коммутатор должен предоставлять каждому порту возможность соединения с максимальной скоростью без конкуренции со стороны других портов (в отличие от совместно используемого концентратора). Обычно в коммутаторах имеются один или два высокоскоростных порта, а также хорошие инструментальные средства управления. Коммутатором можно заменить маршрутизатор, дополнить им наращиваемый маршрутизатор или использовать коммутатор в качестве основы для соединения нескольких концентраторов. Коммутатор может служить отличным устройством для направления трафика между концентраторами ЛВС рабочей группы и загруженными файл-серверами.

Коммутатор локальной сети (local-area network switch) – устройство, обеспечивающее взаимодействие сегментов одной либо группы локальных сетей.

Коммутатор локальной сети, как и обычный коммутатор, обеспечивает взаимодействие подключенных к нему локальных сетей (рис.9.8). Но в дополнение к этому он осуществляет преобразование интерфейсов, если соединяются различные типы сегментов локальной сети. Чаще всего это сети Ethernet, кольцевые сети IBM, сети с оптоволоконным распределенным интерфейсом данных.

Рис. 9.1 Схема подключения локальных сетей к коммутаторам

В перечень функций, выполняемых коммутатором локальной сети, входят:

Обеспечение сквозной коммутации;

Наличие средств маршрутизации;

Поддержка простого протокола управления сетью;

Имитация моста либо маршрутизатора;

Организация виртуальных сетей;

Скоростная ретрансляция блоков данных.

Любой системный администратор рано или поздно сталкивается с задачей построения или модернизации локальной сети предприятия. К такому вопросу следует подходить очень серьезно и основательно, т.к. от этого зависит дальнейшая беззаботная работа.

Как выбрать коммутатор под свои задачи, чтобы потом не покупать новый?

Коммутатор или в простонародье свитч - это сетевое устройство, которое соединяет несколько компьютеров в одну единую локальную сеть. Современные свитчи обладают очень большим рядом функций, которые очень сильно могут облегчить дальнейшую работу админа. От правильного выбора свитчей зависит функционирование всей локальной сети и работа предприятия в целом.

При выборе сетевого оборудования начинающий системный администратор сталкивается с большим количеством непонятных обозначений и поддерживаемых протоколов. Данное руководство написано с целью восполнить этот пробел знаний у начинающих.

Вводная информация

Многие до сих пор не видят разницы между свичом и хабом. Понимая, что тема уже много раз обсуждалась, все же хотелось начать именно с нее.

Для свитчей это правило уже не актуально, т.к. современные свитчи даже начального уровня в ходе работы формируют таблицу коммутации, набирая список MAC-адресов, и согласно нее осуществляют пересылку данных. Каждый свитч, после непродолжительного времени работы, "знает" на каком порту находится каждый компьютер в сети.

При первом включении, таблица коммутации пуста и коммутатор начинает работать в режиме обучения. В режиме обучения работа свича идентична работе хаба: коммутатор, получая поступающие на один порт данные, пересылает их на все остальные порты. В это время коммутатор производит анализ всех проходящих портов и в итоге составляет таблицу коммутации.

Особенности, на которые следует обратить внимание при выборе коммутатора

Чтобы правильно сделать выбор при покупке коммутатора, нужно понимать все обозначения, которые указываются производителем. Покупая даже самое дешевое устройство, можно заметить большой список поддерживаемых стандартов и функций. Каждый производитель сетевого оборудования старается указать в характеристиках как можно больше функций, чтобы тем самым выделить свой продукт среди конкурентов и повысить конечную стоимость.

Распространенные функции коммутаторов:

  • Количество портов . Общее количество портов, к которым можно подключить различные сетевые устройства.

    Количество портов лежит в диапазоне от 5 до 48.

  • Базовая скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно указывается несколько скоростей, к примеру, 10/100/1000 Мб/сек . Это говорит о том, что порт умеет работать на всех указанных скоростях. В большинстве случаев коммутатор поддерживает стандарт IEEE 802.3 Nway автоопределение скорости портов.

    При выборе коммутатора следует учитывать характер работы подключенных к нему пользователей.

  • Внутренняя пропускная способность . Этот параметр сам по себе не играет большого значения. Чтобы правильно выбрать коммутатор, на него следует обращать внимание только в паре с суммарной максимальной скоростью всех портов коммутатора (это значение можно посчитать самостоятельно, умножив количество портов на базовую скорость порта). Соотнося эти два значения можно оценить производительность коммутатора в моменты пиковой нагрузки, когда все подключенные пользователи максимально используют возможности сетевого подключения.

    К примеру, Вы используете 16-портовый коммутатор на скорости 100 Мб/сек, имеющий пропускную способность в 1Гб/сек. В моменты пиковой нагрузки 16 портов смогут передавать объем информации равный:

    16x100=1б00(Мб/сек)=1.6(Гб/сек)

    Полученное значение меньше пропускной способности самого коммутатора. Такой коммутатор подойдет в большинстве случаев небольшой организации, где на практике приведенную ситуацию можно встретить крайне редко, но не подойдет для организации, где передаются большие объемы информации.

    Для правильного выбора коммутатора следует учитывать, что в действительности внутренняя пропускная способность не всегда соответствует значению, которое заявлено производителем.

  • Автосогласование между режимами Full-duplex или Half-duplex . В режиме Full-duplex данные передаются в двух направлениях одновременно. При режиме Half-duplex данные могут передаваться только в одну сторону одновременно. Функция автосогласования между режимами позволяет избежать проблем с использованием разных режимов на разных устройствах.
  • Автоопределение типа кабеля MDI/MDI-X . Это функция автоматически определят по какому стандарту был "обжат" кабель витая пара, позволяя работать этим 2 стандартам в одной ЛВС.
  • Стандарт MDI :

    Стандарт MDI-X:

  • Наличие порта Uplink . Порт Uplink предназначен для каскадирования коммутаторов, т.е. объединение двух коммутаторов между собой. Для их соединения использовался перекрестный кабель (Crossover). Сейчас такие порты можно встретить только на старых коммутаторах или на специфическом оборудовании. Грубо говоря, в современных коммутаторах все порты работают как Uplink.
  • Стекирование . Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек).

    При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.

  • Возможность установки в стойку . Это означает, что такой коммутатор можно установить в стойку или в коммутационный шкаф. Наибольшее распространение получили 19 дюймовые шкафы и стойки, которые стали для современного сетевого оборудования неписанным стандартом.

    Большинство современных устройств имеют такую поддержку, поэтому при выборе коммутатора не стоит акцентировать на этом большого внимания.

  • Количество слотов расширения . Некоторые коммутаторы имеют несколько слотов расширения, позволяющие разместить дополнительные интерфейсы. В качестве дополнительных интерфейсов выступают гигабитные модули, использующие витую пару, и оптические интерфейсы, способные передавать данные по оптоволоконному кабелю.
  • Размер таблицы MAC-адресов . Это размер коммутационной таблицы, в которой соотносятся встречаемые MAC-адреса с определенным портом коммутатора. При нехватке места в коммутационной таблице происходит затирание долго не используемых MAC-адерсов. Если количество компьютеров в сети много больше размера таблицы, то происходит заметное снижение производительности коммутатора, т.к. при каждом новом MAC-адресе происходит поиск компьютера и внесение отметки в таблицу.

    При выборе коммутатора следует прикинуть примерное количество компьютеров и размер таблицы MAC-адресов коммутатора.

  • Flow Control (Управление потоком). Управление потоком IEEE 802.3x обеспечивает защиту от потерь пакетов при их передаче по сети. К примеру, коммутатор во время пиковых нагрузок, не справляясь с потоком данных, отсылает отправляющему устройству сигнал о переполнении буфера и приостанавливает получение данных. Отправляющее устройство, получая такой сигнал, останавливает передачу данных до тех пор, пока не последует положительного ответа от коммутатора о возобновлении процесса. Таким образом два устройства как бы "договариваются" между собой когда передавать данные, а когда нет.

    Так как эта функция присутствует почти во всех современных коммутаторах, то при выборе коммутатора на ней не следует акцентировать особого внимания.

  • Jumbo Frame . Наличие этой функции позволяет коммутатору работать с более большим размером пакета, чем это оговорено в стандарте Ethernet.

    После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно существенно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша ждать не стоит.

    Технология Jumbo Frame работает только между двумя устройствами, которые оба ее поддерживают.

    При подборе коммутатора на этой функции не стоит заострять внимание, т.к. она присутствует почти во всех устройствах.

  • Power over Ethernet (PoE) . Эта технология передачи электрического тока для питания коммутатора по неиспользуемым проводам витой пары. Стандарт IEEE 802.af.
  • Встроенная грозозащита . Некоторые производители встраивают в свои коммутаторы технологию защиты от гроз. Такой коммутатор следует обязательно заземлить, иначе смысл этой дополнительной функции отпадает.

Читайте о новинках железа, новости компьютерных компаний и будите всегда в курсе последних достижений.

Какие коммутаторы бывают?

Помимо того, что все существующие коммутаторы различаются количеством портов (5, 8, 16, 24 и 48 портов и т.д.) и скоростью передачи данных (100Мб/сек, 1Гб/сек и 10Гб/сек и т.д.), коммутаторы можно так же разделить на:

  1. Неуправляемые свичи - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Некоторые модели неуправляемых свичей имеют встроенные инструменты мониторинга (например некоторые свичи Compex).

    Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека.

    Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.

  2. Управляемые свичи - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора.

    Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI .

Для правильного выбора коммутатора Вам потребуется определиться на каком сетевом уровне необходимо администрировать ЛВС.

Разделение коммутаторов по уровням:

  1. Коммутатор 1 уровня (Layer 1). Сюда относятся все устройства, которые работают на 1 уровне сетевой модели OSI - физическом уровне . К таким устройствам относятся повторители, хабы и другие устройства, которые не работают с данными вообще, а работают с сигналами. Эти устройства передают информацию, словно льют воду. Если есть вода, то переливают ее дальше, нет воды, то ждут. Такие устройства уже давно не производят и найти их довольно сложно.
  2. Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне . К таким устройствам можно отнести все неуправляемые коммутаторы и часть управляемых.

    Коммутаторы 2 уровня работают с данными ни как с непрерывным потоком информации (коммутаторы 1 уровня), а как с отдельными порциями информации - кадрами (frame или жарг. фреймами ). Умеют анализировать получаемые кадры и работать с MAC-адресами устройств отправителей и получателей кадра. Такие коммутаторы "не понимают" IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов.

    Коммутаторы 2 уровня составляют коммутационные таблицы, в которых соотносят MAC-адреса встречающихся сетевых устройств с конкретными портами коммутатора.

    Коммутаторы 2 уровня поддерживают протоколы:


  3. Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне . К таким устройствам относятся все маршрутизаторы, часть управляемых коммутаторов, а так же все устройства, которые умеют работать с различными сетевыми протоколами: IPv4, IPv6, IPX, IPsec и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, pppoe, vpn и т.д.
  4. Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне . К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Чтобы правильно подобрать коммутатор Вам нужно представлять всю топологию будущей сети, рассчитать примерное количество пользователей, выбрать скорость передачи данных для каждого участка сети и уже под конкретную задачу начинать подбирать оборудование.

Управление коммутаторами

Интеллектуальными коммутаторами можно управлять различными способами:

  • через SSH-доступ . Подключение к управляемому коммутатору осуществляется по защищенному протоколу SSH, применяя различные клиенты (putty, gSTP и т.д.). Настройка происходит через командную строку коммутатора.
  • через Telnet-доступ к консольному порту коммутатора. Подключение к управляемому коммутатору осуществляется по протоколу Telnet. В результате мы получаем доступ к командной строке коммутатора. Применение такого доступа оправданно только при первоначальной настройки, т. к. Telnet является незащищенным каналом передачи данных.
  • через Web-интерфейс . Настройка производится через WEB-браузер. В большинстве случаев настройка через Web-интерфейс не дает воспользоваться всеми функциями сетевого оборудования, которые доступны в полном объеме только в режиме командной строки.
  • через протокол SNMP . SNMP - это протокол простого управления сетями.

    Администратор сети может контролировать и настраивать сразу несколько сетевых устройств со своего компьютера. Благодаря унификации и стандартизации этого протокола появляется возможность централизованно проверять и настраивать все основные компоненты сети.

Чтобы правильно выбрать управляемый коммутатор стоит обратить внимание на устройства, которые имеют SSH-доступ и протокол SNMP. Несомненно Web-интерфейс облегчает первоначальную настройку коммутатора, но практически всегда имеет меньшее количество функций, чем командная строка, поэтому его наличие приветствуется, но не является обязательным.

Случайные 7 статей.

Организация компьютерной сети невозможна без такого устройства как свитч или подобного ему сетевого оборудования. Существуют различные сетевые устройства, при помощи которых становится возможным формирование локальной сети, организация доступа в Интернет для нескольких компьютеров и прочие задачи сетевой коммутации. Наиболее популярные из таких устройств — это хаб, роутер и свитч. Не все знают, как настроить такого рода устройства, чтобы работа была более комфортной.

Сетевой коммутатор необходим для создания компьютерной сети.

Если роутер (маршрутизатор) служит для соединения и маршрутизации различных сетей, то хаб и свитч — для объединения различных узлов в единую сеть. Выгодное отличие свитча (коммутатора) от хаба (концентратора) в том, что в первом пакеты данных передаются строго по адресу на указанный узел, а не транслируются на все устройства сети. Таким образом, посредством свитча реализуется прямая адресная передача данных между двумя узлами сети, при этом сетевой ресурс используются максимально эффективно. По этой причине в настоящий момент концентраторы практически нигде не используются, они были вытеснены более производительными и безопасными коммутаторами.

Основы работы свитча

Рисунок 1. Схема работы свитча.

Итак, сетевой коммутатор, он же свитч или свич («switch» — переключатель), это вид сетевого оборудования, соединяющего определенное количество узлов (компьютеров) в единый сегмент вычислительной сети и осуществляющего пакетную передачу информации и данных между отельными элементами этой сети.

Свитч имеет в распоряжении несколько портов — разъемов, в которые подключаются компьютеры и прочие сетевые узлы, оборудование и т.д. Связь между портом и узлом осуществляется с использованием обжатого кабеля, так называемой витой пары.

Для такого устройства как свитч 8 портов это норма, но встречаются и более внушительные цифры вплоть до 48 и даже 96. (РИС. 1) В рамках модели OSI данное устройство функционирует на уровне канала, поэтому, как правило, лишь объединяет другие устройства в один сегмент сети, ориентируясь на их идентификационные MAC-адреса.

Объединить несколько отдельных сетей стандартный свитч не может. Для маршрутизации на уровне сетей, например, для организации доступа в интернет на нескольких компьютерах, что является примером включения локальной сети в глобальную, необходим маршрутизатор или же свитч роутер.

Таким образом, в сетевой иерархии OSI коммутатор занимает промежуточное звено между концентратором и маршрутизатором:

  1. Концентратор — Физический уровень. Транслирует входящие данные, дублируя их на все используемые интерфейсы.
  2. Коммутатор — Канальный уровень. Распределяет данные сугубо адресованным получателям.
  3. Маршрутизатор — Сетевой уровень. Связывает различные сетевые сегменты.

Работа коммутатора построена следующим образом. В памяти устройства хранится виртуальная таблица соответствий между MAC-адресами и портами свитча.

MAC-адрес («Media Access Control» — управление доступом к среде), он же Hardware Address — это специальный идентификатор, который присваивается каждому активному элементу или узлу в сети, причем для каждого из них он уникален.

В момент сразу после включения коммутатора его MAC-таблица еще пуста и ее необходимо заполнить, поэтому свитч входит в режим первичного обучения.

Особенность этого режима в том, что данные, поступившие на любой из портов, как и в концентраторе, передаются всем подключенным к устройству узлам в совокупности.

Путем анализа пакетов данных определяется MAC-адрес устройства-отправителя, затем этот адрес привязывается к номеру конкретного порта, из которого эти данные были отправлены. Таким образом, выясняется, к какому порту подключен тот или иной элемент сети, затем эти данные заносятся в таблицу.

Теперь при поступлении данных на любой из портов свитча пакеты, адресованные узлу, имеющемуся в этой таблице, будут направлены на конкретный порт, соответствующий этому узлу, а не транслироваться на все интерфейсы сразу, как это происходит в концентраторе.

Если же в отправляемых данных содержится неизвестный адрес получателя, отсутствующий в таблице, создаются дубликаты пакетов и отправляются на все интерфейсы.

Параллельно с этим новые незнакомые адреса отправителей продолжают записываться в таблицу.

Впоследствии свитч постепенно заполняет свою маршрутную таблицу, включая в нее все связи между внешними компьютерами и собственными интерфейсами, благодаря чему происходит локализация трафика.

Основные типы коммутаторов

Рисунок 2. Примерная схема подключения свитча через модем.

Простейший сетевой коммутатор — это неуправляемый. Такой свитч хоть и может быть настраиваемым непосредственно, но он не имеет поддержки сетевых протоколов управления. Разница между управляемым и неуправляемым коммутатором в том, что благодаря поддержке простого протокола сетевого менеджмента SNMP управляемый свитч позволяет по сети с помощью специализированных программ удаленно конфигурировать себя и управлять своей работой.

Управляемый коммутатор наиболее часто устанавливается в участках сети с осложненной топологией, где требуется особенно тщательный контроль. Наиболее характерные задачи, выполняемые такими устройствами:

  • мониторинг сетевого трафика;
  • управление конфигурацией интерфейсов (портов);
  • организация виртуальных сетей (VLAN);
  • объединение группы каналов.

Управляемые свитчи особенны тем, что способны обеспечить широкий спектр функционирования как на канальном, так и на сетевом уровне. Доступ к управлению таким коммутатором можно получить через специальный Web интерфейс, а также посредством командной строки либо различных протоколов (SNMP, Telnet). Помимо всего прочего свитч может использовать различные методы коммутации, разница между которыми обусловлена временем и надежностью передачи информации:

Порядок расположения проводов при «обжиме» кабеля «витая пара».

  1. Store and Forward — когда коммутатором производится полное чтение всей информации в кадре данных с целью проверки на наличие ошибок, и лишь затем пакет передается на выбранный порт.
  2. Cut-through — процесс коммутации происходит сразу после чтения заголовка кадра данных, где хранится адрес получателя. Благодаря этому удается сократить задержку по времени передачи, однако становится невозможным обнаружить ошибки, что снижает надежность.
  3. Fragment-free — усовершенствованный сквозной (Cut-through) режим, при котором пакеты передаются после их предварительной фильтрации.

Такой типа свитча редко используется в домашних условиях, т.к. предназначен прежде всего для коммутации крупных и сложных структур таких, как сети интернет провайдеров, корпоративные локальные сети, центры технической поддержки клиентов и т.д.

Примером такого устройства является гигабитный свитч TL-SG2424 на 24 порта фирмы TP-Link, обладающий массой полезных функций, среди которых: защита от сетевого шторма и распределенных атак, расширенная приоритезация данных QoS, высочайшая скорость работы портов до 1 Гбит/с и другие.

Как сделать настройку свитча и создать свою сеть

Допустим, вы решили создать локальную сеть из нескольких компьютеров в вашем доме и для этой цели выбрали сетевой коммутатор. Перед тем, как настроить свитч и осуществить конфигурацию сети, ее нужно развернуть на физическом уровне, т.е. обеспечить связь каждого компьютера с коммутатором посредством сетевого кабеля. Все соединения между узлами производятся с помощью патч-корда — сетевого коммутационного кабеля на основе витой пары.

Рисунок 3. Примерная схема подключения свитча без модема.

Такой кабель можно сделать и самому, но лучше купить в магазине. Есть два способа, как подключить свитч для его настройки, в зависимости от наличия соответствующих интерфейсов: через специальный консольный порт, через который производится в основном лишь первичная настройка свитча, либо через более универсальный Ethernet порт.

Во втором случае для получения доступа к конфигурации требуется ввести IP-адрес, указанный в документации к устройству.

Подключение к консольному порту не расходует полосу пропускания коммутатора, в чем есть определенное преимущество. Для непосредственной настройки свитча с помощью данного способа нужно запустить эмулятор терминала VT100 (подойдет и стандартный HyperTerminal).

Параметры подключения выбираются соответственно документации. После соединения вводится имя пользователя и пароль.

Настройка осуществляется путем ввода команд и параметров, которые зависят от конкретной модели устройства и должны быть указаны в документации.

Выход в интернет через свитч

Следующим шагом после создания сети и настройки коммутатора является обеспечение всем компьютерам этой сети доступа в интернет. Имея в наличии свитч, можно сделать это быстро, просто и выгодно, без дополнительного подключения к провайдеру отдельно каждого компьютера, даже если интернет подведен всего лишь одним кабелем. В случае, когда услуга интернет предоставлена провайдером стационарной телефонной связи, доступ к всемирной паутине осуществляется посредством ADSL-модема, наиболее распространенные модели которого не имеют более одного порта Ethernet. Соответственно, подключить к нему можно только один компьютер. Для решения этой проблемы не обязательно приобретать дорогостоящий маршрутизатор со встроенным коммутатором, вполне достаточно и обычного свитча. Примерная схема подключения изображена на рисунке. (РИС. 2)

https://сайт/

Из схемы видно, ADSL-модем подключается не к компьютеру, а непосредственно к коммутатору. К нему же подсоединены все компьютеры локальной сети. Очень важный момент здесь — это правильная настройка свитча и параметров соединения компьютеров. У каждого устройства, включая модем, должен быть свой адрес IP внутри единой подсети, повторяться они не должны.

Коммутатор одно из важнейших устройств использующихся при построении локальной сети. В этой статье мы поговорим какими коммутаторы бывают и остановимся на важных характеристиках, которые нужно учитывать при выборе коммутатора локальной сети.

Для начала рассмотрим общую структурную схему, чтобы понимать какое место коммутатор занимает в локальной сети предприятия.

На рисунке выше показанна наиболее распространенная структурная схема небольшой локальной сети. Как правило в таких локальных сетях используются коммутаторы доступа.

Коммутаторы доступа непосредственно подключены к конечным пользователям, предоставляя им доступ к ресурсам локальной сети.

Однако в крупных локальных сетях коммутаторы выполняют следующие функции:


Уровень доступа сети . Как было сказано выше коммутаторы доступа предоставляют точки подключения устройств конечного пользователя. В крупных локальных сетях фреймы коммутаторов доступа не взаимодействуют друг с другом, а передаются через коммутаторы распределения.

Уровень распределения . Коммутаторы данного уровня пересылают трафик между коммутаторами доступа, но при этом не взаимодействуют с конечными пользователями.

Уровень ядра системы . Устройства данного типа объединяют каналы передачи данных от коммутаторов уровня распределения в крупных территориальных локальных сетях и обеспечивают очень высокую скорость коммутации потоков данных.

Коммутаторы бывают:

Неуправляемые коммутаторы . Это обычные автономные устройства в локальной сети, которые управляют передачей данных самостоятельно и не имеют возможности дополнительной настройки. В виду простоты установки и небольшой цены получили широкое распространение при монтаже в домашних условиях и малом бизнесе.

Управляемые коммутаторы . Более продвинутые и дорогие устройства. Позволяют администратору сети самостоятельно настраивать их под заданные задачи.

Управляемые коммутаторы могут настраиваться одним из следующих способов:

Через консольный порт Через WEB интерфейс

Через Telnet Через протокол SNMP

Через SSH

Уровни коммутаторов


Все коммутаторы можно разделить на уровни модели OSI . Чем этот уровень выше тем большими возможностями коммутатор обладает, однако и стоимость его будет значительно выше.

Коммутаторы 1 уровня (layer 1) . К данному уровню можно отнести хабы, повторители и другие устройства, работающие на физическом уровне. Эти устройства были на заре развития интернета и в настоящее время в локальной сети не используются. Получив сигнал устройство данного типа, просто передает его далее, во все порты, кроме порта отправителя

Коммутаторы 2 уровня (layaer 2) . К данному уровню относятся неуправляемые и часть управляемых коммутаторов (switch ) работающих на канальном уровне модели OSI . Коммутаторы второго уровня работают с фреймами – кадрами: потоком данных разбитых на порции. Получив фрейм коммутатор уровня 2 вычитывает из фрейма адрес отправителя и заносит его в свою таблицу MAC адресов, сопоставляя этот адрес порту на котором он этот фрейм получил. Благодаря такому подходу коммутаторы второго уровня пересылают данные только на порт получателя, не создавая при этом избыточного трафика по остальным портам. Коммутаторы второго уровня не понимают IP адресов расположенных на третьем сетевом уровне модели OSI и работают только на канальном уровне.

Коммутаторы второго уровня поддерживают такие наиболее распространенные протоколы как:

IEEE 802.1 q или VLAN виртуальные локальные сети. Данный протокол, позволяет в рамках одной физической сети создавать отдельные логические сети.


Например устройства подключенные к одному коммутатору, но находящиеся в разных VLAN не увидят друг друга и передавать данные смогут только в своем широковещательном домене (устройствам из той же VLAN). Между собой компьютеры на рисунке выше смогут передавать данные при помощи устройства работающего на третьем уровне с IP адресами: маршрутизатором.

IEEE 802.1p (Priority tags ). Этот протокол изначально присутствует в протоколе IEEE 802.1 q и представляет собой 3 битное поле от 0 до 7. Данный протокол позволяет маркировать и отсортировывать весь трафик по степени важности выставляя приоритеты (максимальный приоритет 7). Фреймы с большим приоритетом будут пересылаться в первую очередь.

IEEE 802.1d Spanning tree protocol (STP). Данный протокол выстраивает локальную сеть в виде древовидной структуры, чтобы избежать закольцовывания сети и предотвратить образования сетевого шторма.


Допустим монтаж локальной сети выполнен в виде кольца для повышения отказоустойчивости системы. Коммутатор с наибольшим приоритетом в сети выбирается корневым (Root). В примере приведенном выше SW3 является корневым. Не углубляясь в алгоритмы выполнения протокола, коммутаторы вычисляют путь с максимальной ценой и блокируют его. Например в нашем случае кротчайший путь от SW3 до SW1 и SW2 будет через собственные выделенные интерфейсы (DP) Fa 0/1 и Fa 0/2 . В этом случае цена пути по умолчанию для интерфейса 100 Мбит/c будет 19. Интерфейс Fa 0/1 коммутатора SW1 локальной сети блокируется потому, чо общая цена пути будет складываться из двух переходов между 100 Мбит/с интерфейсами 19+19=38.

Если рабочий маршрут будет поврежден, коммутаторы выполнят пересчет пути и разблокируют данный порт

IEEE 802.1w Rapid spanning tree protocol (RSTP). Усовершенствованный стандарт 802.1 d , который обладает более высокой устойчивостью и меньшим временем восстановления линии связи.

IEEE 802.1s Multiple spanning tree protocol. Последняя версия, учитывающая все недостатки протоколов STP и RSTP .

IEEE 802.3ad Link aggregation for parallel link. Данный протокол позволяет объединять порты в группы. Суммарная скорость данного порта агрегации будет складываться из суммы скоростей каждого порта в ней. Максимальная скорость определена стандартом IEEE 802.3ad и составляет 8 Гбит/сек.


Коммутаторы 3 уровня (layer 3) . Данные устройства еще называют мультисвичи так как они объединяют в себе возможности коммутаторов работающих на втором уровне и маршрутизаторов работающих с IP пакетами на третьем уровне. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: l 2 tp , pptp, pppoe, vpn и т.д.

Коммутаторы 4 уровня (Layer 4) . Устройства уровня L4 работающие на транспортном уровне модели OSI . Отвечают за обеспечение надежности передачи данных. Эти коммутаторы, могут на основании информации из заголовков пакетов понимать принадлежность трафика разным приложениям и принимать решения о перенаправлении такого трафика на основании этой информации. Название таких устройств не устоялось, иногда их называют интеллектуальными коммутаторами, или коммутаторами L4.

Основные характеристики коммутаторов

Количество портов . В настоящее время существуют коммутаторы с количеством портов от 5 до 48. От этого параметра зависит количество сетевых устройств, которые можно подключить к данному коммутатору.

Например при построении малой локальной сети из 15 компьютеров нам понадобится коммутатор с 16 портами: 15 для подключения конченых устройств и один для установки и подключения маршрутизатора для выхода в интернет.

Скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно скорости указываются следующим образом: 10/100/1000 Мбит/с. Скорость работы порта определяется в процессе авто согласование с конечным устройством. В управляемых коммутаторах данный параметр может настраиваться вручную.

Например : Клиентское устройство ПК с сетевой платой 1 Гбит/с подключено к порту коммутатора со скоростью работы 10/100 Мбит/ c . В результате авто согласования устройства договариваются использовать максимально возможную скорость в 100 Мбит/с.

Авто согласование порта между Full – duplex и half – duplex . Full – duplex: передача данных одновременно осуществляется в двух направления. Half – duplex передача данных осуществляется сначала в одном, потом в другом направлении последовательно.

Внутренняя пропускная способность коммутационной матрицы . Данный параметр показывает с какой общей скоростью коммутатор может обрабатывать данные со всех портов.

Например : в локальной сети есть коммутатор у которого 5 портов работающих на скорости 10/100 Мбит/с. В технических характеристиках параметр коммутационная матрица равен 1 Гбит/ c . Это означает что каждый порт в режиме Full – duplex может работать со скоростью 200 Мбит/ c (100 Мбит/с прием и 100 Мбит/с передача). Допустим параметр данной коммутационной матрицы меньше заданного. Это означает, что в момент пиковых нагрузках, порты не смогут работать с заявленной скоростью в 100 Мбит/с.

Авто согласование типа кабеля MDI / MDI-X . Эта функция позволяет определить по какому из двух способов была обжата витая пара EIA/TIA-568A или EIA/TIA-568B. При монтаже локальных сетей наибольшее распространение получила схема EIA/TIA-568B.


Стекирование – это объединение нескольких коммутаторов в одно единое логическое устройство. Разные производители коммутаторов используют свои технологии стекирования, например c isco использует технологию стекирования Stack Wise с шиной между коммутаторами 32 Гбит/сек и Stack Wise Plus с шиной между коммутаторами 64 Гбит/сек.

К примеру данная технология актуально в крупных локальных сетях, где требуется на базе одного устройства подключить более 48 портов.


Крепеж для 19” стойки . В домашних условиях и малых локальных сетях коммутаторы довольно часто устанавливают на ровные поверхности или крепят на стену, однако наличие так называемых «ушей» необходимо в более крупных локальных сетях где активное оборудование размещается в серверных шкафах.

Размер таблицы MAC адресов . Коммутатор (switch) это устройство работающее на 2 уровне модели OSI . В отличии от хаба, который просто перенаправляет полученный фрейм во все порты кроме порта отправителя, коммутатор обучается: запоминает MAC адрес устройства отправителя, занося его, номер порта и время жизни записи в таблицу. Используя данную таблицу коммутатор перенаправляет фрейм не на все порты, а только на порт получателя. Если в локальной сети количество сетевых устройств значительно и размер таблицы переполнен, коммутатор начинает затирать более старые записи в таблице и записывает новые, что значительно снижает скорость работы коммутатора.

Jumboframe . Эта функции позволяет коммутатору работать с большим размером пакета, чем это определено стандартом Ethernet. После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша нет

Режимы коммутации. Для того, чтобы понять принцип работы режимов коммутации, сначала рассмотрим структуру фрейма передаваемого на канальном уровни между сетевым устройством и коммутатором в локальной сети:


Как видно из рисунка:

  • Сначала идет преамбула сигнализирующая начало передачи фрейма,
  • Затем MAC адрес назначения (DA ) и MAC адрес отправителя (SA )
  • Идентификатор третьего уровня: IPv 4 или IPv 6 используется
  • payload )
  • И в конце контрольная сумма FCS : 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным значением.

Теперь рассмотрим режимы коммутации:

Store - and - forward . Данный режим коммутации сохраняет фрейм в буфер целиком и проверяет поле FCS , которое находится в самом конце фрейма и если контрольная сумма этого поля не совпадает, отбрасывает весь фрейм. В результате снижается вероятность возникновения перегрузок в сети, так как есть возможность отбрасывать фреймы с ошибкой и откладывать время передачи пакета. Данная технология присутствует в более дорогих коммутаторах.

Cut -through . Более простая технология. В данном случае фреймы могут обрабатываться быстрее, так как не сохраняются в буфер полностью. Для анализа в буфер сохраняются данные от начала фрейма до MAC адрес назначения (DA) включительно. Коммутатор вычитывает этот MAC адрес и перенаправляет его адресату. Недостатком данной технологии является то, что коммутатор пересылая в данном случае как карликовые, длиной менее 512 битовых интервала, так и поврежденные пакеты, увеличивая нагрузку на локальную сеть.

Поддержка технологии PoE

Технология pover over ethernet позволяет запитывать сетевое устройство по тому же кабелю. Данное решение позволяет сократить денежные затраты на дополнительный монтаж питающих линий.

Существует следующие стандарты PoE:

PoE 802.3af поддерживает оборудование мощностью до 15,4 Вт

PoE 802.3at поддерживает оборудование мощностью до 30 Вт

Passiv PoE

PoE 802.3 af/at имеют интеллектуальные схемы управления подачи напряжения на устройство: прежде чем подать питание на устройство PoE источник стандарта af/at производит согласование с ним во избежании порчи устройства. Passiv PoE значительно дешевле первых двух стандартов, питание напрямую подается на устройство по свободным парам сетевого кабеля без каких либо согласований.

Характеристики стандартов


Стандарт PoE 802.3af поддерживается большинством недорогих IP видеокамер, IP телефонов и точек доступа.

Стандарт PoE 802.3at присутствует в более дорогих моделях IP камер видеонаблюдения, где не возможно уложиться в 15.4 Вт. В этом случае как IP видеокамера, так и PoE источник (коммутатор) должны поддерживать данный стандарт.

Слоты расширения . Коммутаторы могут иметь дополнительные слоты расширения. Наиболее распространенными являются SFP модули (Small Form-factor Pluggable) . Модульные, компактные приемопередатчики использующиеся для передачи данных в телекоммуникационной среде.


SFP модули вставляются в свободный SFP порт маршрутизатора, коммутатора, мультиплексора или медиа-конвертера. Хотя существуют SFP модули Ethernet, наиболее часто используются оптоволоконные модули для подкючения маигстрального канала при передаче данных на большие расстояния, недосягаемые для стандарта Ethernet. SFP модули подбираются в зависимости от расстояния, скорости передачи данных. Наиболее распространенными являются двухволоконные SFP модули, использующие одно волокно для приема, другое для передачи данных. Однако технология WDM позволяет вести передачу данных на разных длинах волн по одному оптическому кабелю.

SFP модули бывают:

  • SX - 850 нм используется с многомодовым оптическим кабелем на расстоянии до 550м
  • LX - 1310 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
  • BX - 1310/1550 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
  • XD - 1550 нм используется с одномодовый кабель до 40км, ZX до 80км, EZ или EZX до 120 км и DWDM

Сам стандарт SFP предусматривает передачу данных со скоростью 1Гбит/с, либо со скоростью 100 Мбит/с. Для более быстрой передачи данных, были разработаны модули SFP+:

  • SFP+ передача данных со скоростью 10 Гбит/с
  • XFP передача данных со скоростью 10 Гбит/с
  • QSFP+ передача данных со скоростью 40 Гбит/с
  • CFP передача данных со скоростью 100 Гбит/с

Однако при более высоких скоростях производится обработка сигналов на высоких частотах. Это требует большего теплоотвода и, соответственно, больших габаритов. Поэтому, собственно, форм-фактор SFP сохранился еще только в модулях SFP+.

Заключение

Многие читатели наверное сталкивались с неуправляемыми коммутаторами и бюджетными управляемыми коммутаторами второго уровня в малых локальных сетях. Однако выбор коммутаторов для построения более крупных и технически сложных локальных сетей лучше предоставить профессионалам.

Безопасная Кубань при монтаже локальных сетей использует коммутаторы следующих брендов:

Профессиональное решение:

Cisco

Qtech

Бюджетное решение

D-Link

Tp-Link

Tenda

Безопасная Кубань выполняет монтаж, запуск в эксплуатацию и обслуживание локальных сетей по Краснодару и Югу России.

Учебное пособие:

Четвертое издание

Москва, 2006

Коммутаторы локальных сетей D-Link

ВВЕДЕНИЕ. КРАТКИЙ ОБЗОР ПРИНЦИПОВ СЕТЕВОГО

ПРОЕКТИРОВАНИЯ ...............................

Э ВОЛЮЦИЯ ЛОКАЛЬНЫХ СЕТЕЙ: ОТ РАЗДЕЛЯЕМОЙ СРЕДЫ ПЕРЕДАЧИ ДО КОММУТИРУЕМОЙ....

Компоненты коммутируемой межсетевой модели. ...............................................

К ОММУТАТОРЫ ЛОКАЛЬНОЙ СЕТИ ...

Функционирование коммутаторов локальной сети ..................................................

...................................

Методы коммутации ...............................

Технологии коммутации и модель OSI ...........

Технологическая реализация коммутаторов

Коммутаторы на основе коммутационной матрицы ...........................................

Коммутаторы с разделяемой памятью .......

Коммутаторы с общей шиной ...

Конструктивное исполнение коммутаторов ......

Технология xStack™ ..............

Виртуальный стек. Технология Single IP Management™ .....................................

Х АРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ПРОИЗВОДИТЕЛЬНОСТЬ КОММУТАТОРОВ............................

Скорость фильтрации и скорость продвижения ......................................................

Размер адресной таблицы .................

Объем буфера кадров ............

П РОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОММУТАТОРОВ .....

Средства и программное обеспечение сетевого управления............................

О БЩИЕ ПРИНЦИПЫ СЕТЕВОГО ДИЗАЙНА ........................................................................................

Трехуровневая иерархическая модель сети ..............................................................

Уровень ядра ......................

Уровень распределения ...................................................................................................

Уровень доступа .............

П РОДУКТЫ D-L INK ...........

Коммутаторы уровня доступа ...........................................................................................

Коммутаторы уровня распределения ............................................................................

Коммутаторы уровня ядра ..................................................................................................

НАСТРОЙКА КОММУТАТОРА ................................................................................................

П ОНЯТИЕ НЕУПРАВЛЯЕМЫХ, УПРАВЛЯЕМЫХ И НАСТРАИВАЕМЫХ КОММУТАТОРОВ....................

П ОДКЛЮЧЕНИЕ К КОММУТАТОРУ .....................................................................................................

П ОДКЛЮЧЕНИЕ К ЛОКАЛЬНОЙ КОНСОЛИ КОММУТАТОРА .............................................................

Н АЧАЛЬНАЯ КОНФИГУРАЦИЯ КОММУТАТОРА ..................................................................................

Вызов помощи по командам ..............................................................................................

Базовая конфигурация коммутатора .............................................................................

Подключение к Web-интерфейсу управления коммутатора..............................

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ КОММУТАТОРОВ ..................................................

В ИРТУАЛЬНЫЕ ЛОКАЛЬНЫЕ СЕТИ VLAN ........................................................................................

Типы VLAN ..................................................................................................................................

VLAN на базе портов .........................................................................................................

Коммутаторы локальных сетей D-Link

VLAN на базе MAC-адресов ............................................................................................

VLAN на базе меток – стандарт IEEE 802.1Q .........................................................

Определения IEEE 802.1Q ..............................................................................................

Продвижение пакетов VLAN 802.1Q ..........................................................................

Теги IEEE 802.1Q VLAN ....................................................................................................

Port VLAN ID ..........................................................................................................................

Tagged и Untagged .............................................................................................................

Фильтрация входящего трафика .................................................................................

Создание VLAN с помощью команд CLI .......................................................................

Асимметричные VLAN ............................................................................................................

Пример 1. Конфигурирование асимметричных VLAN в пределах одного

коммутатора ..........................................................................................................................

Пример 2. Конфигурирование асимметричных VLAN на двух автономных

коммутаторах ........................................................................................................................

О БЪЕДИНЕНИЕ ПОРТОВ И СОЗДАНИЕ ВЫСОКОСКОРОСТНЫХ СЕТЕВЫХ МАГИСТРАЛЕЙ..............

Создание агрегированного канала с помощью команд CLI ...........................

Пример 1. Статическое агрегирование каналов.....................................................................

Пример 2. Создание группы агрегированного канала в соответствии со

стандартом IEEE 802.3ad ................................................................................................

S PANNING T REE P ROTOCOL (IEEE 802.1 D ) .................................................................................

Понятие петель ........................................................................................................................

Широковещательный шторм .........................................................................................

Множественные копии кадров .....................................................................................

Множественные петли ......................................................................................................

Пример работы STP ................................................................................................................

Rapid Spanning Tree Protocol (IEEE 802.1w) ...............................................................

Сходимость IEEE 802.1w .................................................................................................

Последовательность предложений/соглашений ..................................................

Механизм изменения топологии ..................................................................................

Совместимость IEEE 802.1d/IEEE 802.1w ..............................................................

Максимальный диаметр сети .......................................................................................

Сравнение протоколов STP 802.1d и RSTP 802.1w ..........................................

Конфигурирование STP с помощью команд CLI .................................................

К АЧЕСТВО СЕРВИСА (Q O S) ...........................................................................................................

Приоритетная обработка кадров (IEEE 802.1р) .....................................................

Конфигурирование приоритетной обработки кадров с помощью CLI.....

Контроль полосы пропускания ......................................................................................

Конфигурирование полосы пропускания с помощью команд CLI.............

О ГРАНИЧЕНИЕ ДОСТУПА К СЕТИ ....................................................................................................

Port Security и таблица фильтрации коммутатора ................................................

Настройка Port Security с помощью CLI .................................................................

С ЕГМЕНТАЦИЯ ТРАФИКА .................................................................................................................

Конфигурирование Traffic Segmentation с помощью CLI...............................

П РОТОКОЛ IEEE 802.1 Х ..............................................................................................................

Роли устройств .......................................................................................................................

Состояние портов коммутатора .....................................................................................

Ограничения аутентификации IEEE 802.1х .........................................................

Конфигурирование IEEE 802.1х с помощью CLI ................................................

A CCESS C ONTROL L ISTS (ACL) .....................................................................................................

Алгоритм создания профиля доступа .........................................................................

Коммутаторы локальных сетей D-Link

Создание профилей доступа (с использованием Web-интерфейса) ...........

Конфигурирование Access Control Lists (ACL) с помощью CLI....................

Примеры профилей доступа ........................................................................................

МАС-адреса групповой рассылки .................................................................................

Подписка и обслуживание групп ..................................................................................

Протокол IGMP v1 .............................................................................................................

Протокол IGMP v2 .............................................................................................................

Конфигурирование IGMPsnooping с помощью CLI.........................................

ЛИТЕРАТУРА: ...............................................................................................................................

ПРИЛОЖЕНИЕ А. СИНТАКСИС КОМАНД. ....................................................................

ПРИЛОЖЕНИЕ В. ГЛОССАРИЙ ..........................................................................................

Коммутаторы локальных сетей D-Link

ВВЕДЕНИЕ. Краткий обзор принципов сетевого проектирования

Эволюция локальных сетей: от разделяемой среды передачи до коммутируемой

Еще десять лет назад для создания кампусных сетей у разработчиков имелось ограниченное количество аппаратных средств. В серверных комнатах устанавливались концентраторы, а в центрах обработки данных и на магистралях сети использовались маршрутизаторы. Увеличивающаяся мощность процессоров рабочих станций, появление мультимедийных приложений и приложений клиент-сервер требовали большей полосы пропускания, чем могла обеспечить традиционная сеть с разделяемой средой передачи. Эти требования подтолкнули проектировщиков к замене концентраторов, установленных в коммутационных отсеках на коммутаторы.

Рисунок 1 Эволюция ЛВС

Эта стратегия позволила защитить инвестиции, вложенные в кабельную систему и увеличить производительность сети, благодаря предоставлению каждому пользователю выделенной полосы пропускания.

Создание таких технологий, как коммутация 3-го уровня, виртуальные локальные сети VLAN и др. сделало построение кампусных сетей более сложным процессом, чем ранее.

Большинство проектировщиков сетей начали интегрировать коммутирующие устройства в сети с разделяемой средой передачи для достижения следующих целей:

Увеличения полосы пропускания доступной каждому пользователю сети, уменьшая при этом перегрузку в сетях с разделяемой полосой пропускания.

Создания виртуальных локальных сетей VLAN (Virtual Local Area Network) путем организации пользователей в логические группы,

Коммутаторы локальных сетей D-Link

независимые от физической топологии с целью уменьшения расходов на перемещение, добавление и изменение и повышения гибкости сети.

Развертывания новых мультимедийных приложений на коммутаторах различных платформ и технологий, делая их доступными различным пользователям.

Обеспечения простого перехода к новым высокоскоростным технологиям, таким как Fast Ethernet, Gigabit Ethernet.

В 1990-х годах традиционные кампусные сети появлялись в виде единой локальной вычислительной сети и разрастались до тех пор, пока для поддержания их функциональности не понадобиласьсегментация . Сегментация позволила делить пользователей сети на несколько групп (сегментов) в соответствии с их физическим размещением, уменьшая количество клиентов соперничающих за полосу пропускания в каждой из них. Сегменты локальной сети объединялись с помощью межсетевых устройств, которые передавали межсегментный трафик и блокировали весь остальной.

Коммутаторы локальных сетей разрабатывались с учетом этой тенденции. Они используют микросегментацию , которая позволяет создать частные или выделенные сегменты локальной сети – по одной рабочей станции на сегмент (к порту коммутатора подключается не сегмент, а только рабочая станция). При этом каждая рабочая станция получает доступ сразу ко всей полосе пропускания, и ей не приходится конкурировать с другими станциями.

Коммутаторы объединяют различные сегменты локальной сети и выполняют интеллектуальное управление трафиком. Помимо этого коммутаторы обычно обеспечивают неблокирующие сервисы, что позволяет выполнять одновременную передачу потока данных от всех портов устройства.

Технология коммутации быстро стала предпочтительным решением для повышения гибкости управления трафиком локальной сети по следующим причинам:

В отличие от концентраторов и повторителей, коммутаторы позволяют одновременную передачу множества потоков данных.

Благодаря микросегментации коммутаторы поддерживают высокую скорость передачи и имеют возможность предоставлять выделенную полосу пропускания приложениям, чувствительным к задержкам.

Коммутаторы обеспечивают пользователям выделенную полосу пропускания.

Компоненты коммутируемой межсетевой модели.

Коммутируемая сеть состоит из следующих основных компонентов:

Коммутаторов локальной сети;

Программного обеспечения коммутаторов;

Средств сетевого управления.

Компания D-Link предоставляет сетевым проектировщикам полный набор средств для создания и управления масштабируемой, надежной коммутируемой сети.

Коммутаторы локальных сетей D-Link

Коммутаторы локальной сети

Первым компонентом коммутируемой межсетевой модели являются коммутаторы локальной сети.

Функционирование коммутаторов локальной сети

Коммутаторы – это устройства канального уровня, которые позволяют соединить несколько физических сегментов локальной сети в одну большую сеть. Коммутация локальных сетей обеспечивает взаимодействие сетевых устройств по выделенной линии без возникновения коллизий, с параллельной передачей нескольких потоков данных.

Коммутаторы локальных сетей обрабатывают кадры на основе алгоритма прозрачного моста (transparent bridge) IEEE 802.1, который применяется в основном в сетях Ethernet. При включении питания коммутатор начинает изучать расположение рабочих станций всех присоединенных к нему сетей путем анализа МАС-адресов источников входящих кадров. Например, если на порт 1 коммутатора поступает кадр от узла 1, то он запоминает номер порта, на который этот кадр пришел и добавляет эту информацию втаблицу коммутации (forwarding database). Адреса изучаютсядинамически . Это означает, что, как только будет прочитан новый адрес, то он сразу будет занесен в контентно-адресуемую память (content-addressable memory, CAM). Каждый раз, при занесении адреса в таблицу коммутации, ему присваивается временной штамп. Это позволяет хранить адреса в таблице в течение определенного времени. Каждый раз, когда идет обращение по этому адресу, он получает новый временной штамп. Адреса, по которым не обращались долгое время, из таблицы удаляются.

Рисунок 2 Построение таблицы коммутации

Коммутаторы локальных сетей D-Link

Коммутатор использует таблицу коммутации для пересылки трафика. Когда на один из его портов поступает пакет данных, он извлекает из него информацию о МАС-адресе приемника и ищет этот МАС-адрес в своей таблице коммутации. Если в таблице есть запись, ассоциирующая МАС-адрес приемника с одним из портов коммутатора, за исключением того, на который поступил кадр, то кадр пересылается через этот порт. Если такой ассоциации нет, кадр передается через все порты, за исключением того, на который он поступил. Это называетсялавинным распространением (flooding).

Широковещательная и многоадресная рассылка выполняется также путем лавинного распространения. С этим связана одна из проблем, ограничивающая применение коммутаторов. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. В случае если в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начнет работать не правильно, и будет постоянно генерировать широковещательные кадры, коммутатор в этом случае будет передавать кадры во все сегменты, затапливая сеть ошибочным трафиком.

Такая ситуация называется широковещательным штормом (broadcast storm).

Коммутаторы надежно изолируют межсегментный трафик, уменьшая таким образом трафик отдельных сегментов. Этот процесс называется фильтрацией (filtering) и выполняется в случаях, когда МАС-адреса источника и приемника принадлежат одному сегменту. Обычно фильтрация повышает скорость отклика сети, ощущаемую пользователем.

Дуплексный и полудуплексный режим работы коммутатора

Коммутаторы локальных сетей поддерживают два режима работы:

полудуплексный режим и дуплексныйрежим.

Полудуплексный режим - это режим, при котором, только одно устройство может передавать данные в любой момент времени в одном домене коллизий1 .

Дуплексный режим – это режим работы, который обеспечивает одновременную двухстороннюю передачу данных между станциейотправителем и станцией-получателем на МАС - подуровне. При работе в дуплексном режиме, между сетевыми устройствами повышается количество передаваемой информации. Это связано с тем, что дуплексная передача не вызывает в среде передачи коллизий, не требует составления расписания повторных передач и добавления битов расширения в конец коротких кадров. В результате не только увеличивается время, доступное для передачи данных, но иудваивается полезная полоса пропускания канала, поскольку каждый канал обеспечивает полноскоростную одновременную двустороннюю передачу2 .

1 Доменом коллизий (collision domain) называется часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети эта коллизия возникла.

2 Дуплексный режим работы поддерживают коммутаторы и практически все современные адаптеры. Концентраторы не поддерживают работу в этом режиме.

Коммутаторы локальных сетей D-Link

Управление потоком IEEE 802.3x в дуплексном режиме

Дуплексный режим работы требует наличия такой дополнительной функции, как управление потоком. Она позволяет принимающему узлу (например, порту сетевого коммутатора) в случае переполнения дать узлуисточнику команду (например, файловому серверу) приостановить передачу кадров на некоторый короткий промежуток времени. Управление осуществляется между МАС-уровнями с помощью кадра-паузы, который автоматически формируется принимающим МАС уровнем. Если переполнение будет ликвидировано до истечения периода ожидания, то для того, чтобы восстановить передачу, отправляется второй кадр-пауза с нулевым значением времени ожидания (см.Рисунок 3 ).

Рисунок 3 Последовательность управления потоком IEEE 802.3x

Дуплексный режим работы и сопутствующее ему управление потоком являются дополнительными режимами для всех МАС-уровней Ethernet независимо от скорости передачи. Кадры-паузы идентифицируются как управляющие МАС-кадры по индивидуальным (зарезервированным) значениям поля длины/типа. Им также присваивается зарезервированное значение адреса приемника, чтобы исключить возможность передачи входящего кадра-паузы протоколам верхних уровней или на другие порты коммутатора.

Методы коммутации

В коммутаторах локальных сетей могут быть реализованы различные методы передачи кадров.

При коммутации с промежуточным хранением (store-and-forward) –

коммутатор копирует весь принимаемый кадр в буфер и производит его проверку на наличие ошибок. Если кадр содержит ошибки (не совпадает контрольная сумма, или кадр меньше 64 байт или больше 1518 байт), то он отбрасывается. Если кадр не содержит ошибок, то коммутатор находит адрес приемника в своей таблице коммутации и определяет исходящий интерфейс. Затем, если не определены никакие фильтры, он передает этот кадр приемнику.

Этот способ передачи связан с задержками - чем больше размер кадра, тем больше времени требуется на его прием и проверку на наличие ошибок.

Коммутаторы локальных сетей D-Link

Коммутация без буферизации (cut-through) – коммутатор локальной сети копирует во внутренние буферы только адрес приемника (первые 6 байт после префикса) и сразу начинает передавать кадр, не дожидаясь его полного приема. Это режим уменьшает задержку, но проверка на ошибки в нем не выполняется. Существует две формы коммутации без буферизации:

Коммутация с быстрой передачей (fast-forward switching)– эта форма коммутации предлагает низкую задержку за счет того, что кадр начинает передаваться немедленно, как только будет прочитан адрес назначения. Передаваемый кадр может содержать ошибки. В этом случае сетевой адаптер, которому предназначен этот кадр, отбросит его, что вызовет необходимость повторной передачи этого кадра.

Коммутация с исключением фрагментов (fragment-free switching)–

коммутатор фильтрует коллизионные кадры, перед их передачей. В правильно работающей сети, коллизия может произойти во время передачи первых 64 байт. Поэтому, все кадры, с длиной больше 64 байт считаются правильными. Этот метод коммутации ждет, пока полученный кадр не будет проверен на предмет коллизии, и только после этого, начнет его передачу. Такой метод коммутации уменьшает количество пакетов передаваемых с ошибками.

Технологии коммутации и модель OSI

Коммутаторы локальных сетей можно классифицировать в соответствии с уровнями модели OSI, на которых они передают, фильтруют и коммутируют кадры. Различают коммутаторы уровня 2 (Layer 2 Switch), коммутаторы уровня 2 со свойствами уровня 3 (Layer 3 Switch) и многоуровневые коммутаторы.

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС – адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 – прозрачность для протоколов верхнего уровня. Поскольку коммутатор функционирует на 2-м уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутация 2-го уровня – аппаратная. Она обладает высокой производительностью, поскольку пакет данных не претерпевает изменений. Передача кадра в коммутаторе может осуществляться специализированным контроллером, называемым Application-Specific Integrated Circuits (ASIC). Эта технология, разработанная для коммутаторов, позволяет обеспечивать высокие скорости коммутации с минимальными задержками.

Существуют 2 основные причины использования коммутаторов 2-го уровня – сегментация сети и объединение рабочих групп. Высокая производительность коммутаторов позволяет разработчикам сетей значительно уменьшить количество узлов в физическом сегменте. Деление крупной сети на логические сегменты повышает производительность сети (за счет уменьшения объема передаваемых данных в отдельных сегментах), а также гибкость построения сети, увеличивая степень защиты данных, и облегчает управление сетью.

Несмотря на преимущества коммутации 2-го уровня, она все же имеет некоторые ограничения. Наличие коммутаторов в сети не препятствует