Коммутатор мобильной связи. Принцип работы мобильной сотовой связи стандарта GSM и CDMA. Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова

  • 29.10.2019

Принцип работы радиосвязи

Радио (лат.radio- излучаю, испускаю лучи radius- луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Принцип работы
Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемыйсигналмодулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на большиме расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн
Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называетсямноголучёвостью. Вследствие многолучёвости и изменений параметров среды, возникаютзамирания(англ.fading)- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Радиолокация

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Сотовая связь

Сотовая связь , сеть подвижной связи - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Услуги сотовой связи

Операторы сотовой связи предоставляют следующие услуги:

  • Голосовой звонок;
  • Автоответчик в сотовой связи (услуга);
  • Роуминг;
  • АОН (Автоматический определитель номера) и АнтиАОН;
  • Приём и передача коротких текстовых сообщений (SMS);
  • Приём и передача мультимедийных сообщений - изображений, мелодий, видео (MMS-сервис);
  • Мобильный банк (услуга);
  • Доступ в Интернет;
  • Видеозвонок и видеоконференция

Телевидение

Телеви́дение (греч. τήλε - далеко и лат. video - вижу; от новолатинского televisio - дальновидение) - комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ.

Основные принципы

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

  1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.
  2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.
  3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.
  4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.
  5. Приёмник - телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

Немного грустно, что подавляющее большинство людей на вопрос: «Как работает сотовая связь?», отвечают «по воздуху» или вообще - «не знаю».

В продолжение этой темы, у меня вышел один забавный разговор с другом на тему работы мобильной связи. Случилось это аккурат за пару дней до отмечаемого всеми связистами и телекомщиками праздника «Дня радио». Так уж сложилось, что в силу своей ярой жизненной позиции, мой друг считал, что мобильная связь работает вообще без проводов через спутник . Исключительно за счет радиоволн. Сначала у меня не получалось переубедить его. Но после непродолжительной беседы все встало на свои места.

После этой дружеской «лекции» появилась идея написать простым языком о том, как работает сотовая связь. Все как есть.

Когда вы набираете номер и начинаете звонить, ну, или вам кто-нибудь звонит, то ваш мобильный телефон по радиоканалу связывается с одной из антенн ближайшей базовой станции. Где же находятся эти базовые станции, спросите вы?

Обратите внимание на промышленные здания, городские высотки и специальные вышки . На них и располагаются большие серые прямоугольные блоки с торчащими антеннами разных форм. Но антенны эти не телевизионные и не спутниковые, а приемо-передающие операторов сотовой связи. Они направлены в разные стороны, чтобы обеспечить связью абонентов со всех сторон. Ведь мы же не знаем, откуда будет поступать сигнал и куда занесет «горе-абонента» с телефонной трубкой? На профессиональном жаргоне антенны также называют «секторами». Как правило, они устанавливаются от одной до двенадцати.

От антенны сигнал по кабелю передается непосредственно в управляющий блок станции . Вместе они и образуют базовую станцию [антенны и управляющий блок]. Несколько базовых станций, чьи антенны обслуживают отдельную территорию, например, район города или небольшой населенный пункт, подсоединены к специальному блоку - контроллеру . К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру» - коммутатору . Коммутатор обеспечивает выход и вход сигналов на городские телефонные линии, на других операторов сотовой связи, а также операторов междугородней и международной связи.

В небольших сетях используется только один коммутатор, в более крупных, обслуживающих сразу более миллиона абонентов, могут использоваться два, три и более коммутаторов , объединенных между собой опять-таки проводами.

Зачем же такая сложность? Спросят читатели. Казалось бы, можно антенны просто подключить к коммутатору и все будет работать . А тут базовые станции, коммутаторы, куча кабелей… Но, не все так просто.

Когда человек передвигается по улице пешком или идет на автомобиле, поезде и т.д. и при этом еще и разговаривает по телефону, важно обеспечить непрерывность связи. Связисты процесс эстафетной передачи обслуживания в мобильных сетях называют термином «handover». Необходимо вовремя переключать телефон абонента из одной базовой станции на другую, от одного контроллера к другому и так далее.

Если бы базовые станции были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору . А ему «бедному» и так есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку на технические средства . Это снижает вероятность отказа оборудования и, как следствие, потери связи. Ведь все мы заинтересованы в бесперебойной связи, не так ли?

Итак, достигнув коммутатора, наш звонок переводится д алее - на сеть другого оператора мобильной, городской междугородной и международной связи. Конечно же, это происходит по высокоскоростным кабельным каналам связи. Звонок поступает на коммутатор другого оператора. При этом последний «знает», на какой территории [в области действия, какого контроллера] сейчас находится нужный абонент. Коммутатор передает телефонный вызов конкретному контроллеру, в котором содержится информация, в зоне действия какой базовой станции находится адресат звонка. Контроллер посылает сигнал этой единственной базовой станции, а она в свою очередь «опрашивает», то есть вызывает мобильный телефон. Трубка начинает причудливо звонить.

Весь этот длинный и сложный процесс в реальности занимает 2-3 секунды !

Точно также происходят телефонные звонки в разные города России, Европы и мира. Для связи коммутаторов различных операторов связи используются высокоскоростные оптоволоконные каналы связи . Благодаря им сотни тысяч километров телефонный сигнал преодолевает за считанные секунды.

Спасибо великому Александру Попову за то, что он дал миру радио! Если бы не он, возможно, мы бы сейчас были лишены многих благ цивилизации.

Сети GSM. Взгляд изнутри.

Немного истории

На заре развития мобильной связи (а было это не так давно - в начале восьмидесятых) Европа покрывалась аналоговыми сетями самых разных стандартов - Скандинавия развивала свои системы, Великобритания свои… Сейчас уже сложно сказать, кто был инициатором последовавшей очень скоро революции - "верхи" в виде производителей оборудования, вынужденные разрабатывать для каждой сети собственные устройства, или "низы" в качестве пользователей, недовольные ограниченной зоной действия своего телефона. Так или иначе, в 1982 году Европейской Комиссией по Телекоммуникациям (CEPT) была создана специальная группа для разработки принципиально новой, общеевропейской системы мобильной связи. Основными требованиями, предъявляемыми к новому стандарту, были: эффективное использование частотного спектра, возможность автоматического роуминга, повышенное качество речи и защиты от несанкционированного доступа по сравнению с предшествующими технологиями, а также, очевидно, совместимость с другими существующими системами связи (в том числе проводными) и тому подобное.

Плодом упорного труда многих людей из разных стран (честно говоря, мне даже страшно представить себе объем проделанной ими работы!) стала представленная в 1990 году спецификация общеевропейской сети мобильной связи, названная Global System for Mobile Communications или просто GSM. А дальше все замелькало, как в калейдоскопе - первый оператор GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков, а к концу 1995 их число увеличилось до 10 миллионов! Воистину, "GSM шагает по планете" - в настоящее время телефоны этого стандарта имеют около 200 миллионов человек, а GSM-сети можно найти по всему миру.

Давайте же попробуем разобраться, как организованы и на каких принципах функционируют сети GSM. Сразу скажу, что задача предстоит не из легких, однако, поверьте - в результате мы получим истинное наслаждение от красоты технических решений, используемых в этой системе связи.

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Начнем с самого сложного и, пожалуй, скучного - рассмотрения скелета (или, как принято говорить на военной кафедре моего Alma Mater, блок-схемы) сети. При описании я буду придерживаться принятых во всем мире англоязычных сокращений, конечно, давая при этом их русскую трактовку.

Взгляните на рис. 1:

Рис.1 Упрощенная архитектура сети GSM.

Самая простая часть структурной схемы - переносной телефон, состоит из двух частей: собственно "трубки" - МЕ (Mobile Equipment - мобильное устройство) и смарт-карты SIM (Subscriber Identity Module - модуль идентификации абонента), получаемой при заключении контракта с оператором. Как любой автомобиль снабжен уникальным номером кузова, так и сотовый телефон имеет собственный номер - IMEI (International Mobile Equipment Identity - международный идентификатор мобильного устройства), который может передаваться сети по ее запросу (более подробно про IMEI можно узнать ). SIM , в свою очередь, содержит так называемый IMSI (International Mobile Subscriber Identity - международный идентификационный номер подписчика). Думаю, разница между IMEI и IMSI ясна - IMEI соответствует конкретному телефону, а IMSI - определенному абоненту.

"Центральной нервной системой" сети является NSS (Network and Switching Subsystem - подсистема сети и коммутации), а компонент, выполняющей функции "мозга" называется MSC (Mobile services Switching Center - центр коммутации). Именно последний всуе называют (иногда с придыханием) "коммутатор", а также, при проблемах со связью, винят во всех смертных грехах. MSC в сети может быть и не один (в данном случае очень уместна аналогия с многопроцессорными компьютерными системами) - например, на момент написания статьи московский оператор Билайн внедрял второй коммутатор (производства Alcatel). MSC занимается маршрутизацией вызовов, формированием данных для биллинговой системы, управляет многими процедурами - проще сказать, что НЕ входит в обязанности коммутатора, чем перечислять все его функции.

Следующими по важности компонентами сети, также входящими в NSS , я бы назвал HLR (Home Location Register - реестр собственных абонентов) и VLR (Visitor Location Register - реестр перемещений). Обратите внимание на эти части, в дальнейшем мы будем часто упоминать их. HLR , грубо говоря, представляет собой базу данных обо всех абонентах, заключивших с рассматриваемой сетью контракт. В ней хранится информация о номерах пользователей (под номерами подразумеваются, во-первых, упоминавшийся выше IMSI , а во-вторых, так называемый MSISDN -Mobile Subscriber ISDN, т.е. телефонный номер в его обычном понимании), перечень доступных услуг и многое другое - далее по тексту часто будут описываться параметры, находящиеся в HLR .

В отличие от HLR , который в системе один, VLR `ов может быть и несколько - каждый из них контролирует свою часть сети. В VLR содержатся данные об абонентах, которые находятся на его (и только его!) территории (причем обслуживаются не только свои подписчики, но и зарегистрированные в сети роумеры). Как только пользователь покидает зону действия какого-то VLR , информация о нем копируется в новый VLR , а из старого удаляется. Фактически, между тем, что есть об абоненте в VLR и в HLR , очень много общего - посмотрите таблицы, где приведен перечень долгосрочных (табл.1) и временных (табл.2 и 3) данных об абонентах, хранящихся в этих реестрах. Еще раз обращаю внимание читателя на принципиальное отличие HLR от VLR : в первом расположена информация обо всех подписчиках сети, независимо от их местоположения, а во втором - данные только о тех, кто находится на подведомственной этому VLR территории. В HLR для каждого абонента постоянно присутствует ссылка на тот VLR , который с ним (абонентом) сейчас работает (при этом сам VLR может принадлежать чужой сети, расположенной, например, на другом конце Земли).

1. Международный идентификационный номер подписчика (IMSI )
2. Телефонный номер абонента в обычном смысле (MSISDN )
3. Категория подвижной станции
4. Ключ идентификации абонента (Ki )
5. Виды обеспечения дополнительными услугами
6. Индекс закрытой группы пользователей
7. Код блокировки закрытой группы пользователей
8. Состав основных вызовов, которые могут быть переданы
9. Оповещение вызывающего абонента
10. Идентификация номера вызываемого абонента
11. График работы
12. Оповещение вызываемого абонента
13. Контроль сигнализации при соединении абонентов
14. Характеристики закрытой группы пользователей
15. Льготы закрытой группы пользователей
16. Запрещенные исходящие вызовы в закрытой группе пользователей
17. Максимальное количество абонентов
18. Используемые пароли
19. Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR .
1. Параметры идентификации и шифрования
2. Временный номер мобильного абонента (TMSI )
3. Адрес реестра перемещения, в котором находится абонент (VLR )
4. Зоны перемещения подвижной станции
5. Номер соты при эстафетной передаче
6. Регистрационный статус
7. Таймер отсутствия ответа
8. Состав используемых в данный момент паролей
9. Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR .
Таблица 3. Полный состав временных данных, хранимых в VLR .

NSS содержит еще два компонента - AuC (Authentication Center - центр авторизации) и EIR (Equipment Identity Register - реестр идентификации оборудования). Первый блок используется для процедур установления подлинности абонента, а второй, как следует из названия, отвечает за допуск к эксплуатации в сети только разрешенных сотовых телефонов. Подробно работа этих систем будет рассмотрена в следующем разделе, посвященном регистрации абонента в сети.

Исполнительной, если так можно выразиться, частью сотовой сети, является BSS (Base Station Subsystem - подсистема базовых станций). Если продолжать аналогию с человеческим организмом, то эту подсистему можно назвать конечностями тела. BSS состоит из нескольких "рук" и "ног" - BSC (Base Station Controller - контроллер базовых станций), а также множества "пальцев" - BTS (Base Transceiver Station - базовая станция). Базовые станции можно наблюдать повсюду - в городах, полях (чуть не сказал "и реках") - фактически это просто приемно-передающие устройства, содержащие от одного до шестнадцати излучателей. Каждый BSC контролирует целую группу BTS и отвечает за управление и распределение каналов, уровень мощности базовых станций и тому подобное. Обычно BSC в сети не один, а целое множество (базовых станций же вообще сотни).

Управляется и координируется работа сети с помощью OSS (Operating and Support Subsystem - подсистема управления и поддержки). OSS состоит из всякого рода служб и систем, контролирующих работу и трафик - дабы не перегружать читателя информацией, работа OSS ниже рассматриваться не будет.

Регистрация в сети.

При каждом включении телефона после выбора сети начинается процедура регистрации. Рассмотрим наиболее общий случай - регистрацию не в домашней, а в чужой, так называемой гостевой, сети (будем предполагать, что услуга роуминга абоненту разрешена).

Пусть сеть найдена. По запросу сети телефон передает IMSI абонента. IMSI начинается с кода страны "приписки" его владельца, далее следуют цифры, определяющие домашнюю сеть, а уже потом - уникальный номер конкретного подписчика. Например, начало IMSI 25099… соответствует российскому оператору Билайн. (250-Россия, 99 - Билайн). По номеру IMSI VLR гостевой сети определяет домашнюю сеть и связывается с ее HLR . Последний передает всю необходимую информацию об абоненте в VLR , который сделал запрос, а у себя размещает ссылку на этот VLR , чтобы в случае необходимости знать, "где искать" абонента.

Очень интересен процесс определения подлинности абонента. При регистрации AuC домашней сети генерирует 128-битовое случайное число - RAND, пересылаемое телефону. Внутри SIM с помощью ключа Ki (ключ идентификации - так же как и IMSI , он содержится в SIM ) и алгоритма идентификации А3 вычисляется 32-битовый ответ - SRES (Signed RESult) по формуле SRES = Ki * RAND. Точно такие же вычисления проделываются одновременно и в AuC (по выбранному из HLR Ki пользователя). Если SRES , вычисленный в телефоне, совпадет со SRES , рассчитанным AuC , то процесс авторизации считается успешным и абоненту присваивается TMSI (Temporary Mobile Subscriber Identity-временный номер мобильного абонента). TMSI служит исключительно для повышения безопасности взаимодействия подписчика с сетью и может периодически меняться (в том числе при смене VLR ).

Теоретически, при регистрации должен передаваться и номер IMEI , но у меня есть большие сомнения насчет того, что московские операторы отслеживают IMEI используемых абонентами телефонов. Давайте будем рассматривать некую "идеальную" сеть, функционирующую так, как было задумано создателями GSM. Так вот, при получении IMEI сетью, он направляется в EIR , где сравнивается с так называемыми "списками" номеров. Белый список содержит номера санкционированных к использованию телефонов, черный список состоит из IMEI , украденных или по какой-либо иной причине не допущенных к эксплуатации телефонов, и, наконец, серый список - "трубки" с проблемами, работа которых разрешается системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR с домашним HLR запускается счетчик времени, задающий момент перерегистрации в случае отсутствия каких-либо сеансов связи. Обычно период обязательной регистрации составляет несколько часов. Перерегистрация необходима для того, чтобы сеть получила подтверждение, что телефон по-прежнему находится в зоне ее действия. Дело в том, что в режиме ожидания "трубка" только отслеживает сигналы, передаваемые сетью, но сама ничего не излучает - процесс передачи начинается только в случае установления соединения, а также при значительных перемещениях относительно сети (ниже это будет рассмотрено подробно) - в таких случаях таймер, отсчитывающий время до следующей перерегистрации, запускается заново. Поэтому при "выпадении" телефона из сети (например, был отсоединен аккумулятор, или владелец аппарата зашел в метро, не выключив телефон) система об этом не узнает.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM . Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM ). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover .

Как уже было сказано, сеть состоит из множества BTS - базовых станций (одна BTS - одна "сота", ячейка). Для упрощения функционирования системы и снижения служебного трафика, BTS объединяют в группы - домены, получившие название LA (Location Area - области расположения). Каждой LA соответствует свой код LAI (Location Area Identity). Один VLR может контролировать несколько LA . И именно LAI помещается в VLR для задания местоположения мобильного абонента. В случае необходимости именно в соответствующей LA (а не в отдельной соте, заметьте) будет произведен поиск абонента. При перемещении абонента из одной соты в другую в пределах одной LA перерегистрация и изменение записей в VLR /HLR не производится, но стоит ему (абоненту) попасть на территорию другой LA , как начнется взаимодействие телефона с сетью. Каждому пользователю, наверное, не раз приходилось слышать периодические помехи (типа хрюк-хрюк---хрюк-хрюк---хрюк-хрюк:-)) в музыкальной системе своего автомобиля от находящегося в режиме ожидания телефона - зачастую это является следствием проводимой перерегистрации при пересечении границ LA . При смене LA код старой области стирается из VLR и заменяется новым LAI , если же следующий LA контролируется другим VLR , то произойдет смена VLR и обновление записи в HLR .

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA , что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Теперь рассмотрим очень красивый алгоритм так называемого handover `ра (такое название получила смена используемого канала в процессе соединения). Во время разговора по мобильному телефону вследствие ряда причин (удаление "трубки" от базовой станции, многолучевая интерференция, перемещение абонента в зону так называемой тени и т.п.) мощность (и качество) сигнала может ухудшиться. В этом случае произойдет переключение на канал (может быть, другой BTS ) с лучшим качеством сигнала без прерывания текущего соединения (добавлю - ни сам абонент, ни его собеседник, как правило, не замечают произошедшего handover `а). Handover`ы принято разделять на четыре типа:

  • смена каналов в пределах одной базовой станции
  • смена канала одной базовой станции на канал другой станции, но находящейся под патронажем того же BSC .
  • переключение каналов между базовыми станциями, контролируемыми разными BSC , но одним MSC
  • переключение каналов между базовыми станциями, за которые отвечают не только разные BSC , но и MSC .

В общем случае, проведение handover `а - задача MSC . Но в двух первых случаях, называемых внутренними handover `ами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC , а MSC лишь информируется о происшедшем.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover `а:

  • "Режим наименьших переключений" (Minimum acceptable performance). В этом случае, при ухудшении качества связи мобильный телефон повышает мощность своего передатчика до тех пор, пока это возможно. Если же, несмотря на повышение уровня сигнала, связь не улучшается (или мощность достигла максимума), то происходит handover .
  • "Энергосберегающий режим" (Power budget). При этом мощность передатчика мобильного телефона остается неизменной, а в случае ухудшения качества меняется канал связи (handover ).

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC , например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов "находит" нужный коммутатор по набранному номеру мобильного абонента MSISDN , который содержит код страны и сети).


Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

MSC пересылает в HLR номер (MSISDN ) абонента. HLR , в свою очередь, обращается с запросом к VLR гостевой сети, в которой находится абонент. VLR выделяет один из имеющихся в ее распоряжении MSRN (Mobile Station Roaming Number - номер "блуждающей" мобильной станции). Идеология назначения MSRN очень напоминает динамическое присвоение адресов IP при коммутируемом доступе в Интернет через модем. HLR домашней сети получает от VLR присвоенный абоненту MSRN и, сопроводив его IMSI пользователя, передает коммутатору домашней сети. Заключительной стадией установления соединения является направление вызова, сопровождаемого IMSI и MSRN , коммутатору гостевой сети, который формирует специальный сигнал, передаваемый по PAGCH (PAGer CHannel - канал вызова) по всей LA , где находится абонент.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Конечно, в мире нет ничего идеального. Рассмотренные выше сотовые системы GSM не исключение. Ограниченное число каналов создает проблемы в деловых центрах мегаполисов (а в последнее время, ознаменованное бурным ростом абонентской базы, и на их окраинах) - чтобы позвонить, часто приходится ждать уменьшения нагрузки системы. Малая, по современным меркам, скорость передачи данных (9600 бит/с) не позволяет пересылать объемные файлы, не говоря о видеоматериалах. Да и роуминговые возможности не так уж безграничны - Америка и Япония развивают свои, несовместимые с GSM, цифровые системы беспроводной связи.

Конечно, рано говорить, что дни GSM сочтены, но нельзя и не замечать появления на горизонте так называемых 3G -систем, олицетворяющих начало новой эры в развитии сотовой телефонии и лишенных перечисленных недостатков. Как хочется заглянуть на несколько лет вперед и посмотреть, какие возможности получим все мы от новых технологий! Впрочем, ждать осталось не так долго - начало коммерческой эксплуатации первой сети третьего поколения намечается на начало 2001 года… А вот какая судьба уготована новым системам - взрывообразный рост, как GSM, или разорение и уничтожение, как Iridium, покажет время…

17 августа 2010

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь...

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети.

Сложно? Давайте разберемся подробнее.

Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых "светит" в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи.

Базовая Станция может работать в трех диапазонах:

900 МГц - сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий
1800 МГц - сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе
2100 МГц - Сеть 3G

Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя "дальность" некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров…

Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется.

Еще мне рассказали о так называемой "проблеме верхних этажей". Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может "видеть" одну БС, а во второй - другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как "соседние" у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем.

Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга.

SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала.

Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками.

Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле.

С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС - это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую.

Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до "девушки", а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют "ежики". Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из "Большой Тройки":

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов.

Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет "мигать лампочка".

ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет "мигать лампочка".

Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается "инцидент", который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования.

За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Понимаю, что у вас осталась куча вопросов о том, как устроена сотовая сеть. Тема сложная, и я попросил специалиста из "Билайн" помочь мне отвечать на ваши комментарии. Единственная просьба - придерживайтесь темы. А вопросы типа "Билайн редиски. Украли у меня 3 рубля со счета" - адресуйте абонентской службе 0611.

Завтра будет пост о том, как передо мной выпрыгнул кит, а я не успел его сфотографировать. Stay Tuned!

Многие ли из нас задумываются, что происходит после того, как мы нажимаем кнопку вызова на мобильном телефоне? Как работают сотовые сети ?

Скорее всего, нет. Чаще всего мы набираем федеральный номер собеседника на автомате, как правило, по делу, поэтому что там и как устроено нас не интересует в конкретный момент времени. А ведь это удивительные вещи. Как можно позвонить человеку, находящемуся в горах или посреди океана? Почему во время разговора мы можем плохо слышать друг друга, а то и вовсе прерваться. Наша статья попробует пролить свет на принцип работы сотовой связи.

Итак, большая часть плотно заселенной территории России, покрыта так называемыми БС, что без сокращения именуются Базовыми Станциями. Многие могли обращать на них свое внимание, путешествуя между городами. В открытом поле, Базовые станции больше похожи на вышки, которые имеют красный и белый цвет. А вот в городе такие БС продуманно размещены на крышах нежилых высоток. Эти вышки способны поймать сигнал от любого сотового телефона, находящегося территориально в радиусе не более, чем 35 километров. "Общение" между БС и телефоном происходит через специальный служебный или голосовой канал.

Как только человек набирает нужный ему номер на мобильном устройстве, аппарат находит самую близко расположенную к нему Базовую Станцию поэтому специальному служебному каналу и просит у нее выделить голосовой канал. Вышка после получения запроса от устройства отправляет запрос на так называемый контроллер, который сокращенно будем называть BSC. Этот самый контроллер перенаправляет запрос уже на коммутатор. "Умный" коммутатор MSC определит, к какому оператору подключен вызываемый абонент.

Если оказывается, что звонок совершается на телефон внутри одной сети, например от абонента Билайн другому абоненту этого оператора, или внутри МТС, внутри Мегафон и так далее, то коммутатор начнет выяснять местоположение вызываемого абонента. Благодаря Home Location Register коммутатор найдет, где находится необходимый человек. Он может быть где угодно, дома, на работе, на даче или вообще в другой стране. Это не помешает коммутатору перевести звонок на соответствующий коммутатор. И тут "клубок" начнет "разматываться". То есть звонок от коммутатора - "ответчика" пойдет на контроллер - "ответчика", затем на его Базовую Станцию и на мобильный телефон соответственно.

Если же коммутатор выяснит, что вызываемый абонент принадлежит другому оператору, то отправит запрос на коммутатор уже другой сети.
Согласитесь, схема достаточно простая, но трудно представима. Как "умная" Базовая Станция находит телефон, отправляет запрос, а коммутатор сам определяет оператора и другого коммутатора. Что такое Базовая станция на самом деле? Оказывается, это несколько железных шкафов, которые располагаются либор под самой крышей здания, на чердаке или в специальном контейнере. Главное условие - помещение должно отлично кондиционироваться.

Логично, что у БС есть антенна, которая и помогает ей "ловить" связь. Антенна у БС состоит из нескольких частей (секторов), каждый из которых отвечает за территорию. Часть антенны, которая расположена вертикально отвечает за связь с мобильными телефонами, а круглая предназначены для связи с контроллером.

Один сектор способен одновременно принимать звонки от семидесяти телефонных аппаратов. Если учесть, что одна БС может состоять из шести секторов, то одновременно она спокойно обслужит 6*72=432 звонка.

Как правило, такой мощности Базовой станции хватает "с головой". Конечно, случаются ситуации, когда все население нашей страны начинает одновременно звонить друг другу. Это новый Год. Некоторым достаточно лишь произнести в трубку заветную фразу «С Новым Годом!», другие же готовы проговаривать часы с безлимитным тарифом от "Корпорации Связи" , обсуждая гостей и планы на всю ночь.

Однако вне зависимости от продолжительности разговора, Базовые станции не справляются, и дозвониться до абонента бывает очень сложно. Но в будние дни большую часть года БС из шести секторов вполне достаточно, тем более для оптимальной загруженности оператору подбирают Станции в соответствии с заселенностью территории. Некоторые операторы отдают свое предпочтение большим БС в целях улучшения качества предоставляемой связи.

Существует три диапазона, в которых может работать БС и которые определяют количество поддерживаемых аппаратов и охватываемое расстояние. В диапазоне 900 МГЦ станция способна охватить большую территорию, а вот в диапазоне 1800 МГц расстояние существенно сократится, зато увеличится число подключаемых передатчиков. Третий диапазон в 2100 МГц предполагает уже связь нового поколения - 3G.
Понятно, что в малонаселенных пунктах целесообразнее установить Базовую Станцию на 900 МГц, а вот в городе подойдет 1800 МГц, чтобы лучше проникать сквозь толстые бетонные стены, причем понадобится этих БС в десять раз больше, чем в поселке. Отметим, что одна БС может поддерживать три диапазона сразу.

Станции в режиме 900 МГц охватывают территорию радиусом в 35 км, однако если в данный момент она обслуживает мало телефонов, то может "пробить" и до 70 км. Естественно, наши мобильные телефоны могут "находить" БС даже на расстоянии 70 км. Базовые Станции разработаны так, чтобы максимально покрывать земную поверхность и обеспечивать большое количество людей связью именно на земле, поэтому при возможности ловить сигналы на расстоянии минимум 35 километров, на такое же расстояние, но в небо, Базовые Станции не "пробивают".

Для того, чтобы обеспечить своих пассажиров сотовой связью, некоторые авиакомпании начинают размещать маленькие БС на бортах самолетов. Связь "небесной" Базовой Станции с "земной" осуществляется с помощью спутникового канала. Так как работа мобильных устройств может помешать процессу полета, бортовые БС легко могут включаться / выключаться, имеют несколько режимов работы, вплоть до полного отключения передачи голосовых сообщений. Во время полета телефон может случайно быть переведен на базовую станцию с худшим сигналом или без свободных каналов. В таком случае звонок прервется. Все это тонкости работы сотовой связи в небе в движении.

Помимо самолетов, некоторые проблемы возникают и у жителей пентхаусов. Даже безлимитный тариф и ВИП - условия у оператора сотовой связи не помогут в случае разных БС. Житель квартиры на высоком этаже, переходя из одной комнаты в другую, потеряет связь. Это может произойти из-за того, что телефон в одной комнате "видит" одну БС, а в другой он "обнаруживает" другую. Поэтому при разговоре связь прерывается, так как эти БС находятся на относительном расстоянии друг от друга и даже не считаются "соседними" у одного оператора.