Способ обнаружения сигнала. Методы измерения ощущения. Основные психофизические законы. Теория обнаружения сигналов

  • 28.06.2019

Эффективное воздействие организованных помех на СРС с ППРЧ (впрочем, как и на СРС с другими видами сигналов) может быть обеспечено при условии, что постановщик помех, используя станцию РТР, успешно осуществляет перехват сигналов с ППРЧ. Под перехватом сигналов в общем случае понимается обнаружение, измерение соответствующих параметров сигналов СРС, например, мощности сигнала, рабочей частоты, ширины спектра, длительности скачка частоты, а также пеленгование (или определение местоположения) СРС . Перечисленные этапы процесса перехвата в существующих станциях РТР, как правило, объединены. В дальнейшем рассматривается только этап обнаружения сигналов с ППРЧ, который иногда именуется перехватом.

При решении задачи обнаружения качестве модели используем сигнал с ППРЧ и двоичной ЧМ, представляющий собой последовательность радиоимпульсов со случайной начальной фазой, частоты которых перестраиваются в соответствии с заданным псевдослучайным кодом в диапазоне . Модель такого сигнала за время -гo скачка частоты длительностью может быть представлена в виде:

где - мощность сигнала; , - число рабочих частот (с учетом ЧМ); - частота модуляции; ; - начальная фаза скачка частоты, ; - единичная функция,

Основными характеристиками и параметрами СРС с ППРЧ являются: мощность передатчика ; время передачи сообщения ; число рабочих частот (число частотных каналов), которые равномерно распределены в диапазоне и выбираются генератором псевдослучайного кода, по крайней мере, один раз на протяжении времени ; - центральная частота передаваемого элемента сигнала; число интервалов (скачков частоты) длительностью за время передачи ; скорость передачи информации в битах ; скорость скачкообразного изменения частоты ; мгновенная полоса частот , определяемая в общем случае длительностью либо бита информации , либо скачка частоты .

При РТР обнаружение сигналов усложняется тем, что структура и ряд характеристик и параметров сигналов СРС, как правило, неизвестны постановщику помех. Это лишает возможности использования в станциях РТР согласованных способов приема сигналов. Поэтому в станциях РТР применяются такие алгоритмы приема и обработки сигналов, которые, с одной стороны, для своей реализации требуют минимальной априорной информации о сигналах СРС, с другой стороны, должны обеспечивать высокую вероятность обнаружения и низкую вероятность ложной тревоги, обусловленную собственными шумами обнаружителя. Шумы обнаружителя представим в виде АБГШ с односторонней спектральной плотностью , значение которой известно. Типовыми значениями вероятностей обнаружения и ложной тревоги при перехвате сигналов СРС являются: .

Проектируя СРС для работы в условиях РЭП, разработчик стремится обеспечить высокую энергетическую скрытность сигналов СРС, или малую вероятность их перехвата станцией РТР в течение заданного интервала времени.

Для эффективного решения поставленной задачи разработчик СРС должен располагать некоторой априорной информацией о возможностях обнаружителя станции РТР. Аналогично, при разработке обнаружителей для станций РТР требуется определенная априорная информация о характеристиках и параметрах сигналов разведываемых СРС. Однако в конфликтной ситуации двух противоборствующих сторон „система радиосвязи - система радиоэлектронного подавления" можно только предполагать о том или ином уровне осведомленности. В для анализа эффективности обнаружителей по перехвату сигналов СРС и, соответственно, для выбора возможных способов обработки сигналов в СРС, повышающих их энергетическую скрытность, достаточно условно рассматриваются пять уровней априорной осведомленности, представленных в табл.8.1. В таблице обозначает вероятность того, что РТР имеет соответствующие априорные сведения о характеристиках и параметрах СРС на -м уровне осведомленности.

Таблица 8.1. Уровни осведомленности о характеристиках и параметрах СРС

Уровни осведомленности РТР

Объем знаний о характеристиках и параметрах СРС радиотехнической разведкой

Наименьший объем данных о характеристиках и параметрах СРС.

РТР ничего не знает о сигналах СРС и лишь имеет предположение о центральной частоте , диапазоне частот , времени начала и конца передачи.

РТР имеет сведения о центральной частоте , диапазоне частот , времени начала и конца передачи. Однако значения этих характеристик известны с ошибками.

РТР имеет сведения о центральной частоте , диапазоне частот , времени начала и конца передачи. В станции РТР обеспечивается согласование с сигналом СРС по времени и частоте.

РТР имеет сведения о центральной частоте , диапазоне частот , времени начала и конца передачи, мгновенной полосе частот передаваемого сигнала . В станции РТР обеспечивается согласование с сигналом СРС по времени и частоте.

Наибольший объем данных о характеристиках и параметрах СРС.

РТР имеет сведения практически о всех характеристиках и параметрах СРС. Однако РТР не известна частотно-временная матрица (ЧВМ) сигнала, т. е. нет сведений о том, какую позицию в ЧВМ будет занимать сигнал при последующем скачке частоты. В станции РТР обеспечивается оптимальное согласование с сигналом СРС по времени и частоте.

Предельным случаем априорной неопределенности относительно структуры перехватываемых сигналов СРС является задача обнаружения стохастических сигналов на фоне АБГШ , когда наблюдаемые реализации имеют вид:

Как следует из анализа схемы, оптимальный алгоритм обнаружения стохастических сигналов достаточно сложен при реализации. Более простым с точки зрения технической реализации является алгоритм энергетического обнаружителя Прайса-Урковица . Энергетические обнаружители получили широкое распространение на практике и эффективно используются в станциях РТР для обнаружения неизвестных сигналов, включая и детерминированные сигналы с ППРЧ.

Существующее структурное разнообразие энергетических обнаружителей можно разделить на два класса :

1. Одноканальные широкополосные обнаружители, параметры которых в той или иной степени согласованы с передаваемым сообщением по ширине полосы частот и по времени передачи сообщения.

2. Многоканальные обнаружители, в которых полоса пропускания и время интегрирования каждого узкополосного канала в той или иной степени согласованы с полосой частот и длительностью частотного элемента (скачка частоты) сигнала с ППРЧ.

Второй класс обнаружителей предполагает использование отдельных каналов для каждой из возможных частот сигнала с ППРЧ. С целью уменьшения числа каналов и простоты реализации применяются различные структурные схемы многоканальных обнаружителей. Основное различие между ними заключается в процедуре принятия решения, позволяющей преобразовать данные об обнаружении отдельных частотных элементов сигнала в решение о передаче сообщения.

Наличие априорной информации о значениях тех или иных параметров сигналов с ППРЧ позволяет обеспечить согласование энергетического обнаружителя с принимаемым сигналом по времени и частоте и получить хорошие рабочие характеристики. Энергетические обнаружители, согласованные с параметрами принимаемого сигнала на 5-м уровне осведомленности, дают наилучшие рабочие характеристики. Такие обнаружители далее называются квазиоптимальными.

В этой главе рассматриваются методы, отличающиеся от предыдущей группы методов новым подходом к локализации точки на психологической шкале, иначе говоря, другим подходом к измерению граничного шкального значения, разделяющего имеющееся множество стимулов на два класса: обнаруживаемые и необнаруживаемые, различаемые и неразличаемые и т.п.

В классических психофизических методах, хотя и изучаются сенсорные способности наблюдателя, не ставится вопрос о вероятности обнаружения стимула, а учитывается лишь вероятность ответов испытуемого “Да” (слышу или вижу). Однако легко себе представить такую ситуацию, когда испытуемый, находясь в ситуации тестирования (экспертизы), захочет показать максимум своих сенсорных способностей, и будет давать ответ “Да” почти в каждой пробе. Естественно, что в таком случае количество утвердительных ответов не будет сколько-нибудь точно отражать его предельные сенсорные способности. Надежда психолога-эксперта на честность испытуемого, по-видимому, не самое лучшее средство для обеспечения надежности проводимых измерений. Таким образом, достаточно очевидно, что результат пороговых измерений может сильно зависеть от стратегии испытуемого давать ответы определенного рода, и, следовательно, появляется задача прямого учета поведения наблюдателя в ситуации принятия решения об обнаружении или различении сигнала.

Новая методология, называемая психофизической теорией обнаружения сигнала (Green, Swets, 1966), содержит в себе представление о наблюдателе как не о пассивном приемнике стимульной информации, но как об активном субъекте принятия решения в ситуации неопределенности.

Вкратце этот подход можно охарактеризовать следующим образом. В стимульном потоке выделяется та его часть, на которую указанием ее пространственной и/или временной области или ее характерного паттерна обращается внимание наблюдателя . Эта выделенная часть называется стимулом или предъявлением (стимула). Выделяется некоторый физический признак (свойство, характеристика стимульного потока), который может присутствовать в одних пробах - значащий или сигнальный стимул, и отсутствовать в других - пустой стимул . Наблюдатель, от которого требуется обнаруживать этот признак , решает задачу бинарной классификации: относит каждое предъявление к одному из двух классов - “Нет признака”, “Есть признак”. Эта задача решается путем установления схемы соответствия (которая называется также правилом принятия решения ) между особенностями сенсорного образа предъявляемого стимула и выбираемым решением. Эта схема соответствия может корректироваться под влиянием как предварительного информирования наблюдателя о частоте сигнальных или пустых стимулов в последующих предъявлениях, так и обратной связи - оценки правильности принимаемых наблюдателем решений.

В следующих трех разделах будут описаны три классических метода обнаружения сигналов: метод “Да-Нет”, двухальтернативный вынужденный выбор и метод оценки уверенности.

§ 2. Метод “Да-Нет”

В этом методе используются два стимула: один значащий - , и другой пустой - . Предъявления следуют друг за другом обыкновенно через более или менее регулярные интервалы времени и после каждого предъявления испытуемый отвечает “Да”, если был сигнал, или “Нет”, если он не обнаружил сигнала. Предъявление стимулов полностью рандомизировано , т.е. каждое очередное предъявление независимо от предыдущих может может быть с некоторой вероятностью P(S) сигнальным (и, следовательно, с вероятностью P(N) = 1 - P(S) - пустым); P(S) и P(N) сохранятся постоянными на протяжении всей серии предъявлений. Таким образом, если общее число предъявлений N в эксперименте достаточно велико, то число сигнальных и пустых предъявлений приблизительно равно, соответственно N P(S) и N P(N) (очевидно, N P(S) + N P(N) = N).

Рассмотрим теперь возможные комбинации <предъявление - ответ>, которые могут встретиться в эксперименте. Их четыре: , , , , причем первые два сочетания являются правильными, два последние - ошибочными исходами. Каждое их этих сочетаний имеет свое специальное название, как это показано в табл. 1.

Таблица 1

1.3.1. Методы прямой классификации

Первой группой методов обнаружения сигнала с известными параметрами являются методы, основанные на пороговой сегментации участков сигнала, соответствующих различным состояниям.

Сюда входят статистические алгоритмы, которые используются при наличии вероятностных зависимостей между значениями участков сигналов и класса, к которому эти участки относятся }


Сайт компьютерной помощи

© Copyright 2024,
rzdoro.ru -Сайт компьютерной помощи

  • Рубрики
  • Программы
  • Microsoft Office
  • Интернет
  • Linux
  • Программы
  • Microsoft Office
  • Интернет
  • Linux