Теория радиоволн: аналоговая модуляция. Амплитудная модуляция и ее совершенствование

  • 29.07.2019

Если переменной оказывается амплитуда сигнала U(t), причём остальные два параметра и неизменны, то имеется амплитудная модуляция (АМ) несущего колебания. Форма записи АМ-сигнала, такова:

В соответствии с формулой (5.2) АМ-сигнал есть произведение огибающей U(t) и гармонического заполнения . В большинстве практических случаев огибающая изменяется во времени гораздо медленнее, чем высокочастотное заполнение.

При АМ связь между огибающей U(t) и модулирующим полезным сигналом S(t) определяется следующим образом:

Здесь постоянный коэффициент, равный амплитуде несущего колебания в отсутствие модуляции; М – коэффициент АМ. Величина М – характеризует глубину АМ.

При малой глубине модуляции относительное изменение огибающей невелико, то есть во все моменты времени независимо от формы сигнала S(t).

Если же в момент времени, когда сигнал S(t) достигает экстремальных значений, имеются приближённые равенства.

то говорят о глубокой АМ.

АМ-сигналы с малой глубиной модуляции нецелесообразны ввиду неполного использования мощности передатчика. В то же время 100%-ная модуляция (М=1) в два раза повышает амплитуду колебаний при пиковых значениях модулированного сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика.

Не менее опасна слишком глубокая АМ (при М>1) называемая перемодуляцией. Здесь форма огибающей перестаёт повторять форму модулированного сигнала.

Однотональная АМ.

Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой Такой сигнал

называется однотональным АМ-сигналом. Такой сигнал можно представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (5.4) сразу получаем:

(5.5)

Формула (5.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: - несущая частота, - верхняя боковая частота, нижняя боковая частота.

Строя по формуле (5.5) спектральную диаграмму однотонального АМ-сигнала, следует обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания.

Если рассмотреть вопрос о соотношении мощностей несущего и боковых колебаний, то путём несложных математических преобразований можно убедиться, что средняя мощность АМ-сигнала равна сумме средних мощностей несущего и боковых колебаний.


Откуда следует:

(5.7)

Даже при 100%-ной модуляции (М=1) доля мощности обоих боковых колебаний составляет лишь 50% от мощности немодулированного несущего колебания.

А поскольку информация о сообщении заключена в боковых колебаниях, можно сделать вывод о неэффективности использования мощности при передаче АМ-сигнала.

АМ при сложном модулирующем сигнале

На практике однотональные АМ-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма.

(5.8)

Здесь частоты образуют упорядоченную возрастающую последовательность , В то время как амплитуды и начальные фазы произвольны.

Подставив формулу (5.8) в (5.3), получим:

Введём совокупность парциальных (частичных) коэффициентов модуляции: и запишем аналитическое выражение сложномодулированного сигнала (многотонального) АМ-сигнала в форме, которая обобщает выражение (5.4)

Спектральное разложение проводится так же, как и однотонального АМ-сигнала:

(5.12)

На рисунке а) изображена спектральная диаграмма модулирующего сигнала S(t), построенная в соответствии с формулой (5.8). Рисунок б) воспроизводит диаграмму многотонального АМ-сигнала, где помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. С целью упрощения изображены только физические спектры.

Спектр верхних боковых колебаний является масштабной копией спектра модулированного сигнала, сдвинутой в область высоких частот на величину . Спектр нижних боковых колебаний так же повторяет спектральную диаграмму сигнала S(t), но располагается зеркально относительно несущей частоты . Отсюда следует важный вывод: ширина спектра АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Амплитудно-манипулированные сигналы.

Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это – последовательности радиоимпульсов, отделённых друг от друга паузами. Такие сигналы широко используются в технике связи. Если S(t) – функция, в каждый момент времени принимающая значение либо 0, либо1, то амплитудно-манипулированный сигнал представляется в виде:

Пусть, например, функция S(t) отображает периодическую последовательность видеоимпульсов. Считая, что амплитуда этих импульсов A=1, на основании (5.14) имеем при

Где q - скважность последовательности (,– длительность одного импульса).

Балансная АМ.

Как видно из предыдущего, значительная доля мощности АМ – сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ – сигналы с подавленным несущим колебанием, реализуя так называемую балансную АМ(БМ). На основании формулы (5.4) представление однотонального АМ – сигнала с БМ таково:

(5.16)

Имеет место перемножение двух сигналов – модулирующего и несущего. Колебания вида (5.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами и частотами, равными верхней и нижней боковым частотам.

При многотональной БМ аналитическое выражение сигнала принимает вид:

Рассмотрим спектральную и временную диаграмму БМ – сигнала.

Как и при обычной АМ, в спектре БМ наблюдается две симметричные группы верхних и нижних боковых колебаний.

Если рассмотреть временную диаграмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой.

Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180 градусов, поскольку функция имеет разные знаки слева и справа от нуля. Если такой сигнал подать на высокодобротную колебательную систему (например,LС-контур), настроенную на частоту , то выходной эффект будет очень мал, стремясь к нулю при возрастании добротности. Колебания в системе, возбуждённые одним периодом биений, будут гаситься последующим периодом.

Однополосная амплитудная модуляция.

Ещё более интересное усовершенствование принципа обычной АМ заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот (ОБП).

Сигналы с одной боковой полосой (SSB - singl side band) по внешним характеристикам напоминают обычные АМ-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде:

Проводя тригонометрические преобразования, получаем:

Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая – быстро.

Основное преимущество ОБП-сигналов – двукратное сокращение полосы занимаемых частот, что оказывается существенным для частотного уплотнения каналов связи.

Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется ещё более эффективно.

Амплитудно-модулированные сигналы и их спектры

При амплитудной модуляции (АМ) амплитуда несущего сигнала подвергается воздействию сигнала сообщения. Мгновенное значение АМ колебания с гармонической несущей может быть записано в виде

где U m (t) – «переменная амплитуда» или огибающая амплитуд;

– круговая частота несущего сигнала;

– начальная фаза несущего сигнала.

«Переменная амплитуда» U m (t) пропорциональна управляющему сигналу (сигналу сообщения) U с (t):

, (2.17)

где U m 0 – амплитуда несущего сигнала до амплитудной модуляции, то есть поступающего на модулятор;

– коэффициент пропорциональности.

При модуляции несущего сигнала сигналом сообщения необходимо обеспечить, чтобы U m (t) была величиной положительной. Это требование выполняется выбором коэффициента .

Для исключения влияния переходных процессов в радиоэлектронной цепи модулятора и других цепях преобразования модулированного сигнала на спектр сигнала сообщения необходимо выполнение следующего условия: наивысшая по частоте спектральная составляющая в ограниченном спектре сигнала сообщения должна иметь частоту , – что обеспечивается выбором частоты несущего сигнала.

На рис. 2.10 и 2.11 показаны два примера построения графиков АМ колебаний. На рисунках изображены следующие графики:

а – сигнал сообщения u c (t);

б – несущий сигнал u 0 (t);

в – огибающая амплитуд U m (t);

г – АМ сигнал u(t).

Для понимания образования спектра АМ сигнала рассмотрим простой случай: однотональное амплитудно-модулированное колебание. В этом случае модулирующий сигнал является гармоническим (однотональным):

с амплитудой U mc , частотой и начальной фазой .

Огибающая амплитуд однотонального АМ колебания имеет вид:

где – максимальное приращение амплитуды. Мгновенное значение однотонального АМ колебания

Отношение называется коэффициентом глубины модуляции или просто коэффициентом модуляции . Так как U m (t)> 0, то 0< m< 1. Часто m измеряют в процентах, тогда 0< m< 100%. С учетом введения коэффициента модуляции однотональное модулированное колебание запишем в виде:

Графики, поясняющие процесс однотональной амплитудной модуляции, приведены на рис. 2.12.

Рис. 2.12. Однотональная амплитудная модуляция

Для нахождения спектра однотонального амплитудно-модулированного сигнала необходимо сделать следующие преобразования:

(2.20)

При выводе выражения (2.20) использована тригонометрическая формула

Таким образом, при однотональной амплитудной модуляции несущего сигнала спектр содержит три составляющие: одна на несущей частоте имеет амплитуду U m 0 и две на боковых частотах с амплитудами mU m 0 /2, зависящими от коэффициента модуляции; при m< 1 их амплитуды составляют не более половины амплитуды несущей гармоники. Начальные фазы колебаний боковых спектральных составляющих отличаются от начальной фазы на величину . На рис. 2.13 показаны графики АЧС и ФЧС однотонального амплитудно-модулированного колебания.

Рис. 2.13. Спектр однотонального амплитудно-модулированного колебания

Из анализа спектра следует, что АЧС является четным относительно частоты , а ФЧС нечетным относительно точки с координатами ( , ).

При условии все составляющие спектра являются высокочастотными, следовательно, такой сигнал может эффективно передаваться с помощью ЭМВ.

Рассмотрим энергетические параметры однотонального АМ сигнала. Средняя за период несущего сигнала мощность, выделяемая на единичном сопротивлении,

В отсутствии модуляции эта мощность равна

а при модуляции изменяется в пределах от

.

Если m=100%, то , а P min = 0. Средняя мощность сигнала за период модуляции будет складываться из мощностей спектральных составляющих

В случае m=100% Р ср = 1,5Р 0 .

Перейдем к рассмотрению общего случая к так называемому многотональному АМ сигналу. Модулирующий сигнал, то есть сигнал сообщения, имеет спектр вида (1.22)

.

Огибающая амплитуд имеет вид:

где – максимальное приращение амплитуды n-ой гармоники модулирующего сигнала.

Выражение для многотонального АМ сигнала примет следующий вид:

(2.23)

где – коэффициент модуляции n-ой гармоники модулирующего сигнала. Применяя аналогичные, как это было сделано для однотональной амплитудной модуляции, тригонометрические преобразования, получим

(2.24)

Выражение (2.24) представляет спектр амплитудно-модулированного сигнала. Относительно колебания с частотой имеют место два ряда составляющих с верхними и нижними боковыми частотами. Эти составляющие образуют так называемые верхнюю и нижнюю боковые полосы спектра.

Передать весь спектр АМ сигнала по каналу информации невозможно по следующим причинам. Во-первых, нельзя создать идеальную линейную цепь в области частот , см. п.1.4. Во-вторых, при увеличении полосы пропускания линейной цепи может уменьшиться отношение мощности сигнала к мощности шумов (см. п.1.5). В-третьих, полоса пропускания, по возможности, должна быть минимальной, чтобы в заданном частотном диапазоне работало как можно больше радиолиний (радиоканалов), не влияющих друг на друга, то есть не создающих друг другу помех. Следовательно, спектр сигнал ограничивается частотой , наиболее удаленной от частоты несущего сигнала. На рис. 2.14 приведенный амплитудный спектр АМ сигнала. Ширина спектра определяется максимальной частотой в спектре модулирующего сигнала и составляет 2 . Примерные значения ширины спектра для некоторых АМ сигналов представлены в табл. 1.1.

где m=k AM S m /U mo – коэффициент амплитудной модуляции. На рис. 5 показаны модулированные сигналы с коэффициентами АМ, равными m=0,5 и m=1 соответственно. При стопроцентной амплитудной модуляции (m=1) имеют место максимальные изменения амплитуды модулированного сигнала: амплитуда изменяется от нуля до удвоенного значения.

Используя тригонометрическую формулу для произведения косинусов, выражение (3) можно представить в виде формулы (4). Все три слагаемые в правой части формулы (4) – гармонические колебания. Первое слагаемое представляет собой исходное немодулированное колебание (несущую). Второе и третье слагаемые называют, соответственно, верхней и нижней боковыми составляющими.

До настоящего времени в радиоэлектронике не разработано эффективных методов непосредственного перемножения двух или нескольких аналоговых сигналов. Поэтому при осуществлении амплитудной модуляции применяются косвенные методы перемножения с помощью нелинейных или параметрических цепей.

Одним из вариантов построения амплитудных модуляторов являются АМ на основе резонансных усилителей мощности, использующих эффект преобразования суммы модулирующего и несущего колебаний, подаваемых на безынерционный нелинейный элемент. Простейший АМ создают на основе нелинейного резонансного усилителя (рис. 6), включив на входе последовательно источники постоянного напряжения смещения U o , модулирующего сигнала е(t) и генератор несущего колебания U n (t), и настроив колебательный контур на несущую частоту ω o .

Для получения однотонального АМ-сигнала к входу модулятора необходимо приложить напряжение

Анализировать работу модулятора можно с помощью диаграмм токов и напряжений (рис. 7). Предположим, что сквозная характеристика транзистора (зависимость тока коллектора I к от напряжения база – эмиттер U бэ) аппроксимирована двумя отрезками прямых линий. Вследствие перемещения рабочей точки относительно напряжения смещения Uo по закону модулирующего сигнала е(t) происходит изменение угла отсечки тока в кривой несущего колебания. В результате импульсы коллекторного тока i к транзистора, отражающие изменение несущего колебания, оказываются промодулированными по амплитуде.

В спектре импульсов коллекторного тока транзистора содержится множество гармонических составляющих с частотами ω 0 и Ω, а также с кратными и комбинационными (суммарными и разностными составляю щими гармоник ω 0 и Ω) частотами. Резонансный контур должен иметь полосу пропускания Δω АМ = 2Ω для выделения из спектра импульсов коллекторного тока только гармоники с частотами ω 0 – Ω, ω 0 и ω 0 + Ω.


Рис. 7. Диаграммы токов и напряжений

2.2. Угловая модуляция

При угловой модуляции (angle modulation) в несущем гармоническом колебании u(t) = U m cos(wt+j) значение амплитуды колебаний U m остается постоянным, а информация s(t) переносится либо на частоту w, либо на фазовый угол j. И в том, и в другом случае текущее значение фазового угла гармонического колебания u(t) определяет аргумент y(t) = wt+j, который называют полной фазой колебания.

Фазовая модуляция (ФМ, phase modulation – PM).При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний w o пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ – сигнала определяется выражением:

u(t) = U m cos, (6)

где k – коэффициент пропорциональности. Пример однотонального ФМ–сигнала приведен на рис. 8.

При s(t) = 0, ФМ–сигнал является простым гармоническим колебанием и показан на рисунке функцией u o (t). С увеличением значений s(t) полная фаза колебаний y(t)=w o t+k×s(t) нарастает во времени быстрее и опережает линейное нарастание w o t. Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига Dy между ФМ – сигналом и значением w o t немодулированного колебания также является максимальным и носит название девиации фазы (вверх Dj в = k×s max (t) или вниз Dj н = k×s min (t) с учетом знака экстремальных значений модулирующего сигнала).

Для колебаний с угловой модуляцией применяется также понятие мгновенной частоты (instantaneous frequency), под которой понимают производную от полной фазы по времени:

На (рис. 9) приведена схема фазового модулятора (аналогичная схема используется в радиостанции «Кама – Р»). Напряжение высокой частоты через автотрансформаторную связь поступает на первичный контур – катушку L1 и варикап V1. Далее, через конденсаторы связи С1, С2 напряжение подается на второй контур – L2, V2 и третий – L3, V3. Варикапы выполняют роль контурных конденсаторов.

При отсутствии модулирующего напряжения с микрофона (U=0) на варикапах действует постоянное напряжение смещения, которое устанавливается потенциометрами R10–R12. Напряжение смещения подбирается ток, чтобы каждый контур был настроен на частоту входного напряжения . Поэтому высокочастотное напряжение проходит все 3 контура, не получая дополнительного сдвига по фазе.

При появлении на выводах 1, 2 звукового напряжения U оно через разделительные конденсаторы С6–С8 подается на варикапы. Напряжение смещения суммируется с напряжением модуляции и емкости варикапов изменяются в такт со звуковым напряжением. Вследствие меняющейся расстройки колебательных контуров выходное напряжение оказывается промодулированным по фазе. Количество контуров определяет глубину модуляции.

Конденсаторы С3–С5 имеют малое сопротивление токам высокой частоты (короткое замыкание) и относительно большое для токов звуковой частоты. Благодаря этим конденсаторам и резисторам R4–R6 осуществляется развязка между высокочастотной и низкочастотной частями схемы.

При передаче сообщений телеграфом излучение высокочастотной энергии периодически прекращается и возобновляется. Этот процесс называется манипуляцией.

Частотная модуляция (ЧМ, frequency modulation – FM) характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная частота колебаний образуется сложением частоты высокочастотного несущего колебания w o со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности:

Уравнение ЧМ – сигнала:

u(t) = U m cos(ω o t+k s(t) dt +j o). (8)

Аналогично ФМ, для характеристики глубины частотной модуляции используются понятия девиации частоты вверх Dw в = k×s max (t), и вниз

Dw н = k×s min (t).

Частотная и фазовая модуляция взаимосвязаны. Если изменяется начальная фаза колебания, изменяется и мгновенная частота, и наоборот. По этой причине их и объединяют под общим названием угловой модуляции. По форме колебаний с угловой модуляцией невозможно определить, к какому виду модуляции относится данное колебание, к ФМ или ЧМ, а при достаточно гладких функциях s(t) формы сигналов ФМ и ЧМ вообще практически не отличаются.

Схема частотного модулятора представлена на рис. 10.

При рассмотрении схемы следует сказать о том, что в отличие от амплитудной модуляции частотная модуляция осуществляется непосредственно в задающем генераторе передатчика. На рис. 10 показан упрощенный вариант схемы частотной модуляции с применением варикапа.

Варикап представляет собой специальной конструкции полупроводниковый диод. Если диод включить в обратном направлении, то его закрытый p–n переход может рассматриваться как конденсатор. Регулируя напряжение запирания, можно изменять емкость этого «конденсатора». На рисунке транзистор VT2 с колебательным контуром Ск, Lk и катушкой связи Lсв образуют генератор синусоидальных колебаний с самовозбуждением.

Так как параллельно контуру с конденсатором Ск через Ссв подключается емкость варикапа, то частота генерируемых колебаний в режиме «молчания» будет определяться следующим образом:

(9)

Здесь – емкость варикапа в исходном состоянии при отсутствии звукового напряжения .

Начальная емкость определяется начальным запирающим напряжением, которое равно напряжению на Rk при протекании тока покоя .

Модулятором в схеме является усилитель напряжения звуковой частоты на транзисторе VT1 с коллекторной нагрузкой и варикапом.

При воздействии на микрофон с коллекторной нагрузки Rk снимается звуковое напряжение , которое через высокочастотный дроссель L1 подается на варикап и изменяет его емкость и следовательно частоту генерируемых высокочастотных колебаний.

Конденсатором Ссb можно регулировать девиацию частоты генерируемых колебаний. Высокочастотный дроссель позволяет развязать высокочастотную часть схемы от низкочастотной, иными словами, исключить

попадание высокочастотного напряжения на коллектор транзистора усилителя низкой частоты.

2.3. Импульсная модуляция

Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Далее различают импульсную амплитудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена - с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируемой величины амплитуду импульса или его ширину, или его положение в последовательности импульсов и т. д. Следовательно, существует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.

Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями (высоким и низким) и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, которые представляют цифровое значение.

При использовании импульсных методов для передачи аналого­вых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к модуляции, так как аналоговые данные используются для модулирования (изменения) последовательности импульсов или импульсной поднесущей. На рис. 11а показана модуляция синусоидальным сигналом последовательности импульсов.

Амплитуда каждого импульса в модулированной последовательности зависит от мгновенного значения аналогового сигнала. Синусоидальный сигнал можетбыть восстановлен из последовательности модулированных импульсов путем простой фильтрации. На рис. 11б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 11б форма колебаний не является хорошим воспроизведением первоначального сигнала из-за того, что число импульсов на период аналогового сигнала невелико. При использовании большего числа импульсов, т. е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более качественное воспроизведение. Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуляции поднесущей последовательности импульсов, может быть выполнен путем выборки аналогового сигнала через постоянные интервалы времени импульсами выборки с фиксированной длительностью.

Импульсы выборки - это импульсы, амплитуды которых равны величине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть, по крайней мере, в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.

АИМ является только одним типом импульсной модуляции. Кроме него существуют:

ШИМ – широтно-импульсная модуляция (модуляция импульсов по длительности);

ЧИМ – частотно-импульсная модуляция;

КИМ – кодово-импульсная модуляция.

Широтно-импульсная модуляция преобразует уровни выборок напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок. Отметим, что амплитуда этих импульсов постоянна; в соответствии с модулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки (интервал между импульсами) также фиксирован.

Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с величиной напряжений выборок. И здесь амплитуда всех импульсов одинакова, изменяется только их частота. По существу это аналогично обычной частотной модуляции, лишь несущая имеет несинусоидальную форму, как в случае обычной ЧМ; она состоит из последовательности импульсов.

Амплитудная модуляция - это процесс формирования амплитудно-моду-лированного сигнала, т.е. сигнала, амплитуда которого изменяется по закону модулирующего сигнала (передаваемого сообщения). Этот процесс реализуется амплитудным модулятором.

Амплитудный модулятор должен формировать высокочастотное колебание, аналитическое выражение для которого в общем случае имеет вид

где - огибающая модулированного колебания, описываемая функцией, которая характеризует закон изменения амплитуды;

Модулирующий сигнал;

И - частота и начальная фаза высокочастотного колебания.

Для получения такого сигнала необходимо осуществить перемножение высокочастотного (несущего) колебания и низкочастотного модулирующего сигнала таким образом, чтобы сформировалась огибающая вида . Наличие постоянной составляющей в структуре огибающей обеспечивает однополярность ее изменения, коэффициент исключает перемодуляцию, т.е. обеспечивает глубину модуляции . Понятно, что такая операция перемножения будет сопровождаться трансформацией спектра, что позволяет рассматривать амплитудную модуляцию как существенно нелинейный или параметрический процесс.

Структура амплитудного модулятора в случае использования нелинейного элемента представлена на рис. 8.4.

Рис. 8.4. Структурная схема амплитудного модулятора

Нелинейный элемент осуществляет преобразование несущего колебания и модулирующего сигнала, в результате чего формируется ток (или напряжение), в спектре которого содержатся составляющие в полосе частот от до , причем - наивысшая частота в спектре модулирующего сигнала. Полосовой фильтр выделяет эти составляющие спектра, формируя амплитудно-модулированный сигнал на выходе.

Перемножение двух сигналов можно осуществить с помощью нелинейного элемента, характеристика которого аппроксимируется полиномом, содержащим квадратичный член. Благодаря этому формируется квадрат суммы двух сигналов, содержащий их произведение.

Суть сказанного и общую идею формирования амплитудно-модулированного колебания иллюстрируют достаточно простые математические преобразования в предположении, что осуществляется тональная (одной частотой) модуляция.

1. В качестве нелинейного элемента используем транзистор , ВАХ которого аппроксимируется полиномом второй степени .

2. На вход нелинейного элемента подается напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

3. Спектральный состав тока определяется следующим образом:


В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеются составляющие с частотами , и , которые образуют амплитудно-модулированное колебание, т.е.

В передающих устройствах обычно совмещают процессы модуляции и усиления, что обеспечивает минимальные искажения модулированных сигналов. С этой целью амплитудные модуляторы строят по схеме резонансных усилителей мощности, в которых изменение амплитуды высокочастотных колебаний достигается изменением положения рабочей точки по закону модулирующего сигнала.

Схема и режимы работы амплитудного модулятора

Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.

Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя

На вход резонансного усилителя, работающего в нелинейном режиме, подаются:

несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;

модулирующий сигнал с помощью низкочастотного трансформатора .

Конденсаторы и - блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где - наивысшая частота в спектре модулирующего сигнала.

Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.

а. Режим малых входных сигналов

Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).

Рис. 8.6. Режим малых входных сигналов амплитудного модулятора

Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где - резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать

.

Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.

Итак, в пределах квадратичного участка ВАХ, описываемого полиномом , существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

Спектральный состав тока коллектора определяется следующим образом:

Выделяем первую гармонику тока:

Таким образом, амплитуда первой гармоники равна:

Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.

Тогда напряжение на колебательном контуре будет равно:

Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:

Здесь - коэффициент глубины модуляции;

- амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .

При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД . Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.

б. Режим больших входных сигналов

Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как

и .

Рис. 8.7. Режим больших входных сигналов амплитудного модулятора

Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .

В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом

где - коэффициенты пропорциональности.

Характеристики амплитудного модулятора

Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная характеристика, динамическая модуляционная характеристика и частотная характеристика.

Рис. 8.8. Схема амплитудного модулятора с генератором тока

а. Статическая модуляционная характеристика

Статическая модуляционная характеристика (СМХ) - это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е. .

При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ

Статическая модуляционная характеристика позволяет определить величину напряжения смещения и приемлемый диапазон изменения модулирующего сигнала с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должна выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции , при котором еще нет искажений. Его величина равна .

Рис. 8.9. Характеристики амплитудного модулятора

б. Динамическая модуляционная характеристика

Динамическая модуляционная характеристика (ДМХ) - это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. . Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.

в. Частотная характеристика

Частотная характеристика - это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. . Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудно-модулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка частотной характеристики, то искажения при модуляции будут минимальны.

Балансный амплитудный модулятор

Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудно-модулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.

Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями их входов и выходов. Входы по частоте несущего колебания соединены параллельно, а выходы подключены с инверсией относительно друг друга, образуя разность выходных напряжений. Модулирующий сигнал подается на модуляторы в противофазе. В результате на выходах модуляторов имеем

И , а на выходе балансного модулятора

Рис. 8.10. Схема балансного амплитудного модулятора

Таким образом, в спектре выходного сигнала имеются составляющие с частотами и . Составляющей с частотой несущего колебания нет.