Водная система охлаждения. Водяное охлаждение компьютера

  • 05.09.2019

Если вы купили мощный новый компьютер, то он будет потреблять достаточно много электроэнергии, а также громко шуметь, что является весьма неприятным и очень существенным недостатком. Достаточно громоздкие системные блоки (для циркуляции воздуха), с большими кулерами, в этом случае не самый лучший вариант, поэтому сегодня мы расскажем вам об альтернативном варианте – водяном охлаждении для компьютера (а конкретно о его видах, особенностях и, конечно же, преимуществах).

Зачем необходимо водяное охлаждение?!
Как мы уже сказали, обычные компьютерные вентиляторы создают много шума, а кроме того, даже, несмотря на их большую мощность, они не способны рационально отводить из системного блока выделяемое компонентами компьютера тепло, что само по себе повышает риск выхода из строя, какого-либо элемента от перегрева.

В этих условиях производители обратили своё внимание на системы жидкостного охлаждения компьютерных деталей. Проверка множества таких систем в целом показывает, что жидкостная система охлаждения компьютера имеет право на существование в силу целого ряда показателей, выгодно отличающих её от воздушной системы.

Преимущества и принципы работы водяного охлаждения

Водяному охлаждению не требуется большого объёма системного блока для того, чтобы обеспечивать лучшую циркуляцию воздуха в самом системном блоке. Кроме всего прочего, она гораздо меньше шумит, что, кстати, также является немаловажным фактором для людей, которые по тем или иным причинам проводят много времени за компьютером. Любая же воздушная система, пусть даже самая качественная, при всех своих преимуществах, во время своей работы непрерывно создаёт поток воздуха, который гуляет по всему системному блоку, в любом случае увеличивает шум в помещении, а для многих пользователей важен низкий уровень шума, так как постоянный гул очень надоедает и раздражает. Программное обеспечение самостоятельно регулирует давление потока жидкости в системе, в зависимости от интенсивности тепловыделения процессора и других компонентов компьютера. То есть система может автоматически увеличивать или уменьшать эффективность теплоотвода, что обеспечивает непрерывный и точный контроль температурного режима, как любого отдельного элемента (будь то процессор, видеокарта или винчестер), так и во всём пространстве системного блока. Таким образом, применение жидкостного охлаждения ликвидирует также и тот недостаток любой воздушной системы, когда детали компьютера охлаждаются преимущественно воздухом из системного блока, который непрерывно нагревается этими же деталями и не успевает своевременно выводиться за пределы блока. С жидкостью такие проблемы исключены. Такая система способна справляться со своими задачами гораздо эффективнее любого воздушного охлаждения.

Также, помимо высокого уровня шума, воздушное охлаждение компьютера приводит к большому скоплению пыли: как на самих вентиляторах кулеров, так и на остальных комплектующих. В свою очередь это очень негативно сказывается как на воздухе в помещении (когда из системного блока выходит поток воздуха с пылью), так и на быстродействии всех комплектующих, на которых оседает вся пыль.

Виды водяного охлаждения по месту охлаждения


  • Наибольшую важность в любой подобной системе представляет радиатор процессора . По сравнению с традиционными кулерами, процессорный радиатор с двумя подведёнными к нему трубками (одна на вход жидкости, другая на выход) выглядит очень компактно. Это особенно радует, потому что эффективность охлаждения такого радиатора явно превосходит любой кулер.

  • Графические чипы видеокарт охлаждаются так же, как и процессоры (параллельно с ними), только радиаторы для них поменьше.

  • Не меньшую эффективность имеет жидкостное охлаждение винчестера . Для этого разработаны очень тонкие водяные радиаторы, которые крепятся к верхней плоскости жёсткого диска и благодаря максимально большой площади контакта обеспечивают хороший теплоотвод, что невозможно при обычном воздушном обдуве.

Надёжность всей водяной системы больше всего зависит от помпы (качающего насоса): прекращение циркуляции жидкости моментально вызовет падение эффективности охлаждения практически до нуля.

Системы жидкостного охлаждения делятся на два типа: те, что с помпой, и те, что без неё – безпомповые системы..

1-ый тип: системы жидкостного охлаждения с помпой
Существуют два типа помп: имеющие собственный герметичный корпус, и просто погружаемые в резервуар с охлаждающей жидкостью. Те, что имеют свой герметичный корпус, безусловно, дороже, но и значительно надёжнее, чем погружаемые в жидкость. Вся жидкость, используемая в системе, охлаждается в радиаторе-теплообменнике, к которому крепится низкооборотный кулер, создающий поток воздуха, который и охлаждает текущую в изогнутых трубках радиатора жидкость. Кулер никогда не развивает большой скорости вращения и потому шум от всей системы намного меньше, чем от мощных кулеров, используемых в воздушном охлаждении.

2-ой тип: безпомповые системы
Как понятно из названия – никакого механического нагнетателя (т.е. помпы) в них нет. Циркуляция жидкости осуществляется с использованием принципа испарителя, который создаёт направленное давление, движущее охлаждающее вещество. Жидкость (с низкой температурой кипения) непрерывно превращается в пар, когда нагревается до определённой температуры, а пар – в жидкость, когда попадает в радиатор теплообменника-конденсатора. Только тепло выделяемое охлаждаемым элементом заставляет двигаться жидкость. К достоинствам этих систем относятся: компактность, простота и невысокая стоимость, поскольку отсутствует помпа; минимум движущихся механических частей – обеспечивает низкий уровень шума и низкую вероятность механических поломок. Теперь о недостатках данного типа водяного охлаждения компьютера. Эффективность и мощность таких систем - значительно ниже, чем у помповых; используется газовая фаза вещества, а это значит, что нужна высокая герметичность конструкции, потому как любая утечка приведёт к тому, что система сразу же потеряет давление и, как следствие, станет неработоспособной. Причём заметить и исправить это будет очень нелегко.

Стоит ли устанавливать водяное охлаждение на компьютер?

Достоинствами данного типа жидкостного охлаждения являются: высокая эффективность, небольшие размеры радиаторов компьютерных чипов, возможность параллельного охлаждения сразу нескольких устройств и невысокий уровень шума – во всяком случае, ниже, чем шум от мощного кулера любой воздушной системы. Собственно, всем этим и объясняется, что производители ноутбуков стали использовать жидкостное охлаждение одними из первых. Единственным их недостатком, пожалуй, является только сложность установки в системные блоки, которые изначально проектировались для воздушных систем. Это, разумеется, не делает установку подобной системы в ваш компьютер невозможной, просто она будет сопряжена с определёнными трудностями.

Вполне вероятно, что через некоторое время в компьютерной технике произойдёт переход от систем воздушного охлаждения к жидкостным системам, потому что кроме сложностей в установке подобных конструкций на сегодняшние корпуса системных блоков, каких-либо других принципиальных недостатков у них нет, а их преимущества перед воздушным охлаждением весьма и весьма значительны. С появлением на рынке подходящих корпусов для системных блоков популярность этих систем, скорее всего, будет неуклонно расти.

Таким образом, эксперты сайт ничего не имеют против данных систем охлаждения, а наоборот советуют именно им отдать предпочтение, если того требуют обстоятельства. Только при выборе той или иной системы не нужно экономить, дабы не попасть впросак. Дешёвые водяные системы охлаждения имеют низкое качество охлаждения и достаточно высокий уровень шума, именно поэтому, приняв решение установить водяное охлаждение, рассчитывайте на достаточно высокую сумму растрат.

Зачастую после покупки компьютера пользователь сталкивается с таким неприятным явлением, как сильный шум, идущий от охлаждающих вентиляторов. Могут наблюдаться сбои в работе операционной системы из-за нагрева до высоких температур (90°C и более) процессора или видеокарты. Это весьма существенные недостатки, устранить которые возможно с помощью дополнительно устанавливаемого на ПК водяного охлаждения. Как изготовить систему своими руками?

Жидкостное охлаждение, его положительные свойства и недостатки

Принцип действия системы жидкостного охлаждения компьютера (СЖОК) основан на использовании соответствующего теплоносителя. Жидкость за счёт постоянной циркуляции поступает к тем узлам, температурный режим которых необходимо контролировать и регулировать. Дальше теплоноситель по шлангам поступает в радиатор, где и охлаждается, отдавая тепло воздуху, который затем отводится за пределы системного блока с помощью вентиляции.

Жидкость, имея более высокую теплопроводность по сравнению с воздухом, быстро стабилизирует температуру таких аппаратных ресурсов, как процессор и графический чип, приводя их к норме. В результате можно добиться существенного повышения производительности ПК за счёт его системного разгона. При этом надёжность работы компонентов компьютера не будет нарушена.

При использовании СЖОК можно обходиться вообще без вентиляторов или применять маломощные бесшумные модели. Работа компьютера становится тихой, в результате чего пользователь чувствует себя комфортно.

К недостаткам СЖОК следует отнести её дороговизну. Да, готовая система жидкостного охлаждения является удовольствием не из дешёвых. Но ведь при желании её можно сделать и установить самостоятельно. Это займёт время, но будет стоить недорого.

Классификация охлаждающих водяных систем

Жидкостные охлаждающие системы могут быть:

  1. По типу размещения:
    • внешние;
    • внутренние.

      Отличие между внешними и внутренними СЖОК в том, где расположена система: снаружи или внутри системного блока.

  2. По схеме соединения:
    • параллельные - при таком подключении разводка идёт от основного радиатора-теплообменника к каждому водоблоку, обеспечивающему охлаждение процессора, видеокарты или другого узла / элемента компьютера;
    • последовательные - каждый водоблок соединяется друг с другом;
    • комбинированные - такая схема включает одновременно параллельные и последовательные подключения.
  3. По способу обеспечения циркуляции жидкости:
    • помповые - система использует принцип принудительного нагнетания охлаждающей жидкости к водоблокам. В качестве нагнетателя используются помпы. Они могут иметь собственный герметичный корпус либо погружаться в охлаждающую жидкость, находящуюся в отдельном резервуаре;
    • безпомповые - жидкость циркулирует за счёт испарения, при котором создаётся давление, движущее теплоноситель в заданном направлении. Охлаждаемый элемент, нагреваясь, превращает подводимую к нему жидкость в пар, который затем снова становится жидкостью в радиаторе. По характеристикам такие системы значительно уступают помповым СЖОК.

Виды СЖОК - галерея

При использовании последовательного подключения сложно непрерывно обеспечивать хладагентом все подключаемые узлы араллельная схема подключения СЖОК - простое подключение с возможностью легко просчитывать характеристики охлаждаемых узлов Системный блок с внутренней СЖОК занимает много места внутри корпуса компьютера и требует высокой квалификации при монтаже
При использовании внешней СЖОК внутреннее пространство системного блока остаётся свободным

Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Делаем жидкостную систему охлаждения ПК своими руками - видео

Изготовление, сборка и монтаж

Рассмотрим изготовление внешней помповой системы жидкостного охлаждения центрального процессора ПК.

  1. Начнём с водоблока. Самую простую модель этого узла можно приобрести в интернет-магазине. Идёт он сразу с фитингами и зажимами.
  2. Водоблок можно изготовить и самостоятельно. В этом случае понадобится медная болванка диаметром от 70 мм и длиной 5–7 см, а также возможность заказать токарные и фрезерные работы в технической мастерской. В результате получится самодельный водоблок, который по окончании всех манипуляций нужно будет покрыть автомобильным лаком для исключения окисления.
  3. Для крепления водоблока можно использовать отверстия на материнской плате в месте изначальной установки радиатора воздушного охлаждения с вентилятором. В отверстия вставляются металлические стойки, на которые крепятся вырезанные из фторопласта планки, прижимающие водоблок к процессору.
  4. Радиатор лучше всего приобрести готовый.

    Некоторые умельцы используют радиаторы от старых автомобилей.

  5. В зависимости от размеров, на радиатор с помощью резиновых прокладок и кабельных стяжек или же посредством саморезов крепятся один или два стандартных компьютерных вентилятора.
  6. В качестве шланга можно использовать обычный жидкостный уровень, сделанный из силиконовой трубки, обрезав его с обеих сторон.
  7. Без фитингов не обходится ни одна СЖОК, ведь именно через них шланги подключаются ко всем узлам системы.
  8. В качестве нагнетателя рекомендуется использовать небольшую аквариумную помпу, которую можно приобрести в зоомагазине. Крепится она в подготовленном резервуаре для охлаждающей жидкости с помощью присосок.
  9. В роли резервуара для жидкости, выполняющего функции расширительного бачка, можно использовать любой пищевой контейнер из пластмассы, имеющий крышку. Главное, чтобы туда помещалась помпа.
  10. Для возможности долива жидкости в крышку контейнера врезается горловина любой пластиковой бутылки с закруткой.
  11. Электропитание всех узлов СЖОК выводится на отдельный штекер для возможности подключения от компьютера.
  12. На заключительном этапе все узлы СЖОК закрепляются на подобранном по размеру листе оргстекла, подключаются и фиксируются зажимами все шланги, штекер электропитания соединяется с компьютером, система заполняется дистиллированной водой или тосолом. После запуска ПК охлаждающая жидкость сразу начинает подаваться к центральному процессору.

Водоблок на компьютер своими руками - видео

Водяное охлаждение превосходит по характеристикам изначально устанавливаемую на современных компьютерах воздушную систему. За счёт жидкостного теплоносителя, используемого вместо вентиляторов, сокращается шумовой фон. Компьютер работает намного тише. Сделать СЖОК можно своими руками, обеспечив при этом надёжную защиту основных элементов и узлов компьютера (процессор, видеокарта и др.) от перегрева.

Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

Поскольку системы водяного охлаждения интересны большому количеству компьютерных энтузиастов, то мы решили написать специальную серию статей, посвященных системам водяного охлаждения компьютеров. В этой серии статей мы постараемся рассказать об о всех аспектах водяного охлаждения для компьютеров, в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает. Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения и обслуживание системы водяного охлаждения и многие смежные темы.

Конкретно в данной статье мы расскажем вам про системы водяного охлаждения компьютеров в общем, что они из себя представляют, их принципе работы, составных частях и т.д.

Что такое система водяного охлаждения

Система водяного охлаждения - это система охлаждения, которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде.

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло, вырабатываемое процессором (или другим тепловыделяющим элементом, например графическим чипом), передается воде через специальный теплообменник, называемый ватерблоком. Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник - радиатор, в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса, который, чаще всего, называют помпой.

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имемет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг -1 ·K -1 у воды против 1,005 кДж·кг -1 ·K -1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024-0,031Вт/(м·K) у воздуха), что обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них. Соответственно, при прочих равных условиях , водяное охлаждение всегда будет более эффективным, чем воздушное.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС:).

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более мощного охлаждения, которое положительно скажется на разгоне и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения, которая позволит работать разогнанному компьютеру при минимуме шума. По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише, но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X), которые жалуются на высокие температуры работы (более 90 градусов) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения. Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой - холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения, ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему - радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) - это специальный теплообменник, с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде. Обычно, конструкция ватерблока состоит из медного основания, а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны:), т.е. для элементов, установка ватерблоков на которые не приведет к каким-либо существенным улучшениям показателей, кроме температуры самого элемента.

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт, а также ватерблоки на системный чип (северный мост). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип - так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) - так называемые фулкавер (от англ. fullcover) ватерблоки

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 — 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими - чтобы тепло быстрее передавалось от процессора к воде. Также, для увеличения поверхности теплопередачи, в современных ватерблоках, обычно, применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Несмотря на то, что ватерблоки сами по себе являются не очень то и сложными компонентам, чтобы детально раскрыть все моменты и нюансы, связанные с ними, нужна отдельная статья, посвященная им, которую мы напишем и постараемся опубликовать в ближайшем будущем.

Радиатор . Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа:

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью. При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения - основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину - для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда. В данный момент, на нашем сайте размещен всего один , но в дальнейшем мы планирует увеличить количество таких гайдов, в которым мы подробно расскажем про различные способы установки радиаторов СВО в компьютерные корпуса.

Помпа - это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером - для этого, чаще всего, применяли при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы, например Laing DDC, которые обладали компактными размерами и высокой производительностью, при этом питались от стандартных компьютерных 12 вольт.

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления, что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 — 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Как и с некоторыми другими компонентами СВО, описать все нюансы и особенности помп, используемых в сво, а также перечислить все рекомендации по выбору помпы в данной статье будет проблематично, поэтому в будущем мы планируем сделать это в отдельной статье.

Шланги или трубки , как бы их не называли:), также являются одним из обязательных компонентов любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров) шланги и все будет ОК 🙂

Фитинги - это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинги вкручиваться в отверстие с резьбой на компоненте СВО, сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги, необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4″, но в редких случаях встречаются также резьбы стандартов G1/8″ или G3/8″.

Также является обязательным компонентом СВО 🙂 Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду, то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде - существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками - существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения.

Необязательные компоненты - это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить. Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной, хотя бывают компоненты и с другой смысловой нагрузкой, основной смысл который состоит в том, чтобы вызывать у пользователя чувство безопасности эксплуатации СВО (хотя СВО может прекрасно и безопасно работать и без этих компонентов), охладить водой всё и вся (даже то, что в охлаждении не нуждается) или сделать систему более пафосной и красиво выглядящей. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения, несмотря на то, что большинство систем водяного охлаждения все-таки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Объем воды, вмещаемый резервуаром, не принципиален, так как он влияет на производительность системы водяного охлаждения. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Cливной кран - это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения. В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания, системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету:). Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть 🙂 Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы, попавшие в систему - это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь - особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Бэкплейт - это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите - связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов - повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки 🙂 Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату 🙂

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса 🙂

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так - комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Среди плюсов готовых систем можно отметить удобство - вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой - собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома - при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике:). Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК. При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно - выбирать комплектующие по максимальной цене 🙂 При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа - не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты 🙂

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте, при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно, скрытых большими воздушными кулерами, например, материнской платы, навороченных модулей памяти и так далее.

Выводы про водяное охлаждение

Мы надеемся, что наша статья по водяному охлаждению вам понравилась и позволила разобраться во всех аспектах функционирования СВО. В дальнейшем мы планируем опубликовать еще несколько статей про отдельные части СВО, про сборку и обслуживание систем водяного охлаждения и прочие смежные темы. Кроме того, также мы будем производить тесты и обзоры компонентов водяного охлаждения, чтобы у наших читателей была лучшая возможность разобраться во всем многообразии доступны на рынке компонентов и сделать правильный выбор.

5 апреля 2017

Приветствую, дорогой читатель!

Если ты только недавно узнал о или слышал о них ранее и хотел бы установить себе, но не знал, с чего начать, тогда эта статья именно для тебя. В ней мы расскажем о самых базовых понятиях, основных компонентах СВО, а также нюансах, которые будут сопутствовать выбору тех или иных комплектующих.

Итак, полный набор компонентом кастомной системы водяного охлаждения состоит из:

Рассмотрим их подробнее.

РАДИАТОРЫ

Существует очень много различных типов радиаторов , отличающихся по размеру, структуре, материалу изготовления, но в целом они все очень похожи - и выполняют одну и ту же функцию - рассеивание тепла .

Изготавливаются радиаторы из двух материалов - алюминия и меди . Медные дороже алюминиевых, и они, безусловно, лучше . Но и алюминиевые от них не сильно отстают в качестве рассеивания тепла, поэтому не всегда большие финансовые затраты оправданы. Если твой бюджет ограничен и ты не гонишься за каждым градусом охлаждения или у тебя два и больше радиатора толщиной 45мм, рассчитаных на 3 кулера, то вполне можешь выбирать алюминиевый варианты . При этом учти, что самые именитые компании, в основном, производят только медные варианты. Если все же решишься брать медный , то один из вариантов - изделия от компании Alphacool , которая располагает наверное самым широким ассортиментом медных радиаторов среди всех производителей, специализирующихся на компонентах СВО.

С материалами разобрались, теперь время поговорить об основных технических параметров любого радиатора - размере и FPI .

Чем больше габариты радиатора , тем больше ребер присутствует в его конструкции. А это значит, что увеличивается площадь для рассеивания тепла и продуктивность работы радиатора возрастает. В большинстве случаев более габаритные радиаторы требуют менее мощных вентиляторов, но чтобы делать окончательные выводы, нужно учитывать FPI .

Параметр FPI характеризует количество ребер радиатора на один дюйм (плотность), что также влияет на общую площадь рассеивания тепла. Через радиаторы с высоким FPI труднее прогонять воздух, а это значит, что они требуют более мощных вентиляторов. Но если радиатор достаточно большой и в нем есть большое количество плотно расположенных ребер, то данный нюанс не столь важен, так как в данном случае большую часть времени работы СВО вентиляторы могут вообще не понадобиться. За примером далеко ходить не нужно - мой рабочий компьютер в начале рабочего дня вообще не запускает вентиляторы примерно 2 часа, так как этому способствует температура жидкости , которая циркулирует по контуру системы.

ВОДОБЛОКИ

Данный элемент СВО выпускается для каждого компонента ПК , так или иначе подверженного нагреванию во время работы. Самыми распространенными являются водоблоки для и . Основное различие всех водоблоков между собой заключается в основных технических параметрах: типе канальной системы , способе подачи жидкости , а также материале основания .

Если ты не планируешь бороться за каждую долю градуса, то вполне можешь покупать недорогие , но проверенные, китайские водоблоки - СВО с ними будет охлаждать гораздо продуктивнее любого воздушного кулера. К примеру, можно обратить внимание на модели от компании Bykski , обзоры и тесты которых ты можешь найти у нас на сайте. Если же тебе нужна максимальная производительность и красивый внешний вид, тогда предпочтительнее выбрать что-то похожее на новую модель водоблока от Alphacool , которого также есть на нашем сайте.

ПОМПА

Данный компонент системы водяного охлаждения является, по сути, ее сердцем. То есть, жизненно важным для работы элементом.

Основные характеристики помпы при выборе - это производительность , измеряемая в литрах за час , ну и шум. Зачастую, чем производительнее помпа, тем громче она работает. В конструкции некоторых помп присутствует PWM-разъем , позволяющий управлять скоростью работы мотора , тем самым регулируя производительность и, соответственно, шум.

При минимальной конфигурации СВО (один водоблок на процессоре) и небольшом бюджете тебе с головой хватит любой помпы с заявленной производительностью около 200 л/час . Ведь даже , в которых помпа работает на 100 л/час, вполне справляются со своей задачей. Если же ты гонишься за производительность и при этом хочешь максимально тихой работы, тогда самый приемлемый выбор - помпа D5 , но нужно учесть ее относительно высокую стоимость. Производителем заявляется, что ее средний показатель работы - около 450 л/час , по факту, в контуре средней конфигурации (водоблок на процессоре и ещё один на видеокарте) она выдает уверенных 200 л/час. Популярность двигателя D5 подкреплена тем фактом, что каждый именитый производитель выпускает свой вариант данной помпы, комплектются ее своим топом (крышкой), который привносит в дизайн индивидуальность, но при этом двигатель один и тот же - и работает он тихо, надежно и производительно.

РЕЗЕРВУАРЫ

Резервуар тоже является обязательным элементом СВО . Если посмотреть на вышеупомянутые необслуживаемые СВО, то у них нет резервуара, но в их случае система является герметичной и полностью заполнена жидкостью , то есть там нет воздуха. В кастомных же СВО резервуар служит для предотвращения возникновения воздуха в контуре, отслеживания уровня охлаждающей жидкости и удобного залива этой самой жидкости в контур.

Производятся резервуары, в основном, из акрила или стекла . Стеклянные дороже, но они более качественные. К примеру, акриловый резервуар может треснуть, если при его монтаже применить силу больше той, что следует, и сильно закрутить его конструктивные элементы.

Если ты не планируешь делать моддинг проект, то тебе хватит даже самого маленького акрилового резервуара , так как основные функции он сможет обеспечить. Единственное отличие маленького от большого заключается в том, что в маленький чаще нужно заливать охлаждающую жидкость.

ФИТИНГИ

Та маленькая , но очень важная часть, без которой бы не смогла полноценно функционировать ни одна система водяного охлаждения . Фитингов существует очень много и отличаются они по дизайну, типу совместимых шлангов, материалу и т.д. Самыми распространёнными являются фитинги для трубок 10/13 , то есть с внутренним диаметром 10 мм и внешним 13 мм. Есть фитинги с гайкой (компрессионные), а есть классические фитинги-елочки (штуцеры), на которые шланг просто надевается и зажимается скобой. В целом, по фитингам, особых нюансов нет. Просто выбирай нужный по дизайну, типу шланга, ну и материалу.

Разновидностью фитингов являются адаптеры , которые позволяют сделать контур СВО более красивым и избавить его от "вермишели" из трубок. Ведь трубки имеют большой радиус изгиба и если нужен небольшой переход между неудобно расположенными друг к другу компонентами СВО, то адаптеры - это хорошее решение.

ШЛАНГИ

Также очень важная часть системы жидкостного охлаждения. Позволяет соединить все компоненты СВО воедино . Различаются шланги исполнением , материалом , диаметром , расцветкой . Как было указано выше, наибольшее распространение обрели шланги с диаметром 10/13 .

Что касается материала, то шланги изготавливаются, в основном, из ПВХ или силикона . ПВХ-варианты дешевле, но у них радиус изгиба больше и они со временем мутнеют . Соответственно, при использовании силиконовых шлангов у тебя есть больше возможностей сделать эстетически красивый контур , что важно в различных моддинг проектах.

ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

Она является теплоносителем в контуре СВО . То есть она переносит тепло от горячих элементов (водоблоков) к элементам, которые тепло рассеивают (радиаторам). В контуре лучше всего использовать специальную профильную жидкость , но может подойти даже дистиллированная вода, которая лучше переносит тепло за счет отсутствия химических добавок, хотя она и нуждается в более частой замене .

Теперь ты знаешь основную информацию , которая позволит тебе определиться с комплектацией твоей первой системы водяного охлаждения . А если хочешь узнать еще больше, тогда можешь ознакомиться с тестами и обзорами на нашем сайте и YouTube-канале , а также мы постоянно открыты для твоих вопросов.

С видео версией данного руководства ты можешь ознакомиться ниже.