Постоянное запоминающее устройство (ПЗУ). Постоянное запоминающее устройство (ПЗУ) — что это такое и зачем используется

  • 19.08.2019

Персональные компьютеры имеют четыре иерархических уровня памяти:

    микропроцессорная память;

    основная память;

    регистровая кэш-память;

    внешняя память.

Микропроцессорная память рассмотрена выше. Основная память предназначена для хранения и оперативного обмена информацией с другими устройствами компьютера. Функции памяти:

    прием информации от других устройств;

    запоминание информации;

    выдача информации по запросу в другие устройства машины.

Основная память содержит два вида запоминающих устройств:

    ПЗУ - постоянное запоминающее устройство;

    ОЗУ - оперативное запоминающее устройство.

ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.

В ПЗУ находятся:

    программа управления работой процессора;

    программа запуска и останова компьютера;

    программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;

    программы управления дисплеем, клавиатурой, принтером, внешней памятью;

    информация о том, где на диске находится операционная система.

ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом компьютером в текущий период времени.

Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к памяти). Все ячейки памяти объединены в группы по 8 бит (1 байт), каждая такая группа имеет адрес, по которому к ней можно обратиться.

ОЗУ является энергозависимой памятью, при выключении питания информация в нем стирается.

В современных компьютерах объем памяти обычно составляет 8-128 Мбайт. Объем памяти - важная характеристика компьютера, она влияет на скорость работы и работоспособность программ.

Кроме ПЗУ и ОЗУ на системной плате имеется и энергонезависимая CMOS-память, постоянно питающаяся от своего аккумулятора. В ней хранятся параметры конфигурации компьютера, которые проверяются при каждом рключении системы. Это полупостоянная память. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера - SETUP.

Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая кэш-память, которая располагается как бы «между» микропроцессором и оперативной памятью, в ней хранятся копии наиболее часто используемых участков оперативной памяти. Регистры кэш-памяти недоступны для пользователя.

В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным позволяет сократить время выполнения очередных команд программы.

Микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память. Микропроцессоры Pentium и Реntium Pro имеют кэш-память отдельно для данных и отдельно для команд. Для всех микропроцессоров может использоваться дополнительная кэш-память, размещаемая на материнской плате вне микропроцессора, емкость которой может достигать нескольких Мбайт. Внешняя память относится к внешним устройствам компьютера и используется для долговременного хранения любой информации, которая может потребоваться для решения задач. В частности, во внешней памяти хранятся все программное обеспечение компьютера.

Устройства внешней памяти - внешние запоминающие устройства - весьма разнообразны. Их можно классифицировать по виду носителя, по типу конструкции, по принципу записи и считывания информации, по методу доступа и т. д.

Наиболее распространенными внешними запоминающими устройствами являются:

    накопители на жестких магнитных дисках (НЖМД);

    накопители на гибких магнитных дисках (НГМД);

    накопители на оптических дисках (CD-ROM).

Реже в качестве устройств внешней памяти персонального компьютера используются запоминающие устройства на кассетной магнитной ленте - стримеры.

Накопители на дисках - это устройства для чтения и записи с магнитных или оптических носителей. Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство.

НЖМД и НГМД различаются лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве запоминающей среды у магнитных дисков используются магнитные материалы со специальными свойствами, позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры 0 и 1. Информация на магнитные диски записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Количество дорожек на диске и их информационная емкость зависят от типа диска, конструкции накопителя, качества магнитных головок и магнитного покрытия. Каждая дорожка разбита на секторы. В одном секторе обычно размещается 512 байт данных. Обмен данными между накопителем на магнитном диске и оперативной памятью осуществляется последовательно целым числом секторов. Для жесткого магнитного диска используется также понятие цилиндра - совокупности дорожек, находящихся на одинаковом расстоянии от центра диска.

Диски относятся к машинным носителям информации с прямым доступом. Это означает, что компьютер может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни, находилась головка записи и чтения накопителя.

Все диски - и магнитные, и оптические - характеризуются своим диаметром (форм-фактором). Из гибких магнитных дисков наибольшее распространение получили диски диаметром 3,5(89 мм). Емкость этих дисков составляет 1,2 и 1,44 Мбайт.

Накопители на жестких магнитных дисках получили название «винчестер». Этот термин возник из жаргонного названия первой модели жесткого диска, имевшего 30 дорожек по 30 секторов каждая, что случайно совпало с калибром охотничьего ружья «винчестер». Емкость накопителя на жестком магнитном диске измеряется в Мбайтах и Гбайтах.

В последнее время появились новые накопители на магнитных дисках - ZIP-диске - переносные устройства емкостью 230-280 Мбайт.

В последние годы самое широкое распространение получили накопители на оптических дисках (CD-ROM). Благодаря маленьким размерам, большой емкости и надежности эти накопители становятся все более популярными. Емкость накопителей на оптических дисках - от 640 Мбайт и выше.

Оптические диски делятся на неперезаписываемые лазерно-оптические диски, перезаписываемые лазерно-оптические диски и перезаписываемые магнитооптические диски. Неперезаписываемые диски поставляются фирмами-изготовителями с уже записанной на них информацией. Запись информации на них возможна только в лабораторных условиях, вне компьютера.

Кроме основной своей характеристики - информационной емкости, дисковые накопители характеризуются и двумя временными показателями:

    временем доступа;

    скоростью считывания подряд расположенных байтов.

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах, DDC и DUC, таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory – память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 3.1.

Рисунок 3.1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 3.2.

Рисунок 3.2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.3.

Рисунок 3.3 Схема многоразрядного ПЗУ (ROM).

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 3.4. Схема масочного постоянного запоминающего устройства (ROM).

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 3.5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ОЗУ). Чтение микросхемы производится сигналом RD.

Рисунок 3.5. Условно-графическое обозначение масочного ПЗУ (ROM) на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах - программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке3.6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 3.6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 3.7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния - диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Структурная схема описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие – вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 - 30 минут.

Количество циклов записи – стирания микросхем EPROM находится в диапазоне от 10 до 100 раз, после чего микросхема РПЗУ выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения на оксид кремния. В качестве примера микросхем EPROM можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В РПЗУ чаще всего хранятся программы BIOS универсальных компьютеров. РПЗУ изображаются на принципиальных схемах как показано на рисунке 3.8.

Рисунок 3.8. Условно-графическое обозначение РПЗУ (EPROM) на принципиальных схемах.

Так как корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи - стирания привели к поиску способов стирания информации из РПЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи - стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких ПЗУ уменьшается до 10 мс. Схема управления для электрически стираемых программируемых ПЗУ получилась сложная, поэтому наметилось два направления развития этих микросхем:

1. ЕСППЗУ (EEPROM) - электрически стираемое программируемое постоянное запоминающее устройство

Электрически стираемые ППЗУ (EEPROM) дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи - стирания. Область применения электрически стираемых ПЗУ - хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР3 и зарубежные микросхемы EEPROM серии 28cXX. Электрически стираемые ПЗУ обозначаются на принципиальных схемах как показано на рисунке 3.9.

Рисунок 9. Условно-графическое обозначение электрически стираемого постоянного запоминающего устройства (EEPROM) на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних выводов микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов - SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH - ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 3.10. Условно-графическое обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 3.11.


Рисунок 3.11. Временные диаграммы сигналов чтения информации из ПЗУ.

На рисунке 3.11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD - это сигнал чтения, A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D - выходная информация, считанная из выбранной ячейки ПЗУ.

4. Выполните операцию сложения в дополнительном коде, представив приведенные слагаемые в двоичном виде:

1) + 45 2) - 45

- 20 + 20

Решение:

1) х 1 = 45 = 0,101101 пр

х 2 = - 20 = 1,010100 пр = 1,101011 обр = 1,101100 доп

+ 1,101100

Ответ: 0,011001 пр = 25 10

2) х 1 = - 45 =1,101101 пр

х 2 = 20 = 0,010100 пр

+ 0,010100

Ответ: 1,100111 доп = 1,011000 обр = 1,011001 пр = - 25 10

Вопрос № 5.

Выполните следующие задания:

1) запишите логическую функцию в СНДФ;

2) минимизируйте логическую функцию с помощью карт Карно;

Важно знать разницу между ОЗУ и ПЗУ. Если вы понимаете эту разницу вы сможете лучше понять, как работает компьютер. ОЗУ и ПЗУ, как различные типы запоминающих устройств, и они оба хранят данные в компьютере. В этой статье мы расскажем вам об основных различиях между этими двумя воспоминаниями, а именно ОЗУ и ПЗУ.

Random Access Memory (RAM)

Оперативная память представляет собой тип памяти , которая позволяет получить доступ к хранимым данным в любой последовательности и из любого физического расположения в памяти. RAM могут быть считаны и записаны с новыми данными. Основное преимущество оперативной памяти является то, что она занимает почти такое же время в доступе в него любые данные, независимо от места нахождения данных. Это делает RAM очень быстрой памяти. Компьютеры могут читать из памяти очень быстро, а также они могут записывать новые данные в оперативной памяти очень быстро.

Как RAM выглядит?

Коммерчески доступные обычные чипы памяти могут быть легко подключен в и подключен выход материнской платы компьютера. На следующем рисунке показаны чипы памяти.

Постоянное запоминающее устройство (ПЗУ)

Как следует из названия, данные записываются в ПЗУ только один раз и навсегда. После этого, данные могут быть прочитаны только с помощью компьютеров. Только для чтения памяти часто используется, чтобы установить постоянные инструкции в компьютер. Эти инструкции никогда не изменится. Чипы ROM хранить базовую систему ввода / вывода (BIOS) компьютера. На следующем рисунке показан коммерчески доступный чип ROM BIOS.

Разница между ОЗУ и ПЗУ

В следующей таблице перечислены основные различия между произвольным доступом и только для чтения памяти.

Сравнительная таблица ОЗУ и ПЗУ
ОЗУ ПЗУ
1. Подставки для RANDON-доступа памяти Подставки для памяти только для чтения
2. RAM для чтения и записи в память Обычно ПЗУ постоянное запоминающее устройство и оно не может быть перезаписана. Тем не менее, СППЗУ может быть перепрограммирован
3. RAM быстрее ROM относительно медленнее, чем RAM
4. Оперативная память представляет собой энергонезависимое запоминающее устройство. Это означает, что данные в оперативной памяти будут потеряны, если блок питания отсечку ROM является постоянной памяти. Данные в ПЗУ будет оставаться как есть, даже если мы удалим источника питания
5. Есть в основном два типа оперативной памяти; статическая оперативная память и динамическое ОЗУ Есть несколько типов ROM; Стираемое программируемое ПЗУ, программируемом ПЗУ, СППЗУ и т.д.
6. RAM хранит все приложения и данные, когда компьютер работает в нормальном режиме ROM обычно хранятся инструкции, необходимые для запуска (загрузки) компьютера
7. Цена ОЗУ сравнительно высока чипы ROM сравнительно дешевле
8. чипы памяти больше по размеру микросхемы ROM меньше по размеру
9. Процессор может непосредственно получить доступ к содержимому памяти Содержание ROM, как правило, сначала переносится в оперативную память, а затем доступ к процессору. Это делается для того, чтобы иметь возможность получить доступ к содержимому диска с более высокой скоростью.
10. RAM часто устанавливается с большим объемом памяти. Емкость запоминающего устройства ПЗУ, установленного в компьютере намного меньше, чем RAM

ОЗУ и ПЗУ являются неотъемлемой частью современной компьютерной системы. Вы хотите знать, когда диск работает и когда RAM находится в игре? Ну, когда вы переключаетесь на вашем компьютере, вы можете увидеть черный экран с каким-то белым текстом. Этот текст из ПЗУ. Инструкции ПЗУ управления компьютером для первого несколько секунд, когда вы включить его. В этот период, как инструкции " , как читать с жесткого диска", "как печатать на экране" загружаются из ПЗУ. После того, как компьютер способен делать эти основные операции, операционная система (Windows / Linux / OSX и т.д.) для чтения с жесткого диска и загружается в оперативную память. Следующее видео объясняет RAM против концепции ROM дополнительно.

При открытии программы, как Microsoft Word , программа загружается с жесткого диска компьютера в оперативную память.

Мы надеемся, что эта статья помогла вам понять основные различия между ОЗУ и ПЗУ. Если у вас есть какие-либо вопросы, связанные с этой темой, пожалуйста, не стесняйтесь задавать в разделе комментариев. Мы постараемся помочь вам. Благодарим Вас за использование TechWelkin!

Дата последнего обновления файла 23.10.2009

Постоянные запоминающие устройства (ПЗУ)

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в , и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.


Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.


Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.


Рисунок 3. Схема многоразрядного ПЗУ (ROM)

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы , необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.


Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.


Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:


Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.



Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 ... 30 минут.

Типы ПЗУ

ПЗУ – расшифровывается как постоянное запоминающее устройство, обеспечивающее энергонезависимое хранение информации на каком-либо физическом носителе. По способу хранения информации ПЗУ можно разделить на три типа:

1. ПЗУ, основанные на магнитном принципе хранения информации.

Принцип работы этих устройств основан на изменении направления вектора намагниченности участков ферромагнетика под воздействием переменного магнитного поля в соответствии со значениями битов записываемой информации.

Ферромагнетик – вещество, способное при температуре ниже определенного порога (точки Кюри) обладать намагниченностью при отсутствии внешнего магнитного поля.

Считывание записываемых данных в таких устройствах основано на эффекте электромагнитной индукции или магниторезистивного эффекта. Этот принцип реализуется в устройствах с подвижным носителем в виде диска или ленты.

Электромагнитной индукцией называется эффект возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.

Магниторезистивный эффект основан на изменении электрического сопротивления твердотельного проводника под действием внешнего магнитного поля.

Основное преимущество данного типа – большой объем хранимой информации и низкая стоимость единицы хранимой информации. Основной недостаток – наличие подвижных частей, большие габариты, низкая надежность и чувствительность к внешним воздействиям (вибрация, удары, перемещения и т.д.)

2. ПЗУ, основанные на оптическом принципе хранения информации.

Принцип работы этих устройств основан на изменении оптических свойств участка носителя, например, за счет изменения степени прозрачности или коэффициента отражения. Примером ПЗУ, основанном на оптическом принципе хранения информации, могут служит CD -, DVD-, BluRay - диски.

Основное достоинство данного типа ПЗУ – низкая стоимость носителя, удобство транспортирования и возможность тиражирования. Недостатки – низкая скорость чтения/записи, ограниченное количество перезаписей, потребность в считывающем устройстве.

3. ПЗУ, основанные на электрическом принципе хранения информации.

Принцип работы этих устройств основан на пороговых эффектах в полупроводниковых структурах – возможности хранения и регистрации наличия заряда в изолированной области.

Этот принцип используется в твердотельной памяти – памяти, не требующей использование подвижных частей для чтения/записи данных. Примером ПЗУ, основанном на электрическом принципе хранения информации, может служить flash – память.

Основное достоинство данного типа ПЗУ – высокая скорость чтения/записи, компактность, надежность, экономичность. Недостатки – ограниченное число перезаписи.

На данный момент существуют или находятся на этапе разработки и другие, «экзотические» типы постоянной памяти, такие как:

Магнитно-оптическая память – память, сочетающая свойства оптических и магнитных накопителей. Запись на такой диск осуществляется путем нагрева ячейки лазером до температуры около 200 о С. Разогретая ячейка теряет магнитный заряд. Далее ячейку можно остудить, что будет означать, что в ячейку записан логический ноль, либо зарядить заново магнитной головкой, что будет означать, что в ячейку записана логическая единица.

После охлаждения магнитный заряд ячейки изменить нельзя. Считывание производится лазерным лучом меньшей интенсивности. Если в ячейки содержится магнитный заряд, то лазерный луч поляризуется, а считывающее устройство определяет, является ли лазерный луч поляризованным. За счет «закрепления» магнитного заряда при охлаждении магнитно-оптические обладают высокой надежностью хранения информации и теоретически могут иметь плотность записи большую, чем ПЗУ основанное только на магнитном принципе хранения информации. Однако заменить «жесткие» диски они не могут из-за очень низкой скорости записи, обусловленную необходимостью высокого нагрева ячеек.

Широкого распространения магнитно-оптическая память не получила и используется очень редко.

Молекулярная память – память, основанная на технологии атомной туннельной микроскопии, позволяющей изымать или добавлять в молекулы отдельные атомы, наличие которых затем может считываться специальными чувствительными головками. Данная технология была представлена в середине 1999 года компанией Nanochip, и теоретически позволяла достичь плотности упаковки около 40 Гбит/см 2 , что в десятки раз превосходит существующие серийные образцы «Жестких» дисков, однако слишком низкая скорость записи и надёжность технологии не позволяет говорить о практическом использовании молекулярной памяти в обозримом будущем.

Голографическая память – отличается от существующих наиболее распространенных типов постоянной памяти, использующих для записи один или два поверхностных слоя, возможностью записывать данных по «всему» объему памяти с помощью различных углов наклона лазера. Наиболее вероятно применение такого типа памяти в ПЗУ на базе оптического хранения информации, где уже не в новинку оптические диски с несколькими информационными слоями.

Существуют и другие, совсем уж экзотические типы постоянной памяти, но они даже в лабораторных условиях балансируют на грани научной фантастики, поэтому упоминать о них не буду, поживем – увидим.