Виды и принципы действия электросвязи. Мультимедийные технологии. Принципы передачи сигналов электросвязи

  • 21.07.2019
Главная > Лекция

Тема 1. Введение. Общие сведения о системах электросвязи

ЛЕКЦИЯ 1 СИСТЕМЫ ЭЛЕКТРОСВЯЗИ

1.1 Основные понятия и определения теории электросвязи. 1.2 Классификация систем электросвязи. 1.3 Семиуровневая модель взаимодействия открытых систем. 1.1 Основные понятия и определения теории связи В дисциплине “ТЕОРИЯ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ” изучаются основные закономерности и методы передачи информации по каналам связи; рассматриваются способы математического представления сообщений, сигналов и помех, методы формирования сигналов и их преобразования в каналах связи, вопросы анализа помехоустойчивости и пропускной способности систем связи, оптимального приема сообщений и оптимизации систем связи. Экономические преобразования в обществе, творческая дея-тельность человека, поведение живых существ, действие любых ав-томатических устройств неразрывно связаны с хранением, перера-боткой и передачей информации. Слово “информация” в переводе с латинского означает осведомление о чем-либо, сведения, а в своем наиболее раннем употреблении это понятие означает знание челове-ком тех или иных явлений природы и общества. Однако такое тол-кование понятия “информация” не может служить его строгим опре-делением. Существуют различные определения этого понятия. В на-иболее общем философском определении под информацией понимают специфическую форму связи материальных систем, имеющую в своей основе отражение, как объективное свойство материи. В техническом смысле под информацией понимаются сведения о каком-либо событии или предмете, поступающие к получателю в ре-зультате его взаимодействия с окружающей средой. Информация, представленная в формализованном виде и предназначенная для обработки вычислительными устройствами или уже обработанная ими называется данными . Под сообщением понимается форма представления информации (например, текст, речь, изображение, цифровые данные и т.д.). Множество возможных сообщений с их вероятностными характеристи-ками называется ансамблем сообщений . Во многих практических слу-чаях (телеграфия, системы передачи данных и т.д.) это множество конечно. Выбор сообщений из ансамбля осуществляет источник сооб-щений . Сигналом называется физический процесс, однозначно отображающий передаваемое сообщение. С информационной точки зрения сигналы подразделяются на детерминированные и случайные. По виду временной функции сигналы подразделяютсяна непрерывные и дискретные, . К непрерывным (аналоговым) сигналам относятся такие, которые могут принимать в некотором интервале любые уровни. Если сигнал принимает только дискретные значения, то он называется дискретным . Если эти уровни можно обозначить цифрами, то такой сигнал называется цифровым . Детерминированными сигналами называются такие, изменение которых во времени можно полностью заранее определить. Если же заранее предсказать изменение сигнала во времени нельзя, то сигнал называется случайным .

Рис. 1.1 Примеры сигналов

Сигнал характеризуется такими параметрами, как длительность (Т с ), ширина спектра F c и динамический диапазон (D c ). Ширина спектра характеризует скорость изменения сигнала в интервале его существования. Динамический диапазон определяется отношением наибольшей мгновенной мощности сигнала к минимальной. Более общей характеристикой сигнала является его объем V c =T c F c D c . Чем больше объем сигнала, тем больше информации можно передать. . По виду передаваемого сообщения а) телефонный (речь) б) телеграфный (текст), в) фототелеграфный (неподвижное изображение), г) передача данных, д) сигнал звукового вещания е) телевизионный. - Телефонный сигнал формируется микрофоном.
Гц рекомендуемый канал МККТТ: 0,3…3,4 кГц.
=25…35 дБ. - Телеграфный сигнал
Скорость передачи:
[Бод],
Бод. Полоса частот
[Гц]. - Передача данных Как телеграфный сигнал, отличается только скорость передачи. Бод. - Фототелеграфный сигнал используется для передачи неподвижных изображений
(оборот/минута). Гц. - Сигнал звукового вещания =35…40 дБ, =65 дБ для симфонического оркестра,
кГц. - Телевизионный сигнал =40 дБ,
МГц. Процесс превращения сообщения в сигнал в передающем устройстве может состоять из следующих трех операций: преоб-разования, кодирования и модуляции . Эти три операции могут быть независимыми либо совмещенными. Преобразованием называется перевод неэлектрических величин, определяющих передаваемое сообщение, в первичный электрический сигнал. Так, в телефонии эту функцию выполняет микрофон, преобразующий звуковые волны в электрические колебания. В большинстве случаев сигнал является низкочастотным колебанием, непригодным для непосредственной передачи. Кодирование – это преобразование сообщения в определен-ные сочетания элементарных дискретных символов, называемых кодовыми комбинациями или словами. Целью кодирования, как правило, является согласование источника сообщений с каналами связи, обеспечивающее либо максимально возможную скорость передачи информации, либо заданную помехоустойчивость. Согла-сование осуществляется с учетом статистических свойств источ-ника сообщений и характера воздействия помех. Коды – это системы соответствий между сообщениями и комбина-циями символов (дискретных сигналов), при помощи которых эти сообщения могут быть зафиксированы, переданы на расстояние или использованы для дальнейшей обработки. Символы, из которых фор-мируются кодовые комбинации, называют элементами кода . Число различающихся между собой элементов называют основанием кода . Так, элементами двоичного кода (
) являются символы “1” и “0”. Число N различных кодовых комбинаций называют объемом или мощностью кода . Число элементов (n ), образующих кодовую комбинацию, называют значимостью кода . Коды, кодовые комбинации которых состоят из одинакового чис-ла элементов равной длительности, называют равномерными . Мощ-ность такого кода составляет . В системах передачи дан-ных и телеуправления используются преимущественно равномерные коды. В таких кодах границы между кодовыми комбинациями обычно определяют подсчетом числа элементов. Модуляцией называют изменение параметра сигнала в соответ-ствии с передаваемым сообщением. Модуляцию дискретными сигнала-ми называют манипуляцией . Параметрами, подлежащими модуляции, могут быть амплитуда, частота и фаза. Возможны и комбинированные методы модуляции, при которых модулируются два или несколько параметров сигнала. От вида модуляции в значительной мере зави-сят помехоустойчивость и пропускная способность системы связи. Устройство, предназначен-ное для кодирования сигнала, называется кодером . Устройство, ре-шающее обратную задачу – декодером . Совокупность кодера и деко-дера называют кодеком . Полученными при кодировании символами обычно осуществляют модуляцию сигнала. Устройства, осуществляющие модуляцию и демодуляцию сигнала называют модемом . Структурная схема канала передачи дискретных сигналов изображена на рис. 1.2.
а)
б)

Рис. 1.2. Структурная схема канала передачи а) симплексная связь, б) дуплексная связь

Совокупность модулятора, демодулятора и канала связи называют дискретным каналом . Совокупность кодека, модема и канала связи называют каналом передачи данных . При передаче дискретных сообщений каждый элемент кода (кодо-вый символ) отображают отрезком сигнала длительностью , назы-ваемым единичным элементом. Для пояснения особенностей различ-ных видов модуляции рассмотрим приведенные на рис.1.3 эпюры модулированных двоичных сигналов при передаче сообщения 101100. Если в качестве переносчика используется постоянный ток, то модуляция может быть осуществлена изменением величины тока (рис.1.3,а) либо его направления (рис.1.3,б) (кодово-импульсная модуляция КИМ или ИКМ). Наибольшее применение нашли в настоящее время цифровые системы связи, в которых элементы сигнала пред-ставляют собой ограниченные на конечном отрезке времени (от 0 до ) гармонические колебания; такие системы связи и сигна-лы называют простыми.
В системах передачи данных широко исполь-зуются простые двоичные системы с амплитудной, частотной или фазовой манипуляцией. При амплитудной манипуляции (рис.1.3,в) передаче “1” соот-ветствует наличие единичного элемента переменного тока длительностью
, передаче “0” – пауза (КИМ-AM), т.е. При частотной модуляции (рис.1.3,г) (КИМ-ЧМ) При фазовой модуляции (рис.1.3,д) (КИМ-ФМ) При использовании в качестве переносчика периодической последовательности импульсов различают амплитудно-импульсную модуляцию – АИМ; широтно-импульсную модуляцию – ШИМ; фазо-импульсную модуляцию – ФИМ; частотно-импульсную модуляцию – ЧИМ (рис.1.3,е,ж,з,и). Границы между передаваемыми единичными элементами (моменты изменения полярности, амплитуды, частоты или фазы переносчика) называются значащими моментами . Количество единичных элементов, передаваемых за 1 с, называется скоростью модуляции и определяется по формуле
. За единицу ее из-мерения принят Бод – скорость, соответствующая одному единично-му элементу в секунду. Для систем, использующих коды с основанием
, скорость передачи данных определяют по формуле
Кроме сигналов, несущих для получателя информацию, в среде распространения присутствуют посторонние электромагнитные процессы. Помехи мо-гут возникнуть как в среде, используемой для распространения сигнала, так на-зываемые, внешние помехи, так и в электрических цепях, выполняющих преоб-разование сигнала, так называемые, внутренние помехи. Они могут иметь са-мые различные формы протекания во времени (гладкие, импульсные) и, в том числе, очень близкие к формам полезных сигналов. Таким образом, вместе с полезным сигналом в приемнике действуют помехи, интенсивность которых может оказаться соизмеримой с сигналом, в результате чего сигналы оказыва-ются частично или полностью замаскированными. Каналом связи называют совокупность линейных, коммутирующих и других технических средcтв, обеспечивающих независимую передачу сигналов между двумя абонентами по общей линии связи. Классификация каналов связи приведена на рис. 1.4. Линия связи представляет собой физическую среду (пара проводов кабеля, волновод, область пространства), в которой распространяется сигнал. Линии связи, как правило, много канальные. Каналы связи можно характеризовать, как и сигнал такими параметрами, как время передачи к ), полосой пропускания (F к ) и динамическим диапазоном (D к ) . Обобщенной характеристикой канала является его объем V к = T к F к D к . Необходимым условием неискаженной передачи сигнала является V c < V к . Обычно сигнал соглашается с каналом по всем трем параметрам

Т с ≤ Т к ; F c ≤ F к ; D c ≤ D к .

Каналы связи подразделяются на симплексные и дуплексные. Симплексные каналы обеспечивают передачу в одном направлении, дуплексные – в обоих. Системой связи называют совокупность узлов, станций и линий связи, соединенных в определенном порядке, соответствующем организации управления объектами характеру выполняемых задач. В простейшей одно канальной системе это совокупность технических средств для передачи сообщений от источника к потребителю. Система связи включает в себя первичную и вторичную сети. Первичная сеть представляет совокупность сетевых узлов, станций и соединяющих линий связи. На узловых станциях организуются каналы связи и групповые тракты, а также осуществляется транзитное соединение канала. Вторичные сети используют каналы связи, формируемые первичной сетью. Сетью связи называют совокупность узлов (центров) коммутации, соединенных линиями связи, вместе с алгоритмами и программами обмена информацией и управления. Различают базовую и абонентскую (терминальную) сети. Базовая сеть включает узлы коммутации и соединяющие их магистральные линии. Транспортная сеть, обеспечивающая объединение всех сетевых средств, выполняет функцию передачи сигналов. Абонентская сеть обеспечивает подключение абонентов к ресурсам базовой сети. Часть сети, которая соединяет между собой каналы разных зоновых сетей на всей территории страны, составляет магистральную первичную сеть . 1.2 Классификация систем электросвязи
Системы электросвязи классифицируются по назначению, по типу применяемого сигнала, по способу осуществления соединения, по степени интеграции решаемых задач и по способу обмена информацией. По назначению различают сети телефонной, телеграфной, факсимильной связи, сети передачи данных и телетекса. Па типу применяемого сигнала системы связи подразделяются на аналоговые и цифровые. В аналоговых сетях используется непрерывный сигнал. Особенностью его является то, что два сигналы могут отличаться один от другого как угодно мало. В цифровых сетях используется сигнал, который состоит из различных элементов. Такими элементами являются 1 и 0. Единица обычно обозначается импульсом или отрезком гармонического колебания с определенной амплитудой. Нуль обозначается отсутствием переданного напряжения. Совокупность 1 и 0 составляет сообщение - кодовую комбинацию. По способу осуществления соединения системы подразделяются на сети с коммутацией каналов, коммутацией сообщений и коммутацией пакетов. В сетях с коммутацией каналов соединения абонентов осуществляется по типу автоматической телефонной станции. Основной их недостаток -- это большое время вхождения в связь из-за занятости каналов или вызываемого абонента. Обмен информацией в сетях с коммутацией сообщений осуществляется по типу передачи телеграмм. Отправитель составляет текст сообщения, указывает адрес, категорию срочности и секретности и это сообщение записывается в запоминающее устройство (ЗУ). При освобождении канала сообщение автоматически передается на следующий промежуточный узел или непосредственно абоненту. На промежуточном узле сообщения также записывается в ЗУ и при освобождении следующего участка передается дальше. Преимуществом таких сетей является отсутствие отказа в приеме сообщения. Недостаток заключается в сравнительно большом времени задержки сообщения за счет его сохранения в ЗУ. Поэтому такие сети не используют для передачи информации, которая требует доставки в реальном времени. В сетях с коммутацией пакетов обмен информацией осуществляется также как в сетях с коммутацией сообщений. Однако сообщение делится на короткие пакеты, которые быстро находят себе маршрут к адресату. В результате время задержки пакетов будет меньшим. По степени интеграции решаемых задач различают интегральные цифровые сети и цифровые сети интегрального обслуживания. В цифровых интегральных сетях интеграция осуществляется на уровне технических устройств. Одно устройство решает несколько задач. Например, решает задачу уплотнения канала и коммутации. В цифровых сетях интегрального обслуживания интеграция осуществляется на уровне служб. Сигналы телефонии, телетекса, передачи данных и другие передаются цифровым способом с помощью одних и тех же устройств. В таких сетях отсутствует разделение на первичные и вторичные сети. По способу обмена информацией сети подразделяются на синхронные, асинхронные и плезиохронные. В синхронных сетях генераторы управляющих сигналов на конечных и промежуточных пунктах постоянно синхронизированы независимо от того передается информация или нет. В асинхронных сетях синхронизация осуществляется только на время приема сообщения. Плезиохронный метод функционирования допускает отсутствие постоянного подстраивания местных генераторов. Прием сообщений обеспечивается за счет применения высокостабильных местных генераторов с автоподстройкой под сигналы единой частоты через довольно продолжительные интервалы времени. Сеть телефонной связи предназначена для передачи на расстояние речевых (акустических) сообщений Сеть телеграфной связи предназначена для двусторонней передачи дискретных сообщений (телеграмм). Сети передачи данных предназначены для обмена информацией между ЭВМ как и телеграфные сети используют дискретные сигналы. В отличие от телеграфии в сетях передачи данных обеспечивается большая скорость и качество передачи сообщений. Гарантируется заданная вероятность доставки при любой практически необходимой скорости передачи сообщений. Это достигается благодаря использованию дополнительных устройств повышения качества передачи сообщений, которые конструктивно объединяются с передатчиками и приемниками систем передачи данных, образовывая приемо-передающие устройства, которые называются аппаратурами передачи данных (АПД). Сеть факсимильной связи предназначена для передачи не только содержания, но и внешнего вида самого документа. Оконечное устройство факсимильных сетей представляет собой цифровой факсимильный аппарат, который работает по телефонной сети со скоростями 2,4-4,8 кбит/с или по сетям передачи данных со скоростями 4,8; 9,6; и 48 кбит/с. В нем осуществляется статистическое кодирование информации с коэффициентом сжатия около 8, что позволяет передавать страницу текста за 2 мин при скорости 2,4 кбит/с и соответственно за 30 с при скорости 9,6 кбит/с. Телетекс – это буквенно-цифровая система передачи деловой корреспонденции, которая построена по абонентскому принципу. Основная идея телетекса - объединение всех возможностей современной печатной машинки с передачей сообщений при условии сохранения содержания и формы текста. Эта система немного напоминает телекс (абонентский телеграф), но отличается от нее большим набором знаков (256 за счет 8- элементного кода), большей скоростью передачи (2400 бит/с), высокой достоверностью, возможностью редактировать подготовленную к передаче документацию и другие дополнительные особенности. Передача информации в системе телетекс осуществляется по телефонным сетям. Важной особенностью и принципиальным преимуществом телетекса сравнительно с телексом является отсутствие необходимости в дополнительной работе на клавиатуре во время передачи текста. Это преимущество достигается благодаря тому, что подготовленный на оконечном устройстве текст, запоминается в его оперативном запоминающем устройстве, откуда информация передается по каналу связи. Принятое сообщение может быть воспроизведено на экране дисплея или отпечатано. Система телетекс имеет много общего с системой передачи данных, а именно: цифровой метод передачи, скорость передачи 2,4 кбит/с, применяемые методы повышения борьбы с ошибками и управление соединением. Расхождение между этими системами состоят в том, что в телетексе используется разговорный язык, передачи данных - формализованные языки. На базе сетей телетекса и факса создаются службы электронной почты , т.е. службы передачи письменной корреспонденции по сетям электросвязи, которые обеспечивают получение “твердой копии” оригинала. Раздельное использование приведенных выше вторичных сетей сдерживает развитие систем телекоммуникаций. Внедрение цифровых сетей разрешает на единой цифровой основе обеспечить передачу сигналов разных служб, т.е. организовывать цифровую сеть интегрального обслуживания. Под цифровой сетью интегрального обслуживания понимают совокупность архітектурно-технологічних методов и аппаратно-программных средств доставки информации территориальное изъятым пользователям, которые разрешают на цифровой основе предоставлять пользователям разные услуги. Эта сеть разрешает передавать телефонные, телеграфные и другие сигналы с помощью одного универсального терминала. Этот терминал должен содержать телефон, дисплей и клавиатуру для набора текста. Абонент такой сети может наблюдать на дисплее за изображением и разговаривать с другим абонентом по телефону. Подробнее цифровые сети интегрального обслуживания будут описаны дальше. 1.3 C емиуровневая модель взаимодействия открытых систем Телекоммуникационные сети состоят из большого количества разного оборудования и программ: операционных систем и модулей применения. Разнообразные требования к телекоммуникационным сетям, привели к разнообразию сетевого оборудования и программ. Оборудования отличается не только по основным, а и по вспомогательными функциям. Непрерывно увеличивается количество видов сервиса, который предоставляется пользователям. Разнообразие увеличивается также за счет того, что много устройств и программ состоит из разных наборов, составных частей. Кроме того, в мире есть очень много фирм, которые занимаются разработкой и изготовлением телекоммуникационного оборудования и программного обеспечения. Это в свою очередь приводит к разнообразию технических решений. В современном мире телекоммуникационные системы, как правило, не являются замкнутыми системами: взаимодействуют локальные сети в середине фирм и между фирмами; индивидуальные пользователи обмениваются информацией на территории городов, районов, областей, государства, земного шара. Все это требует совместимости оборудования, телекоммуникационных сетей на разных уровнях. Все разработчики и производители поняли, что возможность легкого взаимодействия с оборудованием других конкурирующих фирм повышает ценность изделий, так как их можно использовать большим количеством работающих сетей. Совместимость обеспечивается только тогда, когда все производители реализуют одинаковые стандарты. Стандарты телекоммуникационных систем делятся на: международные; национальные; специальных комитетов и объединений; отдельных больших фирм. Рассмотрим в этом подразделе только некоторые из них. Телекоммуникационные системы - это довольно сложные системы как по своей структуре, так и по функциям, которые они выполняют. Сети телекоммуникаций могут охватывать как отдельный офис, так и весь земной шар. Организация взаимодействий между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием - декомпозиция одной сложной задачи на несколько, более простых - модулей. При декомпозиции часто используют многоуровневый подход. В этом случае множество модулей разбивают на уровни. Уровни образовывают иерархию, т.е. существует вышележащий и нижележащий уровни. Множество модулей, которые составляют каждый уровень, сформировано таким образом, при котором для выполнения своих задач они обращаются с запросами только к модулям, которые непосредственно граничат с нижележащим уровнем. С другой стороны, результаты работы всех модулей, которые принадлежат какому-то уровню, могут быть переданные только модулям соседнего вишележащего уровня. При приведенном способе декомпозиции нужно четко определить функции каждого уровня, а также так называемого интерфейса между уровнями. Интерфейс – это набор функций, взаимодействия соседних уровней. Оборудование, которое расположено в узлах сети, может быть представлено в виде описанной многоуровневой модели. Процедура взаимодействия пары узлов сети может быть описана в виде набора правил взаимодействия каждой пары одинаковых уровней оборудования этих узлов. Правила, которые определяют последовательность и структуру (формат) сообщений, которыми обмениваются компоненты сети, лежащие на одном уровне, но в разных узлах, называются протоколом . Протоколы определяют правила взаимодействия одного уровня в разных узлах, а интерфейс - модулей соседних уровней выше и нижчележащих в одном узле. Полный набор протоколов всех уровней, которые достаточны для организации взаимодействия узлов в сети, называется стеком телекоммуникационных протоколов . Протоколы могут быть реализованы как программно, так и аппаратно. Протоколы низших уровней реализуются аппаратными средствами в комбинации с программными, и чем выше уровень, тем больше часть программных средств. Протоколы высших уровней - это, как правило, чисто программные протоколы. Протоколы разных уровней независимые. А это означает, что протокол любого уровня может быть изменен независимо от протокола второго уровня. Протоколов взаимодействия систем телекоммуникаций можно придумать множество, но тогда разные системы не будут открытыми к взаимодействию. Стыковка их будет сложной задачей. Единый выход – это стандартизация модели взаимодействия систем телекоммуникаций. В начале 80-х годов несколько международных организаций - разработали так называемую модель взаимодействия открытых систем (ВОС) (Open System Interconnection, OSI). В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовий, транспортный, сетевой, канальный и физический (рис. 1.6). Например, телекоммуникационная система должна передать текст определенного объема (говорят текстовый файл) из пункта В. Передача текстовых файлов - это прикладная задача. Абонент обращается с запросом к прикладному уровню. На основе этого запроса программное обеспечение прикладного уровня формирует сообщение стандартной формы - формата. Оно состоит из заголовка “7” и поля данных - полезной информации (рис. 1.6). Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладного уровня оборудования адресата, чтобы сообщить его, какую работу необходимо выполнить.

Например, заголовок должен иметь информацию о местонахождении файла и об операции, которую необходимо с ним выполнить. Поле данных может быть пустым, или содержать информацию, которую необходимо записать в файл, отправленный из пункта В. После отправки в пустом файле, например, останется имя (код) того, кто его передал. После формирования сообщения прикладной уровень направляет его представительному уровню. Протокол представительного уровня на основе информации, которая содержится в заголовке прикладного уровня, выполняет определенные действия и прибавляет к сообщению собственную служебную информацию - заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня оборудования получателя. Полученное, сообщение передается сеансовому уровню и т.д. В конце концов, сообщение достигает нижнего, физического уровня, который передает его по каналу связи оборудованию получателя. Когда сообщение поступает на оборудование получателя информации, оно принимается на физическом уровне и последовательно перемещается вверх от уровня к уровню, каждый уровень анализирует и обрабатывает заголовок своего уровня, потом изымает его и передает сообщение высшему уровню. В модели OSI различают два вида протоколов: протоколы с установлением соединения и протоколы без установления соединения. В первом случае перед обменом данными отправитель и получатель сначала должны установить соединение и выбрать некоторые параметры протокола, которые будут использованы при обмене данными. После завершения обмена данными отправитель и получатель должны разорвать соединение. Во втором случае отправитель передает сообщение без любых предыдущих действий. Рассмотрим основные функции, которые выполняются на каждом из семи уровней модели OSI. На физическом уровне обеспечивается интерфейс между оборудованием и физической средой – каналом связи, и выполняются функции управления потоком импульсов. На физическом уровне выполняются такие основные функции: обеспечение физического стыка - вид соединения оборудования с каналом связи, назначение контактов; передача сигналов по сети; усиление или регенерация сигналов для обмена между сетью и оборудованием; преобразование сигналов, модуляция, демодуляция. Канальный уровень выполняет основную функцию - обеспечение доступа к сети. Кроме управления доступом к среде передачи на канальном уровне реализуются механизмы обнаружения и коррекции ошибок. Для этого формируются кодовые комбинации, которые называются кадрами. В начале и конце кадра размещают специальную последовательность бит для его выделения. Канальный уровень не только обнаруживает ошибки, но и исправляет их за счет повторной передачи поврежденных кадров. Следует отметить, что в некоторых протоколах функция исправления ошибок отсутствует. Сетевой уровень выполняет функции управления потоком кадров маршрутизации. Сообщение сетевого уровня называются пакетами. Транспортный уровень обеспечивает транспортирование данных верхних уровней с требуемой надежностью. В модели ВОС определено пять классов обеспечения надежности транспортирования пакетов, которые называют классами сервиса транспортного уровня. Например, если качество каналов связи высокое, то используется облегченный класс сервиса без многократных проверок, предоставление подтверждений в получении пакетов и др., когда средства низших уровней очень ненадежные, то нужно использовать сервис с максимумом средств для выявления и исправление ошибок. Как правило все протоколы, начиная с транспортного и выше, реализуются программными средствами. Они являются компонентами сетевых операционных систем. Сеансовий уровень обеспечивает управление диалогом, он фиксирует, какая из сторон в данный момент активная, а также предоставляет средства синхронизации. Средства синхронизации позволяют вставлять закодированные символы контрольных точек. В случае отказа есть возможность возвратиться к последнему контрольному пункту, а не начинать передачу с начала сеанса. Сеансовий уровень не всегда используется. Представительный уровень программно выполняет функцию представления данных для прикладного уровня. На этом уровне может быть организовано шифрование и дешифровка данных. Это обеспечит секретность обмена данными для всех прикладных служб. Прикладной уровень это уровень применения телекоммуникационной системы. Например, разветвленная сеть учета и обслуживание клиентов по оплате услуг электросвязи в почтовых отделениях, или пунктах предоставления сервисных услуг. Для реализации этих задач разработано специальное программное обеспечение. Служб прикладного уровня очень много. Для прикладного уровня единицей данных являются сообщения. Из всех семи уровней, первые три нижние уровни - физический, канальный и сетевой тесно связаны с технической реализацией сетей и их оборудованием. Поэтому переход к новой телекоммуникационной технологии, как правило, связан с полной заменой этих протоколов. Протоколы верхних трех уровней - сеансовий, представительный и прикладной мало зависят от технических особенностей построения сети. Эти уровни зависят от применений. Транспортный уровень является промежуточным между двумя группами уровней. Следует отметить, что стандартизированная модель OSI является одной из важнейших моделей телекоммуникационных систем. Однако, может быть и много других моделей таких систем. Главным преимуществом системы OSI является ее открытость. Это означает, что можно строить сети с аппаратными и программными средствами разных производителей, если они используют одинаковые стандарты протоколов.

Перенос сигнала из одной точки пространства в другую осуществляет система электросвязи. Электрический сигнал является, по сути, формой представления сообщения для передачи его системой электросвязи. Выбор электрических сигналов для переноса сообщений на расстояние обусловлен их высокой скоростью распространения (около 300 км/мс).

Источник сообщения (рис.6.1) формирует сообщение а(t), которое с помощью специальных устройств преобразуется в электрический сигнал s(t). При передаче речи такое преобразование выполняет микрофон, при передаче изображения – ЭЛТ, при передаче телеграммы – передающая часть телеграфного аппарата.

Прежде чем рассматривать собственно методы модуляции в системах связи, рассмотрим основные способы представления сигналов электросвязи, принятые для описания методов модуляции.

Чтобы передать сигнал в системе электросвязи, нужно воспользоваться каким-либо переносчиком . В качестве переносчика естественно использовать те материальные объекты, которые имеют свойство перемещаться в пространстве, например, электромагнитное поле в проводах (проводная связь ), в открытом пространстве (радиосвязь), световой луч (оптическая связь). Таким образом, в пункте передачи (рис.6.1) первичный сигнал s(t) необходимо преобразовать в сигнал v(t), удобный для его передачи по соответствующей среде распространения. В пункте приема выполняется обратное преобразование. В отдельных случаях (н/р, когда средой распространения является пара физических проводов, как в ГТС) указанное преобразование сигнала может отсутствовать.

Доставленный в пункт приема сигнал должен быть снова преобразован в сообщение (например, с помощью телефона или громкоговорителя при передаче речи, электронно-лучевой трубки при передаче изображения, приемной части телеграфного аппарата при передаче телеграммы) и затем передан получателю.

Передача информации всегда сопровождается неизбежным действием помех и искажений. Это приводит к тому, что сигнал на выходе системы электросвязи и принятое сообщение могут в какой-то мере отличаться от сигнала на входе s(t) и переданного сообщения a(t). Степень соответствия принятого сообщения переданному называют верностью передачи информации.

Для различных сообщений качество их передачи оценивается по-разному. Принятое телефонное сообщение должно быть достаточно разборчивым, абонент должен быть узнаваемым. Для телевизионного сообщения существует стандарт (хорошо известная всем телезрителям таблица на экране телевизора), по которому оце­нивается качество принятого изображения.

Количественной оценкой верности передачи дискретных сообщений служит отношение числа ошибочно принятых элементов сообщения к числу переданных элементов – частность ошибок (или коэффициент ошибок).

Для решения проблемы амплитуду высокочастотного несущего сигнала изменяют (модулируют) в соответствии с изменением низкочастотного голосового сигнала (рис.1). При этом спектр результирующего сигнала попадает в нужный высокочастотный диапазон. Такой тип модуляции наз-ся амплитудной модуляцией (Amplitude Modulation, AM).

Амплитудная модуляция (AM) - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

При АМ, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется. Одним из основных параметров АМ, является коэфициент модуляции(M). Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).

Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения. При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

В качестве информационного параметра используют не только амплитуду несущего синусоидального сигнала, но частоту. В этих случаях мы имеем дело с частотной модуляцией (Frequency Modulation, FM).

При передаче дискретной информации посредством модуляции единицы и нули кодируются изменением амплитуды, частоты или фазы несущего синусоидального сигнала. В случае, когда модулированные сигналы передают дискретную информацию, вместо термина «модуляция» иногда исп-ся термин «манипуляция»: амплитудная манипуляция (Amplitude Shift Keying, ASK), частотная манипуляция (Frequency Shift Keying, FSK), фазовая манипуляция (Phase Shift Keying, PSK).

Пожалуй, самый известный пример применения модуляции при передаче дискретной информации - это передача компьютерных данных по телефонным каналам. Типичная амплитудно-частотная характеристика стандартного ТЧ, представлена на рис. 1. его полоса пропускания равна 3100 Гц. Такая узкая полоса пропускания вполне достаточна для качественной передачи голоса, однако она недостаточно широка для передачи компьютерных данных в виде прямоугольных импульсов. Решение проблемы было найдено благодаря аналоговой модуляции. Устройство, которое выполняет функцию модуляции несущей синусоиды на передающей стороне и обратную функцию демодуляции на приемной стороне, носит название модема (модулятор-демодулятор).

Рис. 1. Амплитудно-частотная характеристика канала тональной частоты

На рис. 2 показаны различные типы модуляции, применяемые при передаче дискретной инф-и. Исходная последовательность битов передаваемой инф-и приведена на диаграмме, представленной на рис. 2, а.

Рис. 2. Различные типы модуляции

При АМ для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой (рис. 2, б). Этот способ редко исп-ся в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции - фазовой модуляцией.

При ЧМ значения нуля и единицы исходных данных передаются синусоидами с различной частотой - f 0 и f 1 (рис. 2, в). Этот способ модуляции не требует сложных схем и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 и 1200 бит/с. При исп-и только двух частот за один такт передается один бит информации, поэтому такой способ называется двоичной частотной манипуляцией (Binary FSK, BFSK). Могут также исп-ся четыре различные частоты для кодирования двух битов инф-и в одном такте, такой способ носит название 4уровневой частотной манипуляции (four-level FSK). Применяется также название многоуровневая частотная манипуляция (Multilevel FSK, MFSK).

При ФМ значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, но различной фазы, например 0 и 180° или 0,90,180 и 270° (рис. 2, г). В первом случае такая модуляция носит название двоичной фазовой манипуляции (Binary PSK, BPSK), а во втором - квадратурной фазовой манипуляции (Quadrature PSK, QPSK).

Под мультиплексированием (уплотнением) понимается объединение нескольких меньших по емкости входных каналов связи в один канал большой емкости для его передачи по одному выходному каналу связи. Такой канал часто называют агрегатным, а трафик агрегированным (объединенным) или групповым.

Существуют два метода мультиплексирования:

Мультиплексирование с частотным разделением каналов - ЧРК (частотное мультиплексирование или уплотнение);

Мультиплексирование с временным разделением каналов (ВРК).

При ЧРК полоса частоты выходного сигнала делится на некоторое число полос (подканалов), соответствующей по ширине основной полосе стандартного телефонного канала – 4 кГц.

Групповой тракт – это комплекс технических средств, предназначенный для передачи сигналов электросвязи нормализованного числа каналов ТЧ или ОЦК в полосе частот или со скоростью передачи, соответствующей данному групповому тракту. Групповой тракт, параметры и структура которого соответствуют принятым нормам, называют типовым.

Сетевые тракты могут предоставляться только при условии наличия у них типового каналообразующего оборудования. В общем случае потребителю предоставляются широкополосные каналы, оборудованные на базе соответствующих сетевых трактов.

Современные СП позволяют кроме стандартных каналов ТЧ организовать каналы с более высокой пропускной способностью. Увеличение пропускной способности достигается расширением ЭППЧ, причем широкополосные каналы образуются объединением нескольких каналов ТЧ.

В настоящее время АСП предусматривают образование следующих широкополосных каналов:

Предгруппового канала с полосой частот 12..24 кГц взамен трех каналов ТЧ;

Первичного канала 60..108 кГц взамен 12 каналов ТЧ;

Вторичного канала 312..552 кГц взамен 60 каналов ТЧ;

Третичного канала 812..2044 кГц взамен 300 каналов ТЧ.

Кроме перечисленных каналов в системах передачи формируются каналы вещания и телевидения (со звуковым вещанием).

В зависимости от полосы частот первичных сигналов, которые нужно передать, выбирается тот или иной широкополосный канал.

В ЦСП не предусмотрено спец.оборудование для организации сетевых трактов. Групповой цифровой поток, сформированный на данной ступени иерархии, направляется либо на следующую ступень временного объединения потоков, либо на оборудование линейного тракта. Точки соединения оборудования двух смежных ступеней иерархии называют сетевыми стыками (СС). Параметры СС являются типовыми.

Аппаратура цифровых плезиохронных систем передачи (ЦСП PDH) – европейский стандарт, обеспечивает создание типовых цифровых каналов передачи со следующими градациями скоростей, кбит/с:

Основной цифровой канал (ОЦК) – 64;

Субпервичный цифровой канал (СЦК) – 480;

Первичный тракт – 2048;

Вторичный тракт – 8448;

Третичный тракт – 34368;

Четверичный тракт – 139264.

На базе данных цифровых каналов и трактов должны образовываться следующие типовые аналоговые каналы и тракты:

Канал ТЧ (на базе ОЦК);

Канал звукового вещания (на базе СЦК);

Канал ТВ со звуковым сопровождением (на базе трех третичных ЦГТ).

В сетевых стыках должна осуществляться передача не только информационных (ИС), но и тактовых (ТС) сигналов, обеспечивающих тактовую синхронизацию регенераторов и приемного генераторного оборудования оконечных станций. Имеющиеся в составе цифровых потоков служебные символы (цикловой и сверхцикловой синхронизации) обеспечивают доступ к составляющим цифровых потоков низших ступеней иерархии. Исключение составляет ОЦК, в котором таких символов нет. По этой причине в него вводят октетный сигнал (ОС), позволяющий разделять восьмиразрядные кодовые группы. Таким образом, в СС ОЦК осуществляется обмен не только ИС и ТС, но и ОС.

В американской системе PDH предусмотрены следующие градации скоростей (уровней иерархии), кбит/с:

Основной цифровой канал (ОЦК) -64;

Первый уровень – 1544;

Второй уровень – 6312;

Третий уровень – 44736.

Чтобы создать единую цифровую сеть и удовлетворить как американским требованиям, так и европейским, предусматривающим передачу сигнала на скорости 139,268 Мбит/с, был определен основной иерархический уровень новой структуры синхронного мультиплексирования, равный 155, 520 Мбит/с, что является результатом умножения в три раза скорости 51,84 Мбит/с (51,84х3=155,520).

Все уровни мультиплексирования в синхронных цифровых системах (SDH) являются положительными целыми кратными числами этого базового сигнала SТM-1 (синхронный базовый модуль-1) .

Таким образом, была выработана единая всемирная концепция, касающаяся передачи сигналов данных со скоростью 155 Мбит/с. Это означает, что все предыдущие PDH сигналы должны быть включены в базовый сигнал SDH при помощи процедуры, называемой «Mapping» (размещение).

1.2.1. Структура канала электросвязи

Из приведенных ранее определений следует, что в любой системе электросвязи должны быть устройства, осуществляющие преобразования: на передаче – информация → сообщение → сигнал, на приеме – сигнал → сообщение → информация.

Кроме того, в процессе передачи сигнал подвергается и другим преобразованиям, многие из которых являются типовыми, обязательными для различных систем электросвязи, независимо от их назначения и характера передаваемых сообщений.

Рассмотрим обобщенную структурную схему системы электрической связи (СЭС) (рис.1.2.) . В нее входят следующие элементы.

Источник сообщения это физический объект, который формирует конкретное сообщение (люди, ЭВМ, датчики). Примеры сообщений: речь, музыка, фотография, текст, рисунок.

Преобразователи сообщения в электрический сигнал (микрофон, датчик) превращают сообщение в первичный сигнал . Например, преобразование букв текста в стандартные электрические сигналы азбуки Морзе.

Модулятор – осуществляет преобразование первичного сигнала во вторичный сигнал , удобный для передачи в среде распространения в условиях действия помех.

Среда распространения служит для передачи электрических сигналов от передатчика к приемнику. Это может быть кабель или волновода, в системах радиосвязи это область пространства в котором распространяются электромагнитные волны от передающей антенны к приемной.

Для каждого типа линии связи имеются сигналы, которые могут быть использованы наиболее эффективно. Например, в проводной линии применяются переменные токи невысоких частот (не более сотен кГц), в радиолинии – электромагнитные колебания высоких частот (от сотен килогерц до десятков тысяч мегагерц), а в волоконно-оптических линиях для передачи информации используют световые волны с частотами 1014…1015 Гц. В среде распространения сигналы обычно значительно ослабляются (затухают) и искажаются под воздействием помех .

Под помехой понимается любое воздействие на сигнал, которое ухудшает достоверность воспроизведения передаваемых сообщений. В наиболее простом случае на вход демодулятора (приемника) поступает сумма сигнала и помехи : . Такие помехи называют аддитивными.

Демодулятор это устройство, в котором из принятого сигнала выделяется первичный электрический сигнал , который из-за действия помех может значительно отличаться от переданного .

Преобразователь необходим для формирования сообщения из принятого первичного сигнала . Качество СЭС определяется степенью соответствия принятого сообщения переданному сообщению .

Структурная схема системы электрической связи для передачи дискретных сообщений (рис. 1.3) дополнительно включает в себя кодер (декодер) источника и кодер (декодер) канала.

Кодер источника служит для преобразования сообщений в кодовые символы с целью уменьшения избыточности источника сообщения, т.е. обеспечении минимума среднего числа символов на одно сообщение и представления в удобной форме (например, в виде двоичных чисел).

Кодер канала, предназначен для введения избыточности, позволяющей обнаруживать и исправлять ошибки в канальном декодере, с целью повышения достоверности передачи.

Декодер канала обеспечивает проверку избыточного (помехоустойчивого) кода и преобразование его в последовательность первичного электрического сигнала безызбыточного кода.

Декодер источника (ДИ) – это устройство для преобразования последовательности ПЭС безизбыточного кода в сообщение.

Принято различать две группы относительно самостоятельных устройств: кодеки и модемы. Кодеком называется совокупность кодера и декодера, которые при двухсторонней связи конструктивно объединены в одно устройство. Модемом называется конструктивно совмещенная совокупность модулятора и демодулятора.

Важнейшей частью СЭС является канал связи.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В. Точки А и В могут быть выбраны различным образом в зависимости от решаемой задачи построения модели, проектирования или анализа СЭС. В зависимости от вида входных и выходных символов канал связи может быть непрерывным, дискретным и полунепрерывным. В одной и той же схеме можно выделить как дискретный так и непрерывный канал, в зависимости от выбора рассматриваемых точек.

Мы еще неоднократно будем возвращаться к вопросам, касающимся организации деятельности сферы телекоммуникаций в РФ, рассматривать их под разными углами зрения. Здесь же рассмотрим самые общие положения.
Основы деятельности в области связи регулируются Федеральным законом «О связи», который определяет полномочия органов государственной власти, а также права и обязанности лиц, участвующих в организации предоставления услуг связи и пользующихся ими. Согласно этому Закону, сетью связи называется технологическая система, включающая средства и линии связи и предназначенная для электросвязи или почтовой связи.
Основы деятельности и методы управления организациями связи связаны с формой собственности на сети и средства связи, которые могут находиться в федеральной собственности, собственности субъектов РФ, муниципальных образований, юридических и физических лиц. В связи с тем, что связь образует инфраструктуру, ее развитие взаимоувязывается с развитием и застройкой территорий и поселений, а также всего хозяйственного механизма страны. Функционирование и развитие отрасли опирается также на земельное законодательство, так как многие сооружения электросвязи нередко требуют землеотвода. Общее представление о сетях связи РФ дает рис. 4.4.

Под управлением сетью связи понимают совокупность организационно-технических мероприятий, которые направлены на обеспечение безотказного и согласованного функционирования всех ее элементов и регулирование трафика. Трафик - это нагрузка, которую создает поток вызовов от пользователей, поступающий на средства связи и измеряемый временем занятия этих средств. Например, если 10 клиентов в течение астрономического часа проговорили по телефону по 12 минут каждый, то в течение этого часа они создали нагрузку на приборы станции в 120 минут, или 2 часа занятия, или 2 Эрл. С учетом величины нагрузки в часы наибольшей нагрузки, а также нормируемого качества обслуживания (количества отказов в соединениях или времени ожидания) определяются объемы коммутационного и иного оборудования на сетях связи.
При управлении сетями, составляющими ЕСЭ РФ, Федеральный орган исполнительной власти в области связи, в настоящее время это Министерство информационных технологий и связи, а также Федеральное агентство связи определяют порядок взаимодействия сетей как в обычных, так и чрезвычайных условиях, а также устанавливают требования к их построению и управлению, нумерации, применяемым средствам связи, организационно-техническим условиям устойчивого функционирования, средствам защиты сетей и информации от несанкционированного доступа. Операторы связи должны создавать соответствующие этим требованиям системы управления сетями.
Любая сеть связи - это сложная технологическая система, объединяющая сооружения, средства и линии связи, подлежащие технической эксплуатации и предназначенные для передачи электрических сигналов (трафика). Сооружения связи - это специально построенные или приспособленные для размещения средств связи здания или иные объекты. Линии связи - это линии передачи, физические цепи и линейно-кабельные сооружения связи. В линиях связи организуются каналы связи для передачи сигналов, несущих информацию. Линейно-кабельные сооружения связи - это объекты инженерной инфраструктуры для размещения кабелей связи (например, городская кабельная канализация или коллекторы). Средства связи - это технические и программные средства для формирования, приема и обработки, хранения, передачи, доставки сообщений электросвязи и почтовых отправлений, включая оконечные устройства и средства измерения, контроля и ремонта основного и дополнительного оборудования (например, электронный коммутатор или вышка с установленными на ней антеннами). Выделяют также радиоэлектронные средства, т.е. техническое оборудование для приема и передачи радиоволн. Для их функционирования выделяется радиочастотный спектр, диапазоны радиочастот распределяет Международный союз электросвязи (МСЭ). Внутри страны специальная комиссия выдает оператору разрешение на использование конкретной полосы частот, а также устанавливает условия ее использования.
Сети связи общего пользования (ССОП) представляют собой комплекс взаимодействующих сетей электросвязи, в том числе сети связи для распространения программ телевизионного и радиовещания, и предназначены для оказания услуг электросвязи любому пользователю на территории РФ. Эти сети могут быть привязаны к территории, ресурсу нумерации, а также различаться по технологии предоставления услуг (например, системы сотовой подвижной связи, городские телефонные сети и т.п.). ССОП присоединены к соответствующим сетям других государств, что обеспечивает возможность обслуживания международного трафика.
Организации связи - это юридические лица, для которых деятельность в области связи основная. Юридическое лицо, оказывающее услуги связи на основании соответствующей лицензии, называется оператором связи. Пользователь услугами связи - лицо, заказывающее или использующее услуги связи. В зависимости от места, где пользователи получают услуги связи, выделяют три сектора: корпоративный (услуги на рабочем месте), квартирный
и мобильный (услуги в дороге). Пользователь назвывается абонентом, если с ним заключен договор об оказании услуг связи при выделении для этих целей абонентского кода или уникального кода идентификации. Услуги связи могут предоставляться юридическим лицом, не являющимся собственником сети, а арендующим часть сетевых ресурсов у какого-либо оператора связи. Такая компания называется поставщиком услуг (сервис-провайдером), или провайдером (например, провайдеры Интернета).
В Законе «О связи» услуга связи определена как деятельность по приему, обработке, хранению, передаче и доставке сообщений электросвязи и почтовых отправлений. Вместе с тем эту деятельность можно определить и как процесс производства услуги. В то же время услуга в рыночном понимании этого слова - это благо (продукт), которое получает клиент и которое выражается в том, что с его помощью он решает свои проблемы и удовлетворяет свои нужды, а то, каким образом произведен продукт, клиента чаще всего не интересует.
Услуги связи характеризуются однократным потреблением, а их стоимость зависит от вида и качества коммуникаций. Помимо услуг пользователь получает/потребляет приложения, которые в отличие от услуги предоставляются в виде многократно используемого конечного продукта (к примеру, программа для работы в Интернете, CD с информацией и т.п.). Исторически услуги предоставлялись индустрией электросвязи, тогда как индустрия информационных технологий изначально была ориентирована на предоставлении приложений (очевидно поэтому в Федеральном законе «О связи» понятие приложения не представлено).
Информационная услуга - удовлетворение информационных потребностей пользователей путем предоставления информационных продуктов. Соответственно пользователь информационными услугами - это лицо, обращающееся к информационной системе или посреднику за получением необходимой ему информации и пользующееся ею. Поставщики информационных услуг (контента, приложений) часто называются контент-провайдерами.
Единство ССОП технически и экономически обеспечивается на базе услуг присоединения и пропуска трафика. Услуга присоединения - деятельность оператора связи, направленная на удовлетворение потребности других операторов связи в организации взаимодействия сетей электросвязи, при котором создаются условия сделать сеть «прозрачной» для передачи информации (пропуска трафика) между пользователями услуг взаимодействующих сетей. Услуга присоединения платная. Услуга по пропуску трафика - деятельность, в результате которой один оператор пропускает трафик другого оператора через свою сеть к другим сетям взаимодействующих операторов. Эта услуга также оплачивается, в связи с чем операторы вступают в отношения, которые называют взаиморасчетами.
На некоторых операторов в соответствии с законом «О связи» возложена обязанность предоставлять универсальные услуги связи, т.е. такие, оказание которых любому пользователю на территории страны осуществляется с определенным качеством и по разумной, регулируемой государством, цене. В настоящее время к универсальным услугам относятся: услуги местной телефонной связи, услуги по передаче телеграмм и некоторые услуги почтовой связи. Правовые основы представления этих услуг обсуждаются в гл. 8.
Выделенные сети связи (ВСС) предназначены для оказания платных услуг связи ограниченному кругу (группам) пользователей и могут взаимодействовать между собой. Каждой сети выделяется ресурс нумерации, т.е. совокупность числовых кодов, с помощью которых можно идентифицировать абонентов. Пока ВСС не присоединена к ССОП, технологии и средства связи, принципы построения сетей и иные параметры управления и хозяйственной деятельности устанавливаются собственниками этих сетей. ВСС может присоединиться к сети общего пользования, если она соответствует требованиям последней. При этом ее ресурс нумерации изымается, а взамен предоставляется часть ресурса нумерации сети общего пользования.

Технологические сети связи предназначены для обеспечения производственной деятельности организации, управления производственными процессами в других отраслях национального хозяйства, которые могут выходить и за границы страны. Так же, как и в предыдущем случае, собственники устанавливают принципы организации этих сетей. Допускается присоединение части технологической сети к ССОП при определенных условиях: 1) если эта часть технологически, физически или программно может быть отделена от основной сети; 2) если выполняются соответствующие организационно-технологические требования.
Сети связи специального назначения (СССН) предназначены для нужд государственного управления и обеспечения безопасности, обороны, охраны правопорядка. Эти нужды могут быть обеспечены и за счет ресурсов ЕСЭ в соответствии с действующим законодательством. Для этого центры управления сетями связи специального назначения обеспечивают их взаимодействие с другими сетями ЕСЭ. Как правило, СССН не могут использоваться в коммерческих целях, они финансируются из бюджета.
Сеть почтовой связи - это множество объектов почтовой связи и почтовых маршрутов операторов почтовой связи, объединенных под эгидой Федеральной государственной унитарной организации «Почта России». Организациями федеральной почтовой связи являются государственные унитарные организации и государственные учреждения, созданные на базе имущества, находящегося в федеральной собственности. Объекты почтовой связи - это обособленные подразделения организаций почтовой связи (почтамты, прижелезнодорож- ные почтамты, отделения перевозки почты при железнодорожных станциях и аэропортах, узлы почтовой связи), а также их структурные подразделения (почтовые обменные пункты, отделения почтовой связи и другие подразделения). Все они обеспечивают прием, перевозку, доставку (вручение) почтовых отправлений, а также осуществляют почтовые переводы денежных средств.
В целях обеспечения целостности, устойчивого функционирования и безопасности единой сети электросвязи РФ и использования радиочастотного спектра деятельность в области связи регулируется государством (Министерством информационных технологий и связи РФ, Агентством РФ по связи, Агентством РФ по информатизации, а также рядом комиссий и иными федеральными органами в пределах их компетенции). Основные направления регулирования деятельности в соответствии с действующим законодательством: разработка и реализация государственной политики и осуществление координации в создании и развитии сетей связи, спутниковых систем связи, в том числе использования на территории страны систем телевизионного и радиовещания гражданского назначения; разработка и принятие нормативных актов, касающихся деятельности и развития отрасли с учетом предложений всех заинтересованных организаций; выполнение функций Администрации связи при осуществлении международной деятельности; контроль исполнения лицензий и выполнения обязательных требований, прежде всего так называемыми саморегулируемыми организациями; использование радиочастотного спектра на основе разрешительного порядка доступа к нему, сближения условий пользования с международными, срочности и платности, прозрачности и открытости процедур распределения и использования спектра.
Чтобы представить размеры сети связи, отметим, что сегодня лицензии на право предоставлять услуги связи получили более 3000 организаций, работает более 90 тыс. пунктов по обслуживанию населения и организаций. В настоящее время в фиксированной сети связи установлено более 37 млн аппаратов, а собственниками сотовых телефонов уже стали более 85 млн чел. Аудитория Интернета составляет более 15 млн чел. Доходы отрасли связи к началу 2005 г. достигли 47 млрд долл. США.
Одной из крупнейших организаций в отрасли является ОАО «Связьинвест», которое после реорганизации в 2002-2003 гг. имеет структуру, представленную на рис. 4.5.

Особенности менеджмента в отрасли связи обусловлены по крайней мере двумя обстоятельствами: во-первых, сетевым характером взаимосвязи экономически независимых субъектов; во-вторых, особенностями продукта: преобладанием невещественного компонента в услуге связи, ее гетерогенностью (неоднородностью), непревращаемостью в собственность, несохраняемостью, так как практически всегда процессы производства и потребление услуги совпадают по времени. Последнее обстоятельство накладывает особые требования на весь процесс предоставления услуги. Если при изготовлении стола ножки могут быть сделаны в одно время, а столешница - в другое, а ночью фабрика может и не работать, то в телекоммуникациях отдельные элементы и сеть в целом должны быть в постоянной готовности к созданию канала связи, надежно функционирующего в течение всего времени коммуникации между отправителем информации и ее получателем. При этом заранее никогда не известно, где возникнет потребность в создании такого канала, сколько каналов и в каких направлениях они одновременно будут востребованы. Понятно, что управлять такой системой чрезвычайно сложно. Поэтому, кроме обычного менеджмента организации, требуется управление взаимодействием различных операторов (организаций) связи, а также управление сетями связи в целом (см. разд. 11.1-11.3).
Из этого краткого описания менеджмента в отрасли телекоммуникаций следует, насколько сложна система связи. Таким образом, правомерным является вопрос о том, каким целям служит система такой сложности.

Системы электросвязи классифицируются по назначению, по типу применяемого сигнала, по способу осуществления соединения, по степени интеграции решаемых задач и по способу обмена информацией (рис.1.7).

По назначению различают сети телефонной, факсимильной связи, сети передачи данных и телетекса.

По типу применяемого сигнала системы связи подразделяются на аналоговые и цифровые.

В аналоговых сетях используется непрерывный сигнал. Особенностью его является то, что два сигналы могут отличаться один от другого как угодно мало. В цифровых сетях используется сигнал, который состоит из различных элементов. Такими элементами являются 1 и 0. Единица обычно обозначается импульсом или отрезком гармонического колебания с определенной амплитудой. Нуль обозначается отсутствием переданного напряжения. Совокупность 1 и 0 составляет сообщение - кодовую комбинацию.


По способу осуществления соединения системы подразделяются на сети с коммутацией каналов, коммутацией сообщений и коммутацией пакетов.

В сетях с коммутацией каналов соединения абонентов осуществляется по типу автоматической телефонной станции. Основной их недостаток – это большое время вхождения в связь из-за занятости каналов или вызываемого абонента. Обмен информацией в сетях с коммутацией сообщений осуществляется по типу передачи телеграмм. Отправитель составляет текст сообщения, указывает адрес, категорию срочности и секретности и это сообщение записывается в запоминающее устройство (ЗУ). При освобождении канала сообщение автоматически передается на следующий промежуточный узел или непосредственно абоненту. На промежуточном узле сообщения также записывается в ЗУ и при освобождении следующего участка передается дальше. Преимуществом таких сетей является отсутствие отказа в приеме сообщения. Недостаток заключается в сравнительно большом времени задержки сообщения за счет его сохранения в ЗУ. Поэтому такие сети не используют для передачи информации, которая требует доставки в реальном времени. В сетях с коммутацией пакетов обмен информацией осуществляется также как в сетях с коммутацией сообщений. Однако сообщение делится на короткие пакеты, которые быстро находят себе маршрут к адресату. В результате время задержки пакетов будет меньшим.

По степени интеграции решаемых задач различают интегральные цифровые сети и цифровые сети интегрального обслуживания.

В цифровых интегральных сетях интеграция осуществляется на уровне технических устройств. Одно устройство решает несколько задач. Например, решает задачу уплотнения канала и коммутации. В цифровых сетях интегрального обслуживания интеграция осуществляется на уровне служб. Сигналы телефонии, телетекса, передачи данных и другие передаются цифровым способом с помощью одних и тех же устройств. В таких сетях отсутствует разделение на первичные и вторичные сети.

По способу обмена информацией сети подразделяются на синхронные, асинхронные и плезиохронные.

В синхронных сетях генераторы управляющих сигналов на конечных и промежуточных пунктах постоянно синхронизированы независимо от того передается информация или нет. В асинхронных сетях синхронизация осуществляется только на время приема сообщения.

Плезиохронный метод функционирования допускает отсутствие постоянного подстраивания местных генераторов. Прием сообщений обеспечивается за счет применения высокостабильных местных генераторов с автоподстройкой под сигналы единой частоты через довольно продолжительные интервалы времени.

Сеть телефонной связи предназначена для передачи на расстояние речевых (акустических) сообщений.

Сети передачи данных предназначены для обмена информацией между ЭВМ. Сети передачи данных как и телеграфные сети используют дискретные сигналы. В отличие от телеграфии в сетях передачи данных обеспечивается большая скорость и качество передачи сообщений. Гарантируется заданная вероятность доставки при любой практически необходимой скорости передачи сообщений. Это достигается благодаря использованию дополнительных устройств повышения качества передачи сообщений, которые конструктивно объединяются с передатчиками и приемниками систем передачи данных, образовывая приемо-передающие устройства, которые называются аппаратурами передачи данных (АПД).

Сеть факсимильной связи предназначена для передачи не только содержания, но и внешнего вида самого документа.

Оконечное устройство факсимильных сетей представляет собой цифровой факсимильный аппарат, который работает по телефонной сети со скоростями 2,4-4,8 кбит/с или по сетям передачи данных со скоростями 4,8; 9,6; и 48 кбит/с. В нем осуществляется статистическое кодирование информации с коэффициентом сжатия около 8, что позволяет передавать страницу текста за 2 мин. при скорости 2,4 кбит/с и соответственно за 30 с при скорости 9,6 кбит/с.

Телетекс это буквенно-цифровая система передачи деловой корреспонденции, которая построена по абонентскому принципу. Основная идея телетекса - объединение всех возможностей современной печатной машинки с передачей сообщений при условии сохранения содержания и формы текста. Эта система немного напоминает телекс (абонентский телеграф), но отличается от нее большим набором знаков (256 за счет 8- элементного кода), большей скоростью передачи (2400 бит/с), высокой достоверностью, возможностью редактировать подготовленную к передаче документацию и другие дополнительные особенности. Передача информации в системе телетекс осуществляется по телефонным сетям.

Важной особенностью и принципиальным преимуществом телетекса сравнительно с телексом является отсутствие необходимости в дополнительной работе на клавиатуре во время передачи текста. Это преимущество достигается благодаря тому, что подготовленный на оконечном устройстве текст, запоминается в его оперативном запоминающем устройстве, откуда информация передается по каналу связи. Принятое сообщение может быть воспроизведено на экране дисплея или отпечатано.

Система телетекс имеет много общего с системой передачи данных, а именно: цифровой метод передачи, скорость передачи 2,4 кбит/с, применяемые методы повышения борьбы с ошибками и управление соединением.

Расхождение между этими системами состоят в том, что в телетексе используется разговорный язык, передачи данных - формализованные языки.

На базе сетей телетекса и факса создаются службы электронной почты, т.е. службы передачи письменной корреспонденции по сетям электросвязи, которые обеспечивают получение “твердой копии” оригинала.

Раздельное использование приведенных выше вторичных сетей сдерживает развитие систем телекоммуникаций. Внедрение цифровых сетей позволяет на единой цифровой основе обеспечить передачу сигналов различных служб, т.е. организовывать цифровую сеть интегрального обслуживания . Под цифровой сетью интегрального обслуживания понимают совокупность архитектурно-технологических методов и аппаратно-программных средств доставки информации территориально удаленным пользователям, что позволяет на цифровой основе предоставлять пользователям различные услуги. Эта сеть позволяет передавать телефонные, телеграфные и другие сигналы с помощью одного универсального терминала. Этот терминал должен содержать телефон, дисплей и клавиатуру для набора текста. Абонент такой сети может наблюдать на дисплее за изображением и разговаривать с другим абонентом по телефону.