Как узнать координаты базовой станции GSM по MCC, MNC, LAC и CellID (CID). Как операторы строят свои базовые станции

  • 25.09.2019

Термины «базовая станция» и «вышка сотовой связи» давно и прочно вошли в наш лексикон. И если средний пользователь вспоминает об этих вещах не так часто, то уж «сотовый телефон» по привычности явно входит в десятку лидеров. Сотовой связью ежедневно пользуются сотни миллионов людей, но очень мало кто из них задумывается о том, как обеспечивается эта самая связь. И из этого меньшинства очень немногие действительно представляют всю сложность и тонкость этого инструмента связи.

С точки зрения большинства людей, установка базовой станции сотовой связи является весьма несложным делом. Достаточно повесить несколько антенн, подключить их к сети - и готово. Но такое представление в корне неверно. И поэтому мы решили рассказать о том, сколько тонкостей и нюансов возникает при монтаже базовой станции в условиях мегаполиса.

Чтобы наглядно проиллюстрировать свой рассказ, мы подробно задокументировали процесс установки вышки сотовой связи на крыше здания в Москве, по адресу ул. Краснодонская, д.19, корп.2. Это двухэтажное отдельно стоящее административное здание. Мы выбрали именно этот пример потому, что на этой базовой станции не просто смонтирована маленький кронштейн для подвески антенн, а установлена 5-секционная вышка высотой 15 м. Но начнём по порядку.

Подготовка и проектирование

Работа по установке базовой станции начинается с поиска подходящего объекта. Когда он найден, с его владельцем заключается договор аренды. Определяется необходимое расположение антенн будущей станции, масса полезной нагрузки, и исходя из этого проектируются металлоконструкции. При этом учитывается несущая способность элементов конструкции самого здания.

На каждую установленную базовую станцию оформляется комплект документации (толщиной почти 5 см). Помимо прочего, здесь указано множество параметров будущей конструкции: её расположение на объекте, габаритные размеры, общий вес, расположение точек опоры, потребляемые напряжение и мощность, и так далее.

В этой папке собрана исчерпывающая информация:

  • проектная документация;
  • копии ведомостей, лицензий, сертификатов и заключений соответствия на все элементы, вплоть до гаек и краски;
  • рабочая документация на оборудование, металлические конструкции, архитектурно-строительное решение, молниезащиту;
  • санитарно-эпидемиологическое заключение о безопасности станции для жителей окружающих домов.

Вернёмся к нашей вышке. После согласования и утверждения проекта, на заводе были изготовлены отдельно платформа и пять сегментов вышки. Поскольку в данном случае речь шла о довольно тяжёлой конструкции, то её необходимо было установить на несущие стены здания. Для этого в кровле были прорезаны отверстия и проведена установка опорных балок. Они играют роль свайного фундамента для платформы, на которую в дальнейшем было смонтировано оборудование станции и вышка с антеннами. Общий вес платформы составил 3857 кг.

Профиль, размеры и количество балок, из которых собирается платформа, толщина стенок, протяжённость сварных швов, используемые метизы - все эти параметры рассчитываются исходя из массы полезной нагрузки, несущей способности стен здания, а также возможных ветровых нагрузок в данном регионе. Конечно, это далеко не единственные критерии, в первую очередь вышка должна обеспечить возможность установки приёмо-передающих антенн на необходимой высоте в зоне видимости соседних базовых станций. Кроме того, конструкция должна быть достаточно жёсткой, чтобы не сбивался луч релейной связи.

Монтаж металлоконструкций

Здание небольшое, отдельного выхода на крышу у него нет, поэтому бригаде монтажников приходится залезать по пожарной лестнице. Её нижняя часть отрезана, чтобы на крышу не лазили жители окружающих домов. К сожалению, это их не слишком останавливает, поэтому с крыш часто что-нибудь пропадает - запчасти, кабели, фидеры и т.д.

Несмотря на то, что каждая станция оснащается сигнализацией, служба безопасности не всегда успевает приехать вовремя.

На крыше уже установлена базовая станция другого сотового оператора, но её размеры не идут ни в какое сравнение с нашей.

После монтажа платформы, подготавливаются площадки для установки первой секции вышки:

После установки секции, начинается «закручивание гаек»:

Установка вышки на шпильки делается для того, чтобы можно было компенсировать отклонения от вертикали в ходе монтажа и дальнейшей эксплуатации.

Вертикальность конструкции постоянно контролируется с двух точек с помощью теодолитов. Причём измерения проводятся отдельно для каждой секции вышки, и потом журнал измерений будет включён в комплект документов. Впоследствии проводится периодические измерения положения вышки, поскольку под собственным весом и весом оборудования может происходить небольшое спиралеобразное скручивание конструкции (до 50 мм на 72 м высоты).

Аппаратный шкаф, подготовленный к установке на платформу:

Итак, первая секция установлена и выровнена. Монтажники готовятся к приёму второй секции:

Безопасности и комфортности работ уделяется очень большое внимание не только при монтаже, но и при дальнейшем обслуживании. Размер рабочих площадок подобран таким образом, чтобы у инженеров было достаточно места для работы. Установлены ограждения лестниц, проёмы в площадках на вышке закрываются люками, чтобы предотвратить случайное падение. Платформа поднята над плоскостью крыши, чтобы в зимнее время аппаратуру не заметало снегом и не блокировало льдом.

Монтаж остальных секций вышки:

Очередь аппаратного шкафа:

Вышка смонтирована, произведены последние измерения с помощью теодолитов. Отклонения минимальны и строго в пределах допусков. Масса вышки составила 2827 кг, а общая масса всех металлоконструкций - 6684 кг.

Цвета секций стандартные: нижняя и верхняя всегда красные, промежуточные чередуются с белым. На вершине вы можете видеть 4 штыря, являющихся продолжением рёбер вышки - это элементы молниезащиты.

Аппаратура

Следующим этапом стал монтаж всей необходимой аппаратуры и прокладка кабелей. Полный список установленного оборудования:

В результате станция приобрела довольно величественный вид, особенно в сравнении с самим зданием:

На станцию подаётся питание напряжением 380 В (3 фазы), которое потом преобразовывается в 48 В. Мощность взята с запасом - до 10 кВт. Питание подводится в отдельный шкафчик.

Откроем дверцу аппаратного шкафа. В неё встроен кондиционер (сверху) и обогреватель (снизу).

В шкафу в течение всего года поддерживается температура 18…20 градусов Цельсия. Это необходимо для бесперебойной работы оборудования и длительной службы аккумуляторов (они расположены внизу).

Аккумуляторы предназначены для обеспечения работы станции в течение примерно суток в случае отключения внешнего питания.

Сверху находится коммутационный блок и преобразователь напряжения.

Передача информации между системными модулями и приёмо-передатчиками (о них ниже) осуществляется через оптоволоконные кабели. Вот так выглядит разъём в коммутационном блоке. Его ни в коем случае нельзя трогать руками, волокно очень чувствительно к повреждениям и загрязнению.

Все базовые станции сотовой связи подключены к единой информационно оптоволоконной сети, протянутой по всей Москве. Белая бухта под аппаратным шкафом - это как раз кабель, через который подключена данная станция.

Справа от шкафа расположены системные модули GSM, CDMA и LTE:

Эти модули являются сердцем базовой станции, они принимают сигнал с антенн и осуществляют его преобразование и сжатие с дальнейшей пересылкой. Им не страшны осадки, все разъёмы герметизированы, а рабочий диапазон температур от +60 до -50.

Под системными модулями расположены грозоразрядники, которые предотвращают выгорание аппаратуры в случае удара молнии:

Справа над модулями расположены бухты оптоволоконного кабеля, с помощью которого они соединяются с приёмо-передатчиками на вышке.

Перейдём к вышке. На ней установлены приёмо-передатчики отдельно для каждого диапазона (GSM, CDMA и LTE). Они усиливают сигнал от крайне малых значений до 115-120 дБ. Из аппаратного шкафа к ним подводится питание:

Продолговатые вертикальные «ящики» - это и есть антенны. Сзади они экранированы, чтобы защитить обслуживающий персонал от электромагнитного излучения. Поднимемся на площадку.

По краям к приёмо-передатчику подключены оптоволоконные кабели, в центре - электропитание:

Заземление выведено на вышку:

Кабельные разъёмы и их заглушки на антенне:

Мы уже упоминали о том, что проектирование и постройка базовой станции сотовой связи является совсем не таким простым делом, как кажется непосвящённым. Здесь множество нюансов, которые связаны и с конкретным местоположением станции. Например, передача радиосигнала над большой водной поверхностью ухудшается, хотя должно быть наоборот, ведь никаких препятствий нет. Но дело в том, что над поверхностью земли распространяется электромагнитное поле, а большой объём воды работает своеобразным конденсатором, над которым усиливаются помехи радиосигналу. И таких тонкостей множество, поэтому от профессионализма проектировщиков и монтажников напрямую зависит эффективность работы базовой станции.

Введение

Один из первых вопросов, который возникает, когда вы занимаетесь подключением к мобильному интернету, это вопрос о местонахождении базовой станции выбранного вами оператора, чтобы направить в ее сторону свою антенну. Желательно узнать точные координаты вышки и рельеф до нее, чтобы понять, имеет ли смысл использовать вышку для приема сигнала. Сервисы и различные андроид-приложения не дают точных координат БС, т.к. основаны на измерениях и их математической обработке. Погрешность при этом может достигать нескольких километров.

Зачастую координаты вышки можно установить, изучая карты покрытия операторов, рельеф местности, карты Гугл и Яндекс, а также предоставляемые ими возможности просматривать фотографии и панорамы изучаемой местности. Надо сказать, что БС на карте можно найти не всегда. Причин тому может быть много - карты устарели, БС находится на крыше здания и ее просто не видно на карте, вышка имеет небольшие размеры и т.п.

Параметры БС неизвестны. Костромская обл

Задано: координаты 57.564243, 41.08345, деревня Кузьминка в Костромской области. Задача - определить точные координаты БС, к которой можно подключиться для приема 3 G -сигнала.

Будем рассматривать поиск БС по шагам.

Шаг 1. Анализ карт покрытия.

Воспользуемся известным сервисом https://yota-faq.ru/yota-zone-map/ , где представлены зоны покрытия четырех операторов, кроме Билайна. Отмечу здесь, что покрытие Билайна, представленное на их офсайте, использовать практически невозможно - там показывается, как правило, сплошное покрытие, не учитывающее рельеф местности.

Наиболее интересно с точки зрения подключения выглядят зоны покрытия Мегафона и МТС. Вы сами можете в этом убедиться, открыв сервис, вставив координаты в поисковую строку и переключая операторов.

Зона покрытия Мегафона:

Зона покрытия МТС:

Из анализа зоны покрытия Мегафона видим, что БС 3G вероятнее всего находятся в направлениях Красное, Сухоногово, Лапино (в данном масштабе карты Лапино не видно, это юго-запад, примерно там, где отметка Р-600).

Более интересна зона покрытия МТС. Здесь также рассматриваем направление на Сухоногово и Красное. Но Красное более интересный вариант, т.к. там есть покрытие 4G . Расстояние до Красного порядка 10 км, если МТС раздает 4G на частоте 1800 МГц, то есть все шансы установить связь с одной из БС МТС, которые находятся в этом населенном пункте.

Шаг 2. Изучение рельефа местности .

Рельеф до Красного непростой, но вполне пробиваемый. Для оценки рельефа воспользуемся сервисом https://airlink.ubnt.com . Если вы впервые на этом сайте, то вначале вам нужно будет пройти бесплатную процедуру регистрации. Открыв сервис, прокручиваем ползунок вниз до конца и в правом нижнем углу вводим исходные данные, как показано на следующем рисунке.

Я обычно вначале ввожу одинаковые координаты в оба окошка, а потом начинаю двигать лиловую метку в интересующие меня точки, где предположительно могут находиться БС. При этом в правом верхнем углу экрана отображается рельеф, луч прямой видимости и примерный размер зоны Френеля.

Для наших координат имеем:

Проверка рельефа в других «подозрительных» направлениях показала, что рельеф там значительно хуже. Таким образом, мы определились с направлением и заодно выбрали оператора - МТС.

Шаг 3. Уточнение нашего выбора с помощью сервиса «Качество связи»

Сервис открывается по следующему адресу https://geo.minsvyaz.ru . В поисковой строке задаем название деревни Кузьминка, переключаем просмотр с 4-х окон в однооконный режим, масштабируем карту в удобный размер и получаем для оператора МТС:

Видим, что наш выбор правильный, т.к. согласно базе данных измерений пользователей этого сервиса в Красном действительно имеется хорошее покрытие 4G от МТС.

Увеличим масштаб этой карты и увидим, что наиболее вероятным местоположение вышки (или вышек) является улицы Советская и Окружная.

Шаг 4. Изучение местности с помощью карт Гугл и Яндекса.

Указанные карты обладают полезным инструментом для изучения местности - панорамами и фотографиями местности. У карт Гугл панорам различных местностей значительно больше, чем у Яндекса, поэтому чаще приходится пользоваться Гуглом, рассматривая панорамы. С другой стороны, у Яндекса больше фотографий, сделанных в различных местах, кроме того, обычно карты Яндекса для России более актуальны. В связи с этим приходится пользоваться обоими сервисами. Здесь использованы карты и сервисы Гугл.

Итак, мы выяснили, что нам нужно рассмотреть две улицы в Красном в поисках БС. Запускаем карты Гугл, вводим примерные координаты ул. Советской (или название улицы) и получаем:

Здесь включен режим просмотра улиц, нужная нам улица выделена синим цветом на карте. Получить панораму улицы можно кликнув мышкой в любой точке синей линии. Двигаясь таким образом вдоль улицы на север, у здания почты мы обнаруживаем первую БС:

И наконец невдалеке от пересечения Советской и Окружной улиц обнаруживается третья вышка, самая высокая из найденных:

Возвращаемся к карте и находим тень этой вышки в том месте, куда указывает фотография:

Отмечаем мышкой это место на карте и получаем точные координаты БС:

Подведем некоторые итоги нашего исследования. С помощью информации, полученной из анализа зон покрытия, пользовательских измерений силы сигнала в интересующей нас местности и изучения местности по фотографиям и панорамам, нам удалось найти три базовых станции и их точные координаты в городе, в котором мы никогда не бывали. Вопрос о том, какому оператору принадлежатнайденные БС, остается открытым, т.к. ответ на него требует дополнительного исследования. Проще всего проехать по маршруту и измерить параметры БС с помощью какого-нибудь андроид-приложения, которое выдает MNC , MCC и уровень сигнала. Некоторые из таких приложений представлены .

Параметры БС известны. Пригород Пензы

Как известно ряд андроид-приложений, а также интерфейс модема типа HiLink и программа MDMA могут давать параметры БС, с помощью которых известные сервисы и приложения могут выдавать приблизительные координаты БС, что позволяет облегчить поиск конкретных координат БС на картах. Обзоры некоторых из этих инструментов приведены в разделе « » на сайте Антэкс.

Рассмотрим конкретный пример с форума, пример основан на теме. Координаты пользователя

Карта зоны покрытия MTS

Чтобы предоставлять качественные услуги абонентам, МТС создала современную телекоммуникационную инфраструктуру, включающую собственные сети мобильной связи и сервисы, доступные абонентам.

Зона покрытия МТС

В настоящий момент оператором предлагается целый комплекс телекоммуникационных услуг, основанный на трех основных стандартах. Карта покрытия МТС в столице и регионах размещена на этой странице, включая зоны:

  • 2G – сотовой телефонной связи;
  • 3G – телефонной связи и сервисов, включая конференц-связь, голосовую почту, доступ к мультимедия и интернет на ограниченной скорости;
  • 4G (LTE) – интернет, доступ к мультимедиа и разнообразные услуги связи, ТВ, видео, видеосвязь без ограничения скорости.

В настоящий момент МТС развернул серьезную техническую инфраструктуру, которая позволяет получать различные услуги связи с выполнением требований к надежности, безопасности, конфиденциальности и устойчивости сигнала. Продолжается работа над сервисами, которые будут доступны абонентам в ближайшее время.

Предложенная карта покрытия поможет определить, попадает ли ваше географическое местоположение в зону покрытия МТС. При этом учитывайте, что скорость интернета будет выше, если вы движетесь не быстрее 12 км в час (а именно, пешком или на велосипеде), медленнее – если находитесь в машине. При переходе между зонами покрытия Москвы и других регионов осуществляется бесшовное переключение, незаметное для абонента.

Для использования 4G (LTE) требуется специальная сим-карта USIM и устройство, поддерживающее LTE.

Карта покрытия МТС в Москве

МТС одна из 4 компаний, которая развивает стандарт 4G в России и имеет двухдиапазонные частоты для этих целей. Практически все крупные города в России уже обеспечивают полноценное покрытие для всех стандартов телефонной связи МТС, включая 4G. По зоне охвата LTE доступна не только в наземном сегменте, но и в метро, и подземных гаражах – ниже доступна карта покрытия МТС 2017. С МТС вы можете пользоваться одной из самых современных и дорогих инженерных инфраструктур в области телекоммуникаций с множеством интегрированных сервисов.

В Москве и в Московской области из-за большой нагрузки на сети связи развернутые резервные каналы, которые поддерживают высокий уровень связи и гибко настраиваются на обслуживание всех абонентов, находящихся в зоне покрытия. Если 3G полностью покрывает столицу, то МТС карта покрытия 4G LTE, как для развивающегося стандарта, имеет зоны неуверенного приема. Эта информация вам будет полезна, если вы хотите установить модем для интернет доступа у себя дома и требуется проверка зон.

Зона покрытия МТС в России

Многие абоненты подключаются к МТС, так как знают, что эта компания обеспечивает крупнейшую в России зону приема. Связь МТС у вас будет доступна практически в любой точке страны. Если вы хотите в этом удостовериться, воспользуйтесь картой зоны покрытия МТС в России. При этом обратите внимание на стандарты связи, которыми вы обычно пользуйтесь, и на доступность услуг там, куда вы отправляетесь. На сайте доступна текущая для МТС карта покрытия в Крыму, которая пригодится жителям полуострова для оценки доступного сигнала в районе проживания.

Тест скорости интернета от МТС

Абоненты часто жалуются на недостаточную скорость доступа в интернет от МТС. Как правило, это может зависеть от ряда факторов:

  • у вас не подключен стандарт 4G;
  • вы находитесь в зоне неуверенного приема 4G или в месте доступа имеются значительные помехи;
  • устройство не обеспечивает уверенный прием сигнала, при условии нахождения в зоне покрытия.

Каждый абонент МТС, приобретая комплекс услуг, прежде всего, получает доступ к качественной связи. По этой причине, если у вас хорошо работает мобильное устройство, вы находитесь в нужной зоне покрытия, то должны иметь нормальный доступ к телекоммуникационным услугам и интернету в т.ч.

Если не происходит, нужно зафиксировать факты снижения скорости, проверив предварительно свое местонахождение в зоне уверенного приема, а затем проведите тест скорости интернета от МТС.

Как сделать тест скорости интернета от МТС?

Проверить скорость интернета можно с помощью целого ряда ресурсов в интернет. Провайдер не предлагает собственный веб-сервис, но абоненты могут воспользоваться мобильным приложением или предоставить данные сторонних служб. Что для этого нужно сделать:

  • это можно сделать с сайта http://pr-cy.ru/speed_test_internet/ или сайта http://www.speedtest.net/ru/
  • при входе у вас появится информация о точке доступа в виде таблицы;
  • запустите проверку скорости;
  • запишите данные и сверьте с договором предоставления, если вы получаете доступ в формате 4G скорость должна быть не менее 112 Мбит/с (исходящий и входящий трафик имеет разные скорости), более подробную информацию уточните на сайте провайдера или в салоне МТС.
  • IT-инфраструктура ,
  • Разработка систем связи
  • Первые ископаемые останки базовых станций семейства мобильных телесистем московского региона датируются 1994 годом. Это были настоящие динозавры – огромные и с маленьким объемом головного мозга функционала. Внешне они походили на большой холодильник, работали только в одном стандарте и в одном частотном диапазоне. Первая базовая станция МТС в Москве работала в стандарте GSM и только в диапазоне частот 900 МГц.

    Из чего же состояли «динозавры» сотовой связи и как они эволюционировали до сегодняшнего дня расскажет эксперт отдела архитектуры сети радиодоступа компании МТС Константин Лучков. Его ник Передаем ему слово.

    Привет! Давайте сразу заглянем в этот «холодильник».


    На верхней полке вмонтированы блоки питания, платы управления и транспортная карта. Чуть ниже, в «морозильном отделении», штабелями лежат приемопередатчики и дуплексеры.
    А вот и типичная малогабаритная (но очень уютная) «кухня» тех времен, в которой жил наш «динозавр».

    «Кухня» была плотно заставлена телекоммуникационным оборудованием. Это и система питания, система кондиционирования, стойка с транспортным оборудованием (например, радиорелейное оборудование). Каждая из этих систем, соизмеримая по размерам с БС, представляла собой отдельный шкаф. Кстати, на каждой «кухне» были стол и стул (слева на фото).

    Но вернемся к нашему «динозавру». От верхней крышки базовой станции тянулись толстые фидера (в два пальца толщиной), которые выходили из контейнера к антеннам. Типичная длина фидерной трассы была порядка 70 метров, к каждой антенне подводились два фидера (использовался разнесенный прием). Антенн на типичной однодиапазонной станции было три. То есть на первых станциях прокладывали шесть фидерных трасс, а позже (при появлении нового диапазона GSM1800) еще шесть.

    Одним из основных недостатков применения фидерных трасс были потери мощности сигнала, которые прямо пропорциональны длине фидерной трассы и используемому диапазону частот. Эти недостатки подтолкнули эволюцию оборудования базовых станций на новый виток развития.

    Через десять лет после появления первой базовой станции сотовой связи в московском регионе, в 2004 году, произошли критические изменения в телекоммуникационной среде обитания. Появился новый интерфейс взаимодействия контроллера с радиомодулями БС - CPRI (Common Public Radio Interface).

    Глава 2. Настоящее

    На смену старым «холодильникам» пришел новый тип базовой станции - с распределенной архитектурой. Стали не нужны громоздкие фидерные трассы. Базовая станция распалась на системный модуль (мозг БС) размером с кейс офисного менеджера и приемопередатчик (он же RRU – remote radio unit), связанные между собой по оптической линии через радиоинтерфейс CPRI. От фидера остались только рудименты в виде коротких джамперов (1-3 метра), связывающие приемопередатчик с антенной. В дополнение к существующему GSM были внедрены стандарты UMTS и LTE. Появились базовые станции outdoor-исполнения, для размещения которых более не требовалось помещение («кухня»).

    Распределенные БС оказались гораздо более приспособленными к жизни. Они стали меньше, и их стало легче размещать. Сократилось потребление электроэнергии, так как пропали потери мощности в фидере. Появился новый функционал.

    До определенного времени для работы каждого стандарта требовалось свое оборудование – отдельные приемопередатчики (RRU), отдельные системные модули (SM), отдельные антенны. По прошествии еще почти десяти лет, в 2013 году, Минкомсвязь России разрешила технологическую нейтральность, что позволяло реализовывать стандарт LTE на частотах GSM900/1800. Также следует отметить, что еще раньше, в 2011 году, была разрешена техническая нейтральность GSM/UMTS900. К оборудованию базовой станции были предъявлены новые требования, которым нужно было соответствовать – размеры станций уменьшались, а мозг функционал рос.

    Приемопередатчики научились поддерживать работу в трех стандартах: GSM/UMTS/LTE. Сейчас типичным случаем является одновременная работа приемопередатчика в двух стандартах, например, в GSM/LTE1800. Такой режим работы называется RF-sharing.

    Затем появилась необходимость одновременной работы в разных стандартах системных модулей. Данный функционал называется single RAN (единое оборудование радиоподсистемы для нескольких стандартов) и он уже реализован на сети МТС.

    Появление новых стандартов (таких как LTE), а также более сложного функционала привело к повышению требований к точности синхронизации. Потребовалась точность фазовой (она же временная) синхронизации, что незамедлительно сказалось на составе базовой станции. В ее состав добавился модуль спутниковой синхронизации GPS/Glonass.

    Появился новый подвид компактных базовых станций – small cell. Он представляет собой компактную базовую станцию размером не больше коробки из-под кроссовок, объединяющей в едином корпусе системный модуль, приемопередатчик, модуль GPS/Glonass и, как правило, антенну.

    Компактность small cell позволила МТС устанавливать станции практически в любом месте: в вагонах метро, кафе и офисных зданиях. Кстати, при желании, компактную базовую станцию может купить каждый абонент МТС. К ядру сети станция подключится автоматически при подсоединении к интернету.

    Глава 3. Будущее

    Светлое будущее сотовой связи - стандарт 5G (про него вы можете прочитать подробнее ). Базовым станциям неизбежно придется измениться еще раз, так как стандарт 5G подразумевает использование бОльших порядков MIMO, что делает невозможным подключение приемопередатчика к антенне через джампер. Слишком много джамперов понадобится: 16, 32, а, может быть, 64. Радиомодуль будет интегрирован в антенну. Такое решение называется активной антенной системой (AAS – active antenna system).

    По внешнему виду AAS не отличим от обычной антенны сотовой связи, но посмотрите, сколько элементов базовой станции находится у нее внутри.

    Базовая станция, реализованная на решении AAS, теперь представляет из себя системный модуль (SM), подключенный к «антенне» (к AAS). Возможен и гибридный вариант, когда активная антенная система включает несколько активных диапазонов (несколько приемопередатчиков активных диапазонов) и одновременно с этим поддерживает подключение нескольких пассивных диапазонов. При этом для пассивных диапазонов используются отдельные RRU, не входящие в состав активной антенной системы.

    Но на этом эволюция оборудования базовых станций, наверняка, не остановится. Одним из возможных сценариев в будущем может стать переход к облачной (cloud) архитектуре оборудования базовой станции. Возможно, в один прекрасный момент мы сможем полностью отказаться от использования системного модуля. На базовой станции останется только один блок - активная антенная система с интегрированным функционалом системного модуля, которая будет подключаться по оптической транспортной линии в ядро сети.

    В заключении хочу с гордостью отметить, что компания МТС занимает передовые позиции в тестировании 5G и уже сейчас активно использует на сети:

    Оборудование БС 5G-ready;
    оборудование БС cloud-ready;
    оборудование AAS (сеть нескольких городов России полностью реализована на AAS).

    Каждая десятая базовая станция 3G и 4G от МТС, построенная в Подмосковье за последний год, появилась благодаря просьбам абонентов. Об этом рассказали в пресс-службе компании. Телекомбог выяснил, что у абонентов МТС на Северо-Западе тоже есть возможность обратиться с просьбой улучшить качество связи в той или иной точке. Например, более половины всех базовых станций 3G, установленных в Санкт-Петербурге и Ленинградской области в первом полугодии 2014 года, было построено в ответ на обращения клиентов

    С конца первого полугодия 2013 г. МТС построила в Подмосковье порядка полутора тысяч новых базовых станций 3G и LTE. При этом десять процентов из них были запущены по результатам обращений абонентов - на сайт МТС, в контактный центр, социальные сети, а также через сервис Яндекс.Карты. Об этом рассказали в самой компании.

    «МТС инвестирует в развитие инновационных сетей передачи данных в Подмосковье, активно расширяя географию предоставления современных сервисов. Комплексный подход и запуск LTE-сервисов стимулируют спрос на скоростной интернет. За год потребление трафика в поселках области увеличилось в три раза, ежедневно клиенты МТС скачивают объем данных, сопоставимый с пятьюдесятью тысячами фильмов в HD-качестве», – отметил директор МТС в Московском регионе Кирилл Дмитриев.

    В пресс-службе Северо-Западного филиала МТС нам рассказали, что тоже реагируют на обращения абонентов.

    "Все обращения клиентов, касающиеся качества услуг, консолидируются в контактном центре МТС и направляются на проверку техническим специалистам. По результатам проверки корректируются планы по установке дополнительных базовых станций, модернизации уже существующего оборудования (внедрения второй и третьей несущих), расширению каналов. Так, более половины всех базовых станций 3G, установленных в Санкт-Петербурге и Ленинградской области в первом полугодии 2014 года, построено в ответ на обращения клиентов", - рассказала руководитель пресс-службы Северо-Западного филиала МТС Вероника Бялковская.

    Кроме того, регулярно выпускается отчёт «Клиенты МТС помогают сделать связь надежнее» – в нем докладывается о работах, проведенных по улучшению качества связи. Посмотреть последний отчёт по Санкт-Петербургу и Ленобласти можно .

    МТС в Подмосковье почти на 20% увеличила емкость и площадь покрытия сети «третьего поколения» за счет применения стандарта UMTS-900. Жителям почти 3 000 населенных пунктов Московской области, включая небольшие поселки, доступна скорость до 42 Мбит/с, благодаря использованию технологии DC-HSDPA+. Запуск третьей несущей частоты и дополнительная настройка оборудования, как заявляется, позволили МТС на 50% увеличить емкость сети и на треть повысить скорость передачи данных.

    В настоящее время сеть четвертого поколения доступна в 1 000 населенных пунктов области. За год МТС обеспечила доступ в мобильный интернет в 700 новых городах и поселках московской области. МТС также увеличила на 30% количество базовых станций 3G и LTE в подмосковных коттеджных поселках и в районе крупных дачных поселений на территории Домодедовского, Красногорского, Раменского, Химкинского, Истринского, Пушкинского, Одинцовского, Королевского, Мытищинского, Щелковского районов.