Способ записи информации на жесткий диск. Жёсткий диск, что это такое? Из чего состоит и как работает жёсткий диск. Плюсы и минусы HDD в сравнении с SSD

  • 05.07.2019

Каждый из нас ежедневно сталкивается с различными компьютерными терминами, знания о которых являются поверхностными, а некоторые термины нам вообще незнакомы. Да и зачем что-то знать о том, что нас не касается или не беспокоит. Не так ли? Известная истина: пока какое-нибудь оборудование (в т.ч. и жесткий диск) нормально и беспроблемно функционирует, то никто и никогда не будет забивать свою голову тонкостями его работы, да это и ни к чему.

Но, в моменты, когда в процессе работы любого устройства системного блока начинаются сбои, или просто внезапно понадобилась помощь с компьютером, очень многие пользователи тут же берут отвертку и книгу «азы компьютерной грамотности, или как реанимировать компьютер в домашних условиях». И пытаются самостоятельно решить проблему, не прибегая при этом к помощи специалиста. И чаще всего это заканчивается очень плачевно для их компьютера.

  • Понятия "жесткий диск" или "винчестер" и их возникновение

Определение и возникновение понятия "винчестер"

Итак, темой нашей очередной статьи на этот раз будет такая запчасть системного блока как жесткий диск. Мы с вами подробно рассмотрим само значение этого понятия, кратко вспомним историю его развития, и более подробно остановимся на внутреннем строении, разберем основные его типы, интерфейсы и подробности его подключения. Кроме этого немного заглянем в будущее, а может даже уже почти и в настоящее, и расскажем, что постепенно приходит на смену старым добрым винтам. Забегая вперед, скажем, что это твердотельные накопители, работающие по принципу USB-флешек - SSD-устройства.

Самый первый в мире жесткий диск, такого типа, как мы привыкли видеть его сейчас и каким привыкли пользоваться, изобрел сотрудник IBM Кеннет Хотон в 1973 году. Эта модель называлась загадочным сочетанием цифр: 30-30, точно так же, как калибр у всем известной винтовки Winchester, Не трудно догадаться, что отсюда и пошло одно из названий - винчестер, которое популярно в среде айтишников до сих пор. А, возможно, кто-то его сейчас прочитал вообще в первый раз.

Перейдем к определению: жесткий диск (а, если вам удобно, то хард, винчестер, HDD или винт) – это запоминающее устройство компьютера (или ноутбука), на которое при помощи специальных головок чтения/записи информация записывается, хранится и удаляется по мере необходимости.

"А чем же это все отличается от простых дискет или CD-DVD?" - просите вы. А все дело в том, что в отличие от гибких или оптических носителей, здесь данные записываются на жесткие (отсюда и название, хотя кто-то может уже и догадался сам) алюминиевые или стеклянные пластины, на которые нанесен тонкий слой ферромагнитного материала, чаще всего для этих целей используется хром диоксид.

Вся поверхность таких вращающихся магнитных пластин разделена на дорожки и секторы по 512 байт каждый. В некоторых накопителях есть всего один такой диск. Другие же содержат одиннадцать и более пластин, причем информация записывается на обе стороны каждой из них.

Внутреннее строение

Сама конструкция жесткого диска состоит не только из непосредственных накопителей информации, но и механизма, считывающего все эти данные. Все вместе это и есть главное отличие хардов от дискет и оптических накопителей. А в отличие от оперативной памяти (ОЗУ), которой необходимо постоянное питание, винчестер является энергонезависимым устройством. Его можно смело отключать от питания и брать с собой куда угодно. Данные на нем сохраняются. Это становится особенно важно, когда нужно восстановить информацию .

Теперь немного расскажем непосредственно о внутреннем строении жесткого диска. Сам винчестер состоит из герметичного блока, заполненного обычным обеспыленным воздухом под атмосферным давлением. Вскрывать его в домашних условиях мы не рекомендуем, т.к. это может привести к поломке самого устройства. Каким бы чистюлей вы не были, но пыль в комнате найдется всегда и она может попасть внутрь корпуса. В профессиональных сервисах, которые специализируются на восстановлении данных, есть специально оборудованная «чистая комната», внутри которой и производится вскрытие винчестера.

Также в состав устройства входит плата с электронной схемой управления. Внутри блока находятся механические части накопителя. На шпинделе двигателя привода вращения дисков закреплены один или несколько магнитных пластин.

В корпусе также расположен предусилитель-коммутатор магнитных головок. Сама же магнитная головка производит чтение или запись информации с поверхности одной из сторон магнитного диска. Скорость вращения которого достигает 15 тыс. оборотов в минуту - это что касается современных моделей.

При включении питания, процессор жесткого диска начинает с того, что тестирует электронику. Если всё в порядке, включается шпиндельный двигатель. После того, как достигнута определенная критическая скорость вращения, плотность прослойки воздуха, набегающей между поверхностью диска и головкой, становится достаточной, чтобы преодолеть силу прижима головки к поверхности.

В результате, головка чтения/записи «зависает» над пластиной на крошечном расстоянии всего в 5-10 нм. Работа головки чтения/записи схожа с принципом действия иголки в граммофоне, только лишь с одним отличием – у неё не происходит физического контакта с пластиной, в то время, как в граммофоне головка иголки соприкасается с пластинкой.

В моменты, когда питание компьютера выключается и диски останавливаются, головка опускается на нерабочую зону поверхности пластины, так называемую зону парковки. Поэтому не рекомендуется завершать работу компьютера аварийно - просто нажимая на кнопку выключения или выдергивая кабель питания из розетки. Это может привести к выходу из строя всего HDD. Ранние модели имели специальное программное обеспечение, которое инициировало операцию парковки головок.

В современных же HDD вывод головки в зону парковки происходит автоматически, когда снижается скорость вращения ниже номинальной или когда подается команда на отключение питания. Обратно в рабочую зону головки выводятся лишь тогда, когда будет достигнута номинальная скорость вращения двигателя.

Наверняка в вашем пытливом уме уже созрел вопрос – насколько герметичен сам блок дисков и какова вероятность того, что туда может просочиться пыль или другие мелкие частицы? Как мы уже писали выше, они могут привести к сбою в работе харда или вообще к его поломке и потере важной информации.

Но не стоит волноваться. Производители всё давным давно предусмотрели. Блок дисков с двигателем и головки находятся в специальном герметичном корпусе – гермоблоке (камере). Однако его содержимое не полностью изолировано от окружающей среды, обязательно необходимо перемещение воздуха из камеры наружу и наоборот.

Это нужно, чтобы выровнять давление внутри блока с внешним, чтобы предотвратить деформацию корпуса. Это равновесие достигается при помощи специального устройства, которое называется барометрический фильтр. Он размещен внутри гермоблока.

Фильтр умеет улавливать мельчайшие частицы, величина которых превышает расстояние между головкой чтения/записи и ферромагнитной поверхностью диска. Кроме выше упомянутого фильтра есть еще один – фильтр рециркуляции. Он улавливает частицы, которые присутствуют в воздушном потоке внутри самого блока. Они могут там появляться от осыпания магнитного опыления дисков (наверняка вы слышали когда-нибудь фразу, что «хард посыпался»). Кроме того, этот фильтр улавливает те частицы, которые «пропустил» его барометрический «коллега».

Интерфейсы подключения HDD

На сегодняшний день, чтобы подключить жесткий диск к компьютеру вы можете использовать один из трех интерфейсов: IDE, SCSI и SATA.

Первоначально в 1986 году интерфейс IDE разрабатывался только для подключения HDD. Затем его модифицировали в расширенный интерфейс ATA. В результате к нему можно подключать не только винчестеры, но и CD/DVD-приводы.

Интерфейс SATA – более быстрый, современный и производительный, нежели ATA.

В свою очередь, SCSI – высокопроизводительный интерфейс, который способен подключать различного рода устройства. Сюда входят не только накопители информации, но и различная периферия. Например, более быстрые SCSI-сканеры. Однако когда появилась USB-шина, необходимость подключения периферии посредством SCSI отпала. Так, что если вам посчастливится его где-то увидеть, то считайте, что вам повезло.

Сейчас давайте немного расскажем о подключении к IDE интерфейсу. В системе может быть два контроллера (первичный и вторичный), к каждому из которых можно подключить два устройства. Соответственно получаем максимум 4: первичный мастер, первичный подчиненный и вторичный мастер, вторичный подчиненный.

После того, как подключили устройство к контроллеру, следует выбрать режим его работы. Он выбирается при помощи установки специальной перемычки (она называется джампер) в определенное место в разъеме (рядом с разъемом для подключения шлейфа IDE).

При этом следует помнить, что более быстрое оборудование к контроллеру подключается первым и называется master. Второе называется slave (подчиненное). Последней манипуляцией будет подключить питание, для этого нам нужно выбрать один из кабелей блока питания. Данная информация вам пригодится, если у вас очень-очень старый компьютер. Так как в современных необходимость в подобных манипуляциях отпала.

Через SATA подключить гораздо проще. Кабель для него имеет одинаковые разъемы на обоих концах. SATA-диск не имеет перемычек, поэтому у вас нет необходимости выбирать режим работы устройств - справится даже ребенок. Питание подключается при помощи специального кабеля (3,3 В). Однако существует возможность подключиться через переходник к обычному кабелю питания.

Дадим один полезный совет: если к вам часто приходят друзья со своими винчестерами переписать новых фильмов или музыки (да-да, друзья у вас настолько суровые, что носят с собой не внешний HDD, а обычный внутренний), и вы уже устали все время раскручивать системный блок, рекомендуем приобрести специальный карман для жесткого диска (он называется Mobile Rack). Они есть и с IDE, и с SATA-интерфейсами. Чтобы подключить к вашему компьютеру еще один дополнительный хард, просто вставляем его в такой карман и готово.

SSD диски - новый этап в развитии

Уже сегодня (а может быть уже и вчера) начался следующий этап в развитии устройств-накопителей информации. На смену жестким дискам приходит новый тип - SSD. Далее расскажем о нем поподробней.

Итак, SSD (Solid State Disk) – твердотельный накопитель, который работает по принципу флеш-памяти USB. Одна из самых важных его отличительных черт от обычных винчестеров и оптических накопителей – в его устройство не входит никаких подвижных деталей и механических компонентов.

Накопители данного типа, как это часто бывает, изначально разрабатывались исключительно для военных целей, а также для высокоскоростных серверов, так как старые добрые харды для таких нужд уже являлись недостаточно быстрыми и надежными.

Перечислим наиболее важные преимущества SSD:

  • Во-первых, запись информации на SSD и чтение с него происходит намного быстрее (десятки раз), чем с HDD. Работу обычного винчестера очень сильно тормозит движение головки чтения/записи. А т.к. в SSD её нет, то и проблемы нет.
  • Во-вторых, благодаря одновременному использованию всех модулей памяти, установленных в SSD-накопитель, скорость передачи данных значительно выше.
  • В-третьих, не так восприимчивы к ударам. В то время как жесткие накопители могут потерять при ударе часть данных или же вообще выйти из строя, что и случается чаще всего - будьте осторожны!
  • В-четвертых, потребляют меньше энергии, что делает их удобными в использовании в устройствах, работающих от аккумуляторов - ноутбуках, нетбуках, ультрабуках.
  • В-пятых, данный тип накопителей при работе практически не производит никакого шума, тогда как при работе хардов мы слышим вращение дисков и движение головки. А, когда они выходят из строя, так и вообще сильный треск или стук головок.

Но не будем скрывать: пожалуй, есть два недостатка SSD – 1) за его определенную емкость вы заплатите значительно дороже, нежели за жесткий диск идентичного объема памяти (разница будет в несколько раз, хотя с каждым годом становится всё меньше и меньше); 2) SSD имеют относительно небольшое ограниченное количество циклов чтения/записи (т.е. изначально ограниченный срок службы).

Итак, мы с вами познакомились с понятием «жесткий диск», рассмотрели его строение, принцип работы и особенности различных интерфейсов подключения. Надеемся, предложенная информация оказалось несложной для восприятия, а главное, полезной.

Если у вас возникли трудности с выбором, если не можете определить, какой тип жестких дисков поддерживает ваша материнская плата, какой интерфейс подходит или какой объем HDD будет больше соответствовать вашим нуждам, то вы всегда можете обратиться за помощью в компьютерный сервис Комполайф на всей территории нашего обслуживания.

Наши специалисты помогут вам с выбором и заменой жесткого диска. Кроме этого, у нас вы можете заказать установку нового устройства в ваш системный блок или ноутбук.

Вызвать мастера

Инструкция

Примените в качестве инструмента обычный файл-менеджер вашей операционной системы, если оптический диск используется для резервного копирования или переноса файлов. В этом случае структура хранения и форматы файлов на нем не имеют никаких особенностей. В ОС Windows менеджер файлов (Проводник) запускается автоматически при установке DVD в привод. Выделите в его окне все нужные объекты исходного диска и нажмите сочетание клавиш Ctrl + C, чтобы операционная система запомнила список копируемого. Затем перейдите на тот диск и ту папку в вашем компьютере, куда нужно поместить информацию, и нажмите сочетание клавиш Ctrl + V (команда вставки). После этого стартует процесс дублирования DVD-диска.

Процедура копирования исходного диска не будет отличаться от описанной в первом шаге и в том случае, если данные на нем записаны в DVD-формате и без использования какой-либо системы защиты. Если же защита есть, то придется воспользоваться программами, больше приспособленными к работе с оптическими дисками, чем обычный файл-менеджер. Например, это может быть приложение Slysoft CloneDVD или Slysoft AnyDVD, DVD Mate, DVD Decrypter и др. Последовательность действий при их использовании различна, но общий принцип совпадает - в формах программы вам нужно указать исходный диск и место сохранения информации, а все остальное приложение сделает самостоятельно.

Применяйте программы для создания и монтирования образов дисков, если хотите использовать виртуальные копии исходного DVD, сохраненного в вашем компьютере. Такие программы кроме копирования информации записывают в специальном формате и все подробности ее размещения на оптическом диске, а затем могут проделать обратную процедуру - воспроизвести точную копию оригинала виртуально или записать ее на пустую DVD-болванку. Наиболее популярными приложениями такого типа сегодня являются Alcohol 120%, Daemon Tools, Nero Burning ROM. При использовании этих программ общий принцип действий тоже одинаков: укажите исходный диск и место сохранения его образа, а остальное сделает программа. Например, в приложении Daemon Tools следует щелкнуть по кнопке «Создать образ диска», в открывшемся диалоге проследить, чтобы значение в поле «Привод» указывало на нужный DVD-привод и, если необходимо, изменить адрес сохранения в поле «Выходной образ». Кроме того, здесь можно поставить отметку в чекбоксе «Сжимать данные образа», если есть желание сэкономить немного места на винчестере. После нажатия кнопки «Старт» начинается сам процесс, который может потребовать нескольких часов - длительность зависит от объема информации на диске и скорости ее считывания в вашем DVD-приводе.

Жёсткий диск (HDD) – энергонезависимое запоминающее устройство, назначение которого длительное хранение данных. Информация сохраняется на жестких носителях (дисках из специальных сплавов) имеющих ферромагнитное покрытие (двуокись хрома).

Устройство жесткого диска.

Гермозона

Включает в себя: корпус из прочного сплава, диски с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок

Пакет рычагов из пружинистой стали с закрепленными головками на концах.

Пластины

Изготовлены из металлического сплава и покрыты напылением ферромагнетика (окислов железа, марганца и других металлов). Диски жёстко закреплены на шпинделе, который вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности диска создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности диска.


Устройство позиционирования головок

Состоит из неподвижной пары сильных постоянных магнитов, а также катушки на подвижном блоке головок.

Гермозона - заполняется очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливается тонкая металлическая или пластиковая мембрана. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы. Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.



Блок электроники

Содержит: управляющий блок, постоянное запоминающее устройство, буферную память, интерфейсный блок (передача данных, подача питания) и блок цифровой обработки сигнала.

Блок управления представляет собой систему:

  • позиционирования головок;
  • управления приводом;
  • коммутации информационных потоков с различных головок;
  • управления работой всех остальных узлов - приёма и обработки сигналов с датчиков устройства:
    • одноосный акселерометр - используемый в качестве датчика удара,
    • трёхосный акселерометр - используемый в качестве датчика свободного падения,
    • датчик давления,
    • датчик угловых ускорений,
    • датчик температуры.

Блок постоянного запоминающего устройства хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию жесткого диска.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память).

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации).

Характеристики жесткого диска.

Интерфейс — поддерживаемый стандарт обмена данными с накопителями информации: .

Ёмкость — объём данных, которые может хранить жесткий диск (ГБ, ТБ).

Форм-фактор — физический размер диска с ферромагнитным покрытием: 3,5 или 2,5 дюйма.

Время доступа — время, за которое жесткий диск гарантированно выполнит операцию чтения или записи на любом участке магнитного диска (диапазон от 2,5 до 16 мс).

Скорость вращения шпинделя – параметр от которого зависит время доступа и средняя скорость передачи данных. Жесткие диски для ноутбуков имеют скорость вращения 4200, 5400 и 7200 оборотов в минуту, а для стационарных компьютеров 5400, 7200 и 10 000 об/мин.

Ввод-вывод — количество операций ввода-вывода в секунду. Обычно жесткий диск производит около 50 операций в секунду при произвольном доступе и около 100 при последовательном.

Потребление энергии — потребляемая мощность в Ваттах, важный фактор для мобильных устройств.

Уровень шума – шум в децибелах, который создает механика жесткого диска при его работе (вращение шпинделя, аэродинамика, позиционирование). Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.

Ударостойкость — сопротивляемость накопителя резким скачкам давления или ударам. Измеряется в единицах допустимой перегрузки (G) во включённом и выключенном состоянии.

Скорость передачи данных – скорость чтения/записи при последовательном доступе (внутренняя зона диска - от 44,2 до 74,5 Мб/с, внешняя зона диска - от 60,0 до 111,4 Мб/с).

Объём буфера — промежуточная память (Мб), предназначенная для сглаживания разницы скорости чтения/записи и передачи по интерфейсу. Обычно варьируется от 8 до 64 Мб.

Видео на тему: «Жесткий диск: устройство и характеристики»

Используют два основных метода записи: метод частотной модуляции (ЧМ) и метод модифицированной ЧМ. В контроллере (адаптере) НГМД данные обрабатываются в двоичном коде и передаются в НГМД в последовательном коде.

Способ частотной модуляции является двухчастотным. При записи в начале тактового интервала производится переключение тока в МГ и направление намагниченности поверхности изменяется. Переключение тока записи отмечает начало тактов записи и используется при считывании для формирования сигналов синхронизации.

Способ обладает свойством самосинхонизации . При записи "1" в середине тактового интервала производится инвертирование тока, а при записи "0" - нет. При считывании в моменты середины тактового интервала определяют наличие сигнала произвольной полярности.

Наличие сигнала в этот момент соответствует "1", а отсутствие - "0".

Формат записи информации на гибком магнитном диске

Каждая дорожка на дискете разделена на секторы. Размер сектора является основной характеристикой формата и определяет наименьший объем данных, который может быть записан одной операцией ввода-вывода. Применяемые в НГМД форматы различаются числом секторов на дорожке и объемом одного сектора. Максимальное количество секторов на дорожке определяется операционной системой. Секторы отделяются друг от друга интервалами, в которых информация не записывается. Произведение числа дорожек на количество секторов и количество сторон дискеты определяет ее информационную емкость.

Каждый сектор включает поле служебной информации и поле данных. Адресный маркер - это специальный код, отличающийся от данных и указывающий на начало сектора или поля данных. Номер головки указывает одну из двух МГ, расположенных на соответствующих сторонах дискеты. Номер сектора - это логический код сектора, который может не совпасть с его физическим номером. Длина сектора указывает размер поля данных. Контрольные байты предназначены

Среднее время доступа к диску в миллисекундах оценивается по следующему выражению: где - число дорожек на рабочей поверхности ГМД; - время перемещения МГ с дорожки на дорожку; - время успокоения системы позиционирования.

Конструкция дискет

Накопитель на жестких магнитных дисках (НЖМД)


Жесткий магнитный диск -это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используется обе поверхности диска.

Принцип работы

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В большинстве накопителей есть два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.


Частота вращения НЖМД в первых моделей составляла 3 600 об/мин (т.е. в 10раз больше, чем в накопителе на гибких дисках), в настоящее время частота вращения жестких дисков возросла до 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка "столкнется" с диском. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные "взлеты" и "приземления" головок, а также более серьезные потрясения.

В некоторых наиболее современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. В механизме загрузки/разгрузки используется наклонная панель, расположенная прямо над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии разблокировка головок происходит только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока - до 96 000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly - блок головок и дисков) собирают в специальных цехах, в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого.

Метод записи данных на жесткий магнитный диск

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL -метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается "0", а предыдущий бит был "1", то синхросигнал также не записывается, как и бит данных. Если перед "0" стоит бит "0", то синхросигнал записывается.

Дорожки и секторы

Дорожка - это одно "кольцо" данных на одной стороне диска. Дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion ), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion ), в котором находится контрольная сумма ( checksum ), необходимая для проверки целостности данных.

Форматирование низкого уровня современных жестких дисков выполняется на заводе, изготовитель указывает только форматную емкость диска. В каждом секторе можно записать 512 байт данных, но область данных - это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Префиксы, суффиксы и промежутки - пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности.

Интервал включения записи следует сразу за байтами CRC ; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок ( Error Correction Code - ЕСС ). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC) .

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число (осуществляется правильность считывания идентификатора). Байт флага содержит флаг - указатель состояния дорожки.

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты предназначены для определения и коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды (зависит от схемной реализации адаптера).

Среднее время доступа к информации на НЖМД составляет

где tn - среднее время позиционирования;

F - скорость вращения диска;

tобм - время обмена.

Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Форматирование дисков

Различают два вида форматирования диска :

  • физическое, или форматирование низкого уровня;
  • логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Проводник (Windows Explorer ) или команды DOS FORMAT выполняются обе операции.

Однако для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа .

  • Форматирование низкого уровня.
  • Организация разделов на диске.
  • Форматирование высокого уровня.
Форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

В первых контроллерах ST-506 /412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах 17-700 и более. Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.

Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке. Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами. Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.


В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).

При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.

Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.

Организация разделов на диске

Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.

В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого-нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов. Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов) . Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT) . Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.

После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector - VBS ), две копии таблицы размещения файлов (FAT ) и корневой каталог ( Root Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.

Страница 2 из 11

ЧАСТЬ I. восстановление файлов с жесткого диска

ГЛАВА 1. КАК РАБОТАЕТ ЖЕСТКИЙ ДИСК И КАК НА НЕМ ХРАНЯТСЯ ДАННЫЕ

Немного об устройстве жесткого диска. Общее устройство HDD

Что же представляет собой жесткий диск (по строгому - накопитель на жестких дисках)? Если у вас не было возможности его лицезреть, то скажем, что снаружи он выглядит как единый металлический блок. Причем очень прочный и полностью герметичный. Дело в том, что технология работы диска настолько тонка, что даже мельчайшая инородная частица, попавшая внутрь, способна полностью нарушить его работу. Дополнительно, для предотвращения кризисной ситуации, в жесткий диск был помещен фильтр очистки. Также корпус винчестера служит в качестве экрана от электропомех. На самом деле жесткий диск состоит из двух основных частей - механики и электроники. Основу механической части составляют пластины (диски), имеющие круглую форму. Вообще-то диск может быть и всего один. Все зависит от емкости винчестера в целом. По одной из версий название «винчестер» жесткий диск получил благодаря фирме, которая в 1973 году выпустила жесткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инжене- у ры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером». В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слов «винт» (наиболее употребимый вариант), «винч» и «веник». Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:
ОКСИДНЫЙ;
тонкопленочный;
двойной антиферромагнитный (AFC)

В настоящее время встречаются экземпляры жестких дисков, состоящие из четырех и более пластин. Состав дисков может быть различен. Их изготавливают из алюминия, стекла или керамики. Последние два состава более практичны, однако очень дороги, и поэтому они используются для создания «элитных» жестких дисков. После изготовления пластины покрывают слоем ферромагнитного материала. Со времен создания первых винчестеров здесь использовалась окись железа. Однако данное вещество имело существенный недостаток. Диски, покрытые данным ферромагнетиком, имели небольшую износостойкость. В связи с этим в настоящее время в качестве покрытия пластин большинство производителей используют кобальт хрома. Износостойкость данного вещества на порядок превышает годами применявшийся ферромагнетик. К тому же данное покрытие намного тоньше, так как наносится методом напыления, что значительно увеличивает плотность записи. Ферромагнетик наносится на обе стороны диска, поэтому данные будут размещаться также с двух сторон. Пластины помещаются на шпиндель на одинаковое друг от друга расстояние, образовывая таким образом их пакет. Под дисками находится двигатель, который их вращает. С обеих сторон пластин размещены головки чтения/записи. Они устроены таким образом, чтоб перемещаться от края диска до его центра. За это «отвечает» специально выделенный для этого двигатель. Электроника представляет собой плату, на которой помещены различные «нужные» для работы винчестера элементы, такие как процессор, управляющая программа, ОЗУ, усилитель записи/чтения и другие. Каждая сторона пластины разбита на дорожки. Они, в свою очередь, на сектора. Все дорожки одного диаметра всех поверхностей образуют цилиндр. Современные винчестеры имеют «инженерный цилиндр». Он содержит служебную информацию (модель диска, серийный номер и т.п.), предназначенную для дальнейшего считывания компьютером..

Раньше для того, чтобы диск был готов к работе, пользователю необходимо было провести так называемое форматирование на низком уровне. В BIOS даже присутствовал соответствующий пункт. Сейчас же данная разметка производится сразу при производстве винчестеров. Дело в том, что при низкоуровневом форматировании происходит запись сервоинформации. Она содержит специальные метки, которые нужны для стабилизации скорости вращения шпинделя, поиска головками необходимых секторов, а также слежения за положением головок на поверхности пластин. Если вы думаете, что «плохие» сектора на винчестере появляются только в процессе эксплуатации, то вы ошибаетесь. Любой вновь созданный жесткий диск уже имеет bad block. Так вот, при низкоуровневом форматировании данные блоки обнаруживаются и записываются в специальную таблицу переназначения. Затем в процессе эксплуатации контроллер жесткого диска заменит неисправные блоки работоспособными, которые специально резервируются для таких целей уже при производстве. В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с концентрических окружностей вращающихся магнитных дисков (дорожек), разбитых на секторы емкостью 512 байт. Дорожка - это «кольцо» данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами .

Принципы работы жесткого диска

В силу своей специфичности, при работе винчестера не происходит прямого контакта магнитных головок с поверхностью пластин. Можно сказать по-другому: соприкосновение «смерти подобно». Конструкция головок создана так, что она позволяет «парить» над поверхностью пластин. Двигатель вращает шпиндель с такой скоростью (до 15000 об/мин), что от крутящихся дисков создается сильный поток воздуха. При этом получается эффект воздушной подушки. Зазор между головками и дисками составляет доли микрона. Однако, как мы упоминали выше, недопустимо соприкосновение головок с поверхностью. Но ведь бывают сбои в электроснабжении, скажете вы. Да, естественно. Вот для этого случая была придумана так называемая "парковочная зона". И когда происходит ситуация, в которой скорость вращения шпинделя опускается ниже границы допустимой нормы (во время обычной работы или в экстренном режиме при отключении питания), которую постоянно отслеживает процессор жесткого диска, головки отводятся в эту самую парковочную зону. Зона находится у самого шпинделя, где не происходит записи информации, поэтому магнитным головкам можно спокойно «лечь» на поверхность диска. Как же выполняется "запуск" винчестера? В двух словах все происходит примерно так. Как только жесткий диск получил питание, его процессор начинает тестировать электронику и при положительном результате запускает двигатель, вращающий пластины. По мере увеличения скорости вращения достигается эффект воздушной подушки, которая подымает магнитные головки с зоны парковки. Когда скорость достигает необходимой величины, головки покидают парковочную зону и с помощью контроллера "ищут" сервометки, чтобы стабилизировать частоту вращения. Затем производится переназначение "плохих" секторов, а также проверка позиционирования головок. В случае положительного результата проделанной работы контроллер винчестера переходит в рабочий режим. Конечно же, механический процесс работы жесткого диска при более детальном рассмотрении более глубокий, но мы не задаемся целью его подробнейшего описания. Главное, чтоб вы поняли основные принципы механизма взаимодействия головок с пластинами. Если кого-то интересует детализация данного процесса, то на эту тему создано огромное количество материалов. А мы перейдем к другой части рабочего процесса винчестера - технологии чтения/записи данных.

Технологии чтения/записи данных на жестком диске

Чтение/запись информации на диск происходит с помощью магнитных головок, принцип движения которых был рассмотрен выше. Если вы еще застали старый добрый магнитофон, то способ записи/чтения звука на/с магнитной ленты идентичен рассматриваемому нами. Данные преобразуются в переменный электрический ток, который поступает на магнитную головку, после чего он преобразуется в магнитное поле, с помощью которого происходит намагничивание нужных участков магнитного диска. Мы уже знаем, что пластины жесткого диска покрыты ферромагнитным слоем. Отдельно выбранная область данного покрытия может быть намагничена одним из двух возможных способов. Намагничивание одним способом будет обозначать ноль, другим способом - единицу. Такой отдельно намагниченный участок называется доменом. Он представляет собой мини-магнитик с определенной ориентацией южного и северного полюсов. Воздействуя на определенный домен внешним магнитным полем (магнитной головкой), он примет данное соответствие. Прекратив воздействие внешнего поля, на поверхности возникают зоны остаточной намагниченности. Они означают сохраненную на диске информацию. Хочется отметить, что именно от размера домена зависит плотность записи данных, то есть собственно емкость диска. С давних пор было известно о двух технологиях записи информации на винчестер: параллельной и перпендикулярной. Хотя второй метод записи более производителен, он немного сложнее в технологическом разрешении. Поэтому производителями использовался и совершенствовался параллельный способ до тех пор, пока ему не пришел физический предел. Если вкратце описать технологию параллельной записи, то она такова. Намагниченность доменов располагается параллельно плоскости диска. Все, наверное, в детстве «баловались» магнитиками и поэтому знают, что они будут притягиваться, когда повернуть их друг к другу разными полюсами (синим и красным). И наоборот, если попробовать прижать их друг к другу сторонами одинакового цвета, то такая попытка никогда не увенчается успехом. Так вот, при использовании данной технологии на границе соседних доменов возникает поле рассеяния, забирающее энергию их магнитных полей. Вследствие этого крайние частицы доменов становятся менее стабильными, к тому же увеличивается влияние термофлуктуации на его магнитный порядок. При использовании технологии перпендикулярной записи намагниченность доменов располагается под углом 90° к плоскости пластины. Благодаря этому пропадает эффект отталкивания однополюсных соседних доменов, ведь в данном расположении намагниченные частицы повернуты друг к другу разными полюсами. Это позволяет уменьшить размер междоменного пространства по сравнению с параллельной технологией записи, что также увеличивает емкость жестких дисков. Однако для данного способа записи требуется использование более сложного состава магнитного слоя. Под тонким защитным слоем расположен записывающий слой, состоящий из окисленного сплава кобальта, платины и хрома. Подложка состоит из двух слоев сложного химического состава, называемых антиферромагнит-носвязанными слоями. Именно они позволяют снять внутренние напряженности магнитного поля. К тому же перпендикулярная запись требует использования других магнитных меток, которые смогут генерировать более сильное магнитное поле.Плотность перпендикулярной записи составляет 500 Гбит/дюйм2. Это позволит выпускать винчестеры емкостью несколько терабайт. Однако наука не стоит на месте, и уже вовсю идет разработка новых технологий. Одна из них называется HAMR (Heat Assistant Magnetic Recording) - Термомагнитная запись. Эта технология является последователем перпендикулярной записи и направлена на её улучшение. Запись в данном случае происходит с предварительным нагревом с помощью лазера. Нагрев происходит в течение пикосекунды, при этом температура достигает 100 °С. Магнитные частицы домена в данном случае получают больше энергии, поэтому при генерации поля большой напряженности не требуется. А высокая энергия обеспечивает повышенную стабильность записанной информации. Опять же применение данной технологии невозможно без использования материалов с высоким уровнем анизотропности. Однако подходящие для этого сплавы слишком дороги. К тому же при термомагнитной записи потребуется две раздельных головки. Еще нужно позаботиться о том, как отводить тепло от дисков. Но все же огромной мотивацией применения термомагнитной записи служит тот факт, что данная технология позволяет добиться плотности записи до 1 Тбит/дюйм2

Как данные хранятся на жестком диске

Наименьшая единица информации, которой оперирует система управления жесткого диска, носит название сектора. В подавляющем числе современных носителей сектор равен 512 байтам. Используемая в настоящий момент система адресации секторов называется LBA (Logical block addressing). В то же время для дисков небольшой ёмкости или с целью обратной совместимости со старым оборудованием может быть использована система адресации CHS. Аббревиатура CHS расшифровывается как Cylinder, Head, Sector - цилиндр, головка, сектор. Из названия понятен смысл этого типа адресации, как привязанной к частям устройства жесткого диска. Преимущество LBA над CHS в том, что вторая имеет ограничение на максимальное число адресуемых секторов, в количественном представлении равное 8,4 гигабайта, LB А данного ограничения лишена. Первый сектор жесткого диска (а точнее, нулевой) носит название MBR (Master Boot Record), или главной загрузочной записи. В начале этого сектора находится код, куда передает управление базовая система ввода-вывода компьютера при его загрузке. В дальнейшем этот код передает управление загрузчику операционной системы. Также в 0 секторе находится таблица разделов жесткого диска. Раздел представляет собой определенный диапазон секторов. В таблицу заносится запись о разделе, с номером его начального сектора и размером. Всего в таблице разделов может находиться четыре таких записи. Раздел, запись о котором находится в таблице разделов нулевого сектора, носит название первичного (primary). Из-за упомянутых ограничений таких разделов на одном диске может быть максимум четыре. Некоторые операционные системы устанавливаются только на первичные тома. При необходимости использования большего числа разделов в таблицу заносится запись о расширенном (extended) разделе. Данный тип раздела представляет собой контейнер, в котором создаются логические (logical) разделы. Логических томов может быть неограниченное количество, однако в ОС семейства Windows число одновременно подключенных томов ограничено количеством букв латинского алфавита. Эти три типа разделов имеют наиболее широкую АР, поддержку среди подавляющего числа операционных систем и наибольшее распространение. Фактически в домашних условиях либо масштабе клиентских машин организаций встречаются именно эти типы разделов. Однако это не значит, что типы разделов ограничиваются этими тремя видами. Существует большое число специализированных разделов, но и они используют первичные тома в качестве контейнеров. Раздел - это всего лишь размеченное пространство на диске; чтобы сохранить в нем какую-либо информацию для организации структуры хранения данных, должна быть создана файловая система. Данный процесс носит название форматирования раздела. Типов файловых систем существует великое множество, в ОС семейства Windows используются FAT/ NTFS, в операционных системах на ядре Линукс применяются Ext2/3FS, ReiserFS, Swap. Существует множество утилит для кроссплатформен-ного доступа к различным файловым системам из не поддерживающих их изначально операционных систем (например, обеспечивающих возможность доступа из Windows к разделам Linux и наоборот). Некоторые файловые системы, например FAT/NTFS, оперируют более крупными структурами данных на жестком диске, носящими название кластеров. Кластер может включать произвольное число секторов. Манипулирование размером кластера приносит дополнительный выигрыш к произво дительности файловой системы или расходованию свободного пространства. Таким образом, получается следующая логическая структура хранения данных: жесткий диск разбивается на разделы (при этом информация об этом разбиении хранится в так называемой главной загрузочной записи) - они носят названия С:, D:, Е: и т.д., на каждый раздел устанавливается файловая система (в результате форматирования раздела). Файловая система содержит информацию о том, как разграничено пространство раздела (логического диска) и где какие файлы на нем находятся. Ну а далее на разделе хранятся файлы, которые разбиваются на определенное количество кластеров, физически занимающих определенное количество секторов, на которые разбиты дорожки жесткого диска. Файловая система присваивает всем секторам свои адреса, а затем по этим адресам хранит свои файлы, записывая в свою таблицу адреса кластеров (диапазонов кластеров), принадлежащих тем или иным файлам.