Устройства защиты от импульсных перенапряжений узип: применение, схема подключения, принцип работы. Что такое узип

  • 29.08.2019

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В любом случае оставшиеся вопросы можно разрешить при помощи видеоролика.

Итак, в предыдущих публикациях были рассмотрены физические процессы, лежащие в основе имеющих существенную дальность действия вторичных эффектов при разряде молнии – и . Ознакомившись с материалом, вы непременно придете к выводу о необходимости установки внутренней молниезащиты.

Такая защита, помимо уже рассмотренной ранее , включает также установку устройств защиты от импульсных перенапряжений (УЗИП). Ниже будет дан обзор различных типов этих устройств, принципов работы и правил их установки в системах электрокоммуникаций здания.

Возникающие в электросети импульсные перенапряжения бывают двух типов – противофазные и синфазные. Первые, называемые также поперечными или провод-провод, возникают на клеммах электрооборудования L/N. Для защиты от подобных перенапряжений соответствующий УЗИП устанавливается между фазными L и заземленным PEN проводниками или между фазными L и нулевым N и нулевым N и PE проводниками. Синфазные (продольные или провод – земля) перенапряжения возникают на клеммах N/PE и L/PE. Для защиты от них соответствующий УЗИП устанавливается между L и PE и N и PE проводниками. Более опасными для электрооборудования являются противофазные напряжения, но при проектировании внутренней молниезащиты, как правило, на границах зон используют схемы подключения для защиты от обоих типов перенапряжений.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ и СВОЙСТВА УЗИП

Подключение УЗИП к линиям электропитания может осуществляться тремя разными способами. Самым оптимальным является применение V-образной конфигурации. В этом случае рабочий ток течет по входящему участку цепи, затем внутри устройства по шунту и далее по исходящему участку. Последовательное подключение в разрыв проводников питания. При использовании такой конфигурации необходимо, чтобы номинальный ток нагрузки устройства I L превышал максимальное значение рабочего тока электроцепи.

И третий вариантТ-образная конфигурация или параллельное подключение позволяет использовать УЗИП в системе электропитания любой мощности, поскольку в этом случае через устройство рабочий ток не проходит. Но при этом длина присоединяющего УЗИП к электросети провода не должна превышать 50 см. Поскольку при крутизне переднего фронта импульса за счет индуктивного сопротивления провода на каждом его метре будет иметь место падение напряжения около 1 кВ, которое прибавится к величине напряжения после УЗИП.

Согласно международного стандарта IEC 61643 УЗИП для силовых линий электропитания разделяются на три типа (1 – 3) согласно трем классам испытаний (І – ІІІ). Принятый на основе этого стандарта российский ГОСТ Р 51992-2002 использует только классы испытаний. В соответствии с немецким стандартом E DIN VDE 0675-6 устройства защиты от перенапряжений разделяются на четыре класса требований, обозначаемых буквами (A, B, C и D).

Класс испытаний І означает проверку импульсом 10/350 мкс, моделирующим воздействие прямого удара молнии. Испытания проводятся в рабочем режиме импульсом тока I imp , величина которого указывается затем на корпусе изделия.

Класс испытаний ІІ включает проверку на возможность УЗИП один раз пропустить и не выйти из строя (то есть без разрушений) импульс тока 8/20 мкс величиной I max .

При этом УЗИП обоих классов обязаны выдерживать серию из пяти нарастающих импульсов амплитудой 0,1; 0,25; 0,5; 0,75 и 1,0 от величины I imp для класса І и от I max – для класса ІІ. Также устройства обоих классов проходят испытания импульсом 8/20 мкс для определения значения номинального импульсного разрядного тока I n , то есть такого воздействия, которое УЗИП может переносить без последствий для работоспособности многократно (не менее 15 импульсов).

При I n часто определяют одну из важнейших характеристик УЗИП – уровень защитного напряжения или уровень защиты U p . Этот параметр показывает, на какую величину устройство способно ограничивать появляющийся на его клеммах импульс напряжения, то есть до какого значения за ним снизиться действующее на электрооборудование импульсное перенапряжение. U p может измеряться и при иных величинах импульса тока, например I max , поэтому на УЗИП обязательно должно указываться при каких параметрах определялся уровень защиты.

Класс испытаний ІІІ означает проверку действия на УЗИП комбинированной волны: при разомкнутой цепи подается испытательный импульс напряжения 1,2/50 мкс, а при коротком замыкании цепи - импульс тока 8/20 мкс. При этом на корпусе устройства указывается значение U oc - напряжения разомкнутой цепи.

Помимо указанных, важными параметрами для всех УЗИП являются также:

  • U n - номинальное рабочее напряжение (то есть на электросеть с каким действующим напряжением рассчитано применение устройства);
  • U c - наибольшее длительно допустимое рабочее напряжение (то есть максимальное напряжение в электросети переменного тока при котором устройство будет нормально работать длительное время);
  • t A - время срабатывания.

Основой любого УЗИП является нелинейный элемент, который резко увеличивает свою проводимость при превышении входящим напряжением определенного значения и восстанавливает ее исходную величину после уменьшения напряжения на входе. В качестве такого нелинейного элемента в УЗИП для бытовых низковольтных (до 1000 В) линий электроснабжения используются варисторы, разрядники и диоды двойной проводимости.

Воздушный разрядник состоит из электродов, разделенных воздушным зазором определенной величины – искровым промежутком. При прохождении импульса перенапряжения за счет электрического пробоя в зазоре зажигается электрическая дуга, обеспечивающая падение напряжения. Искровой промежуток в устанавливаемом в доме разряднике обязательно должен быть герметичным, то есть с защищающим от вылета раскаленных газов и плазмы закрытым корпусом. Такие УЗИП в состоянии отводить импульсы тока величиной свыше I imp = 100 кА и относятся к классу І.

В газонаполненном или газовом разряднике искровой промежуток заполнен инертным газом (аргон, неон и т.п.). Электроды и находящийся под низким давлением газ окружены герметичным металлокерамическим корпусом. Часто с целью улучшения уровня защиты на электроды наносится покрытие из радиоактивного материала для дополнительной ионизации искрового промежутка. Как правило, газовые разрядники предназначены для отвода импульсов тока 8/20 мкс величиной < 40 кА и относятся к классам ІІ или ІІІ.

После окончания действия импульса через разрядник будет проходить поддерживаемый самой электросетью сопровождающий ток, величина которого приближается к значению, рассчитываемому для тока короткого замыкания в месте установки устройства. То есть электрическая дуга замыкает не только импульс перенапряжения, но и цепь электропитания. Если разрядник не сможет погасит этот ток, то длительном воздействии это может привести к возгоранию. Поэтому для установки между проводниками L и N или L и PE (PEN) следует выбирать разрядники, у которых указанное на корпусе значение сопровождающего тока I f выше расчетного тока короткого замыкания в этом месте электроцепи. Время срабатывания УЗИП на основе разрядников t A ≤ 100 нс.

Варистор по сути является полупроводниковым резистором, для которого при характерна нелинейная зависимость электропроводности от приложенного внешнего напряжения. Во время действия импульса перенапряжения сопротивление варистора резко уменьшается и основной всплеск тока протекает через него, а не через электрооборудование. Выделяемая при прохождении через варистор тока энергия рассеивается в виде тепла. После окончания импульса перенапряжения варистор практически мгновенно восстанавливает свое первоначальное большое сопротивление. Во избежание перегрева, вызывающего разрушение с угрозой возгорания, ведущие производители снабжают устройства внутренним терморасцепителем.

Производят варисторы путем спекания при температуре около 1700 о C «таблетки» из порошкообразного полупроводника - оксида цинка (ZnO) или карбида кремния (SiC) и связующего зерна вещества (смолы, жидкое стекло, лаки и т.д.). После этого поверхность такой композитной «таблетки» металлизируется и к ней припаиваются выводы. Нелинейность изменения сопротивления варисторов при прикладываемом напряжении связана со сложными электрофизическими явлениями на поверхности зерен кристаллитов полупроводника и в межзеренной прослойке.

В отличие от разрядника, варистор не имеет сопровождающего тока, но для него характерно наличие тока утечки. То есть при нормальной работе находящегося в режиме ожидания варисторного УЗИП через него протекает ток, величина которого при номинальном рабочем напряжении электросети не превышает 1 мА. Значение напряжения, при котором через конкретный варистор протекает ток в 1 мА, называется классификационным. Поэтому для оптимизации параметров УЗИП производители выпускают модели, в которых последовательно соединяют разрядник и варистор. При этом первым исключается ток утечки, а вторым – сопровождающий ток.

Время срабатывания УЗИП на основе варисторов t A ≤ 25 нс. Используют их в устройствах всех трех классов І, ІІ и ІІІ. Заметим однако, что изготавливать надежные варисторные УЗИП для импульсов 10/350 мкс величиной более 20 кА экономически нецелесообразно. Поэтому не стоит доверять указанному на корпусе устройства І класса значению I imp , превышающему 20 кА.

Высоковольтные лавинные диоды , используемые в качестве нелинейного элемента УЗИП, обладают вольт-амперной характеристикой с резко выраженной нелинейностью. Такое свойство позволяет им ограничивать импульсы перенапряжения с превышающей напряжение лавинного пробоя p-n-перехода амплитудой. Подобные диоды называют также супрессорами или симметричными TVS-диодами. Используются они в УЗИП класса ІІІ со временем срабатывания t A ≤ 5 нс.

Нередко все виды УЗИП не совсем корректно называют грозоразрядниками или ограничителями перенапряжения. Последний термин используют в высоковольтной технике только для варисторных устройств.

В системе электроснабжения помимо коротких импульсов могут также возникать временные перенапряжения длительностью более 10 мс и амплитудой свыше 1,1U n . В случае, если амплитуда временного перенапряжения превысит для установленного УЗИП значение U c , это приведет к выходу устройства из строя с большой вероятностью возгорания. Поэтому последовательно с УЗИП следует устанавливать предохранители типа gG/gL, которые имеют меньшее по сравнению с автоматическими выключателями время срабатывания. Номинал предохранителя указывается в характеристиках УЗИП.

ВЫБОР и УСТАНОВКА УЗИП

Относящиеся к классу I (Типа 1 или класса B) устройства защиты от импульсных перенапряжений в линиях электроснабжения устанавливают на вводе в здание, где проходит граница зон молниезащиты LPZ 0 – LPZ 1. Устройства подобного типа обеспечивают в зоне LPZ 1 уровень защиты U p ≤ 4 кВ. Выбранные УЗИП после вводного автомата монтируются во вводно-распределительном устройстве, главном распределительном щите (ГРЩ) или, при нехватке места, рядом в отдельном щите. В случае установленной системы внешней молниезащиты и, особенно при воздушном вводе в дом линий электроснабжения монтаж внутренней молниезащиты является крайне необходимым.

Выбор параметра I imp для устройств первой линии обороны электрооборудования можно определять исходя из правила, что 50% тока молнии при прямом ударе попадает в дом по внешним токопроводящим коммуникациям. Для загородного дома (ІІІ класс молниезащиты) значение тока разряда молнии принимается равным 100 кА (согласно статистике наблюдений только в 5% случаев разряды молнии превышают это значение).

Для надежного уровня безопасности линий электропитании считают, что весь ток молнии пойдет по силовым кабелям. Таким образом, если в молниеприемник ударил разряд в 100 кА, то 50 кА пройдет по входящим в дом проводам, разделившись по количеству вводов. При прямом ударе в воздушную линию электроснабжения ток приблизительно в равных долях устремится к ТП и в дом. То есть, при двух входящих проводах (система заземления TN-C) на каждом из них можно получить ток 25 кА. Поэтому с учетом возможной неравномерности распределения тока имеем I imp ≤ 30 кА.

Для установленной в доме бытовой техники обеспечиваемого в LPZ 1 уровня защиты недостаточно, поэтому в доме выделяется вторая зона молниезащиты и на границе LPZ 1 - LPZ 2 устанавливаются устройства защиты от импульсных перенапряжений класса II (Типа 2 или класса C). Их монтируют во внутренних распределительных щитах (этажных или других) или в специальных щитах рядом с ними. Установка подобных УЗИП должна обеспечивать в зоне LPZ 1 уровень защиты U p ≤ 2,5 кВ.

Если ГРЩ в доме один или к нему необходимо непосредственно подключит оборудование, которое нуждается в уровне защиты, соответствующем зоне LPZ 2, то в ГРЩ устанавливаются УЗИП классов І и ІІ или готовый модуль І + ІІ. Для правильной очередности срабатывания между устройствами разных классов должно быть образованная проводом электропитания линия задержки длинной не менее 10 метров. Поэтому при установке в одном щите для их согласования необходимо использовать соответствующие дроссели. В готовом модуле такое согласование уже выполнено. С другой стороны, при выходе из строя одного входящего в модуль УЗИП заменять придется весь модуль.

Для еще более чувствительного оборудования (например, компьютеры или серверы, факсовые аппараты и т.д.) выделяется зона молниезащиты LPZ 3. В этом случае на границе LPZ 2 - LPZ 3 устанавливают УЗИП класса III (Типа 3 или класса D), которые обеспечивают уровень защиты U p ≤ 1,5 кВ. Защищаемое оборудования в этом случае не должно размещаться далее 5 метров от защищающего устройства. УЗИП класса III имеют наибольшее разнообразие конструкций: для монтажа в щите на DIN-рейку, для навесного монтажа, для установки в розеточные коробки и кабель-каналы или в виде сетевого адаптера.

Исполнение и схема монтажа УЗИП зависит от того, какая система заземления используется при организации электроснабжения здания – TT, TN-C или TN-S (получаем при разделении на вводе в дом PEN проводника). Поскольку цель данной публикации показать необходимость применения УЗИП для защиты электрооборудования и вкратце рассказать, что они собой представляют и какие имеют важные параметры, мы не будем обсуждать конкретные правила и инструкции их установки.

Если Вы не очень сильны в электротехнике то не рекомендуем самостоятельно монтировать в распределительные щиты дома УЗИП, поскольку эти устройства могут надлежаще выполнять свои функции только при правильной установке. Помимо системы электроснабжения необходимо также устанавливать соответствующие защитные устройства и на линиях слаботочных коммуникаций: спутниковое телевидение, телефонный кабель, витая пара и т.д. Поэтому предоставьте расчет и монтаж внутренней молниезащиты специалистам, проверить компетентность которых Вам помогут публикации сайта.

На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи - в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП - обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

Характеристики импульсов перенапряжения

Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада - для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
- первая - время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
- вторая - время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) - внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II (C) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) - защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование - если оно изготовлено в соответствии с ГОСТ);

Приборы защиты от импульсных перенапряжений

Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.
Разрядник
Разрядник - электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник - он переходит в исходное закрытое состояние до следующего импульса.


Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс - максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания разрядника (практически для всех разрядников - менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника - статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» - ведь мы заранее не знаем значение тока, который возникнет в сети...
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током - от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности - а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

Варистор
Варистор - полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна - варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

Небольшое видео натуралистических испытаний:) (подача на варистор диаметром 20 мм повышенного напряжения - превышение на 50 В)

Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II (C), III (D);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс - максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания варистора (практически для всех варисторов - менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора - статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора - практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact , который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 - 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока - так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

Краткий обзор производителей УЗИП
Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact ; Dehn ; OBO Bettermann ; CITEL ; Hakel . Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию - например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) - они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции - о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка - это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

Теги:

  • грозозащита
  • УЗИП
  • защита от перенапряжения
Добавить метки

Если в вашем доме установлено множество дорогой бытовой техники, лучше позаботиться об организации комплексной защиты электросети. В этой статье мы расскажем об устройствах защиты от импульсных перенапряжений, зачем они нужны, какие бывают и как устанавливаются.

Природа импульсных перенапряжений и их влияние на технику

Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.

Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы , подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.

1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод

Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.

Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.

Как устроен и как работает УЗИП

УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.

При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.

Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.

В чем различие между классами защиты

В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.

Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.

УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.

Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.

Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.

Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20-30 циклами.

Есть ли необходимость в УЗИП, оценка рисков

Полный перечень требований к организации защиты от ИП изложен в МЭК 61643-21, определить обязательность установки можно по стандарту МЭК 62305-2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.

В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.

Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.

Установка устройств в ГРЩ

Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.

При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.

УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.

Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей

При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.

Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.