Все законы ома определение. Закон Ома — проще некуда

  • 28.08.2019

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Кафедра естественнонаучных дисциплин

Реферат

Закон Ома

Выполнил:

Иванов М. А.

Введение

1. Общий вид закона Ома

2. История открытия закона Ома, краткая биография ученого

3. Виды законов Ома

4. Первые исследования сопротивления проводников

5. Электрические измерения

Заключение

Литература, другие источники информации

Введение

Явления, связанные с электричеством были замечены в древнем Китае, Индии и древней Греции за несколько столетий до начала нашей эры. Около 600 года до н.э., как гласят сохранившиеся предания, древнегреческому философу Фалесу Милетскому было известно свойство янтаря, натертого об шерсть, притягивать легкие предметы. Кстати словом “ электрон” древние греки называли янтарь. От него же пошло и слово “электричество”. Но греки всего лишь наблюдали явления электричества, но не могли объяснить.

XIX век был полон открытий связанных с электричеством. Одно открытие порождало целую цепь открытий в течении нескольких десятилетий. Электричество из предмета исследования начало превращаться в предмет потребления. Началось его широкое внедрение в различные области производства. Были изобретены и созданы электрические двигатели, генераторы, телефон, телеграф, радио. Начинается внедрение электричества в медицину.

Напряжение, сила тока и сопротивление - физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик 0м. Закон Ома был открыт в 1826 .

1. Общий вид закона Ома

Закон Ома звучит так: Сила тока на участке цепи прямо пропорциональна напряжению на этом участке (при заданном сопротивлении) и обратно пропорциональна сопротивлению участка (при заданном напряжении): I = U / R, из формулы следует, что U = IЧR и R = U / I. Так как сопротивление данного проводника не зависит ни от напряжения, ни от силы тока, то последнюю формулу надо читать так: сопротивление данного проводника равно отношению напряжения на его концах к силе протекающего по нему тока. В электрических цепях чаще всего проводники (потребители электрической энергии) соединяются последовательно (например, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы).

При последовательном соединении сила тока в обоих проводниках (лампочках) одинакова: I = I1 = I2, напряжение на концах рассматриваемого участка цепи складывается из напряжения на первой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротивлений лампочек R = R1 + R2.

При параллельном соединении резисторов напряжение на участке цепи и на концах резисторов одинаково: U = U1 = U2. сила тока в неразветвленной части цепи равна сумме сил токов в отдельных резисторах: I = I1 + I2. Общее сопротивление участка меньше сопротивления каждого резистора.

Если сопротивления резисторов одинаковы (R1 = R2) то общее сопротивление участка Если в цепь включено параллельно три и более резисторов, то общее сопротивление может быть -

найдено по формуле: 1/R = 1/R1 + 1/R2 + ... + 1/RN. Параллельно соединяются сетевые потребители, которые рассчитаны на напряжение, равное напряжению сети.

Итак, Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника:

Коэффициент пропорциональности R , зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника.

2. История открытия закона Ома, краткая биография ученого

Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.

В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания "Наиболее оптимальный вариант преподавания геометрии в подготовительных классах". Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием "Предварительное сообщение о законе, по которому металлы проводят контактное электричество". Статья была опубликована в 1825 году в "Журнале физики и химии", издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.

Появляется в свет его знаменитая статья "Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера", вышедшая в 1826 году в "Журнале физики и химии".

В мае 1827 года "Теоретические исследования электрических цепей" объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: "Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение".

В 1829 году появляется его статья "Экспериментальное исследование работы электромагнитного мультипликатора", в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.

В 1830 году появляется новое исследование Ома "Попытка создания приближенной теории униполярной проводимости". Только в 1841 году работа Ома была переведена на английский язык, в 1847 году - на итальянский, в 1860 году - на французский.

16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.

Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.

В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления - 1 Ом.

3. Виды законов Ома

Существует несколько видов закона Ома.

Закон Ома для однородного участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:

Закон Ома для полной цепи - сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

где I - сила тока

E - электродвижущая сила

R - внешнее сопротивление цепи (т.е. сопротивление той

части цепи, которая находится за пределами источника ЭДС)

ЭДС - работа сторонних сил (т.е. сил неэлектрического происхождения) по перемещению заряда в цепи отнесенная к величине этого заряда.

Единицы измерения:

ЭДС - вольты

Ток - амперы

Сопротивления (R и r) - омы

Применяя основной закон электрической цепи (закон Ома), можно объяснить многие природные явления, которые на первый взгляд кажутся загадочными и парадоксальными. Например, всем известно, что любой контакт человека с электрическими проводами, находящимися под напряжением, является смертельно опасным. Всего лишь одно прикосновение к оборвавшемуся проводу высоковольтной линии способно убить электрическим током человека или животное. Но в то же время, мы постоянно видим, как птицы спокойно усаживаются на высоковольтные провода электропередач, и ничто не угрожает жизни этих живых существ. Тогда как же найти объяснение такому парадоксу?

А объясняется подобное явление довольно просто, если представить, что находящаяся на электрическом проводе птица - это один из участков электрической сети, сопротивление второго значительно превышает сопротивление другого участка той же цепи (то есть небольшого промежутка между лапками птицы). Следовательно, сила электрического тока, воздействующая на первый участок цепи, то есть на тело птицы, будет совершенно безопасной для неё. Однако полная безопасность гарантирована ей только при соприкосновении с участком высоковольтного провода. Но стоит только птице, усевшейся на линию электропередач, задеть крылом или клювом провод или какой-либо предмет, находящийся вблизи от провода (например, телеграфный столб), то птица неминуемо погибнет. Ведь столб непосредственно связан с землёй, и поток электрических зарядов, переходя на тело птицы, способен мгновенно убить её, стремительно двигаясь по направлению к земле. К сожалению, по этой причине в городах гибнет немало птиц.

Для защиты пернатых от губительного воздействия электричества зарубежными учеными были разработаны специальные устройства - насесты для птиц, изолированные от электрического тока. Такие приспособления размещали на высоковольтных линиях электропередач. Птицы, усаживаясь на изолированный насест, могут без всякого риска для жизни прикасаться клювом, крыльями или хвостом к проводам, столбам или кронштейнам. Наибольшим сопротивлением обладает поверхность верхнего, так называемого рогового слоя кожи человека. Сопротивление сухой и неповреждённой кожи может достигать 40 000 - 100 000 Ом. Роговой слой кожи очень незначителен, всего 0,05 - 0,2 мм. и легко пробивается напряжением 250 В. При этом сопротивление уменьшается в сто раз и падает тем скорее, чем дольше действует на тело человека ток. Резко, до 800 - 1000 Ом, уменьшают сопротивление тела человека повышенная потливость кожного покрова, переутомление, нервное возбуждение, опьянение. Этим объясняется, что порой даже небольшое напряжение может вызвать поражение электрическим током. Если, например, сопротивление тела человека равно 700 Ом, то опасным будет напряжение всего в 35 В. Именно поэтому, например, специалисты-электрики даже при работе с напряжением 36 В применяют изолирующие защитные средства - резиновые перчатки или инструмент с изолированными ручками.

Закон Ома выглядит настолько просто, что трудности, которые пришлось преодолеть при его установлении, упускают из виду и забывают. Закон Ома нелегко проверить, и его нельзя рассматривать как очевидную истину; действительно, для многих материалов он не выполняется.

В чем же все-таки заключаются эти трудности? Разве нельзя проверить, что дает изменение числа элементов вольтова столба, определяя ток при разном числе элементов?

Дело в том, что, когда мы берем разное число элементов, мы меняем всю цепь, т.к. дополнительные элементы имеют и дополнительное сопротивление. Поэтому необходимо найти способ изменять напряжение, не меняя самой батареи. Кроме того, разный по величине ток нагревает проволоку до развой температуры, и этот эффект тоже может влиять на силу тока. Ом (1787--1854) преодолел эти трудности, воспользовавшись явлением термоэлектричества, которое открыл Зеебек (1770--1831) в 1822 г.

Таким образом, Ом показал, что ток пропорционален напряжению и обратно пропорционален полному сопротивлению цепи. Это был простой результат для сложного эксперимента. Так по крайней мере должно казаться нам сейчас.

Современники Ома, в особенности его соотечественники, полагали иначе: возможно, именно простота закона Ома вызывала у них подозрение. Ом столкнулся с затруднениями в cлужебной карьере, испытывал нужду; особенно угнетало Ома то, что не признавались его труды. К чести Великобритании, и в особенности Королевского общества, нужно сказать, что работа Ома получила там заслуженное признание. Ом входит в число тех великих людей, имена которых часто встречаются написанными с маленькой буквы: название «ом» было присвоено единице сопротивления.

4. Первые исследования сопротивления проводников

Что такое проводник? Это чисто пассивная составная часть электрической цепи, отвечали первые исследователи. Заниматься его исследованием -- значит попросту ломать себе голову над ненужными загадками, т.к. только источник тока представляет собой активный элемент.

Такой взгляд на вещи объясняет нам, почему ученые, по крайней мере до 1840 г., почти не проявляли интереса к тем немногим работам, которые проводились в этом направлении.

Так, на втором съезде итальянских ученых, состоявшемся в Турине в 1840 г. (первый собирался в Пизе в 1839 г. и приобрел даже некое политическое значение), выступая в прениях по докладу, представленному Марианини, Де ла Рив утверждал, что проводимость большинства жидкостей не является абсолютной, «а скорее относительной и изменяется с изменением силы тока». А ведь закон Ома был опубликован за 15 лет до этого!

Среди тех немногих ученых, которые первыми стали заниматься вопросом проводимости проводников после изобретения гальванометра, был Стефано Марианини (1790--1866).

К своему открытию он пришел случайно, изучая напряжение батарей. Он заметил, что с увеличением числа элементов вольтова столба электромагнитное воздействие на стрелку не увеличивается заметным образом. Это заставило Марианини сразу же подумать, что каждый вольтов элемент представляет собой препятствие для прохождения тока. Он делал опыты с парами «активными» и «неактивными» (т. е. состоящими из двух медных пластинок, разделенных влажной прокладкой) и опытным путем нашел отношение, в котором современный читатель узнает частный случай закона Ома, когда сопротивление внешней цепи не принимается во внимание, как это и было в опыте Марианини.

Георг Симон Ом (1789--1854) признавал заслуги Марианини, хотя его труды и не оказали Ому непосредственной помощи в работе. Ом вдохновлялся в своих исследованиях работой («Аналитическая теория тепла», Париж, 1822 г.) Жана Батиста Фурье (1768--1830)--одной из самых значительных научных работ всех времен, очень быстро получившей известность и высокую оценку среди математиков и физиков того времени. Ому пришла мысль, что механизм «теплового потока», о котором говорит Фурье, можно уподобить электрическому току в проводнике. И подобно тому как в теории Фурье тепловой поток между двумя телами или между двумя точками одного и того же тела объясняется разницей температур, точно так же Ом объясняет разницей «электроскопических сил» в двух точках проводника возникновение электрического тока между ними.

Придерживаясь такой аналогии, Ом начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока. Первые результаты, которые ему удалось получить, сегодня кажутся довольно скромными. закон ом электрический гальванометр

Историки поражаются, например, тем, что по измерениям Ома серебро обладает меньшей проводимостью, чем медь и золото, и снисходительно принимают данное впоследствии самим Омом объяснение, согласно которому опыт проводился с серебряной проволокой, покрытой слоем масла, и это вводило в заблуждение относительно точного значения диаметра.

В то время имелось множество источников ошибок при проведении опытов (недостаточная чистота металлов, трудность калибровки проволоки, трудность точных измерений и т. п.). Важнейшим же источником ошибок была поляризация батарей. Постоянные (химические) элементы тогда еще не были известны, так что за время, необходимое для измерений, электродвижущая сила элемента существенно менялась. Именно эти причины, вызывавшие ошибки, привели к тому, что Ом на основании своих опытов пришел к логарифмическому закону зависимости силы тока от сопротивления проводника, включенного между двумя точками цепи. После опубликования первой статьи Ома Поггендорф посоветовал ему отказаться от химических элементов и воспользоваться лучше термопарой медь -- висмут, незадолго до этого введенной Зеебеком.

Ом прислушался к этому совету и повторил свои опыты, собрав установку с термоэлектрической батареей, во внешнюю цепь которой включались последовательно восемь медных проволок одинакового диаметра, но разной длины. Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке, отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении;

сила тока считалась пропорциональной углу, на который закручивалась нить. Ом пришел к выводу, что результаты опытов, проведенных с восемью различными проволоками, «могут быть выражены очень хорошо уравнением

где X означает интенсивность магнитного действия проводника, длина которого равна х, а а и b -- константы, зависящие соответственно от возбуждающей силы и от сопротивления остальных частей цепи».

Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к приведенной выше формуле, которая очень просто переходит в известную нам, если X заменить силой тока, a --электродвижущей силой и b+x,--общим сопротивлением цепи.

Получив эту формулу, Ом пользуется ею для изучения действия мультипликатора Швейггера на отклонение стрелки и для изучения тока, который проходит во внешней цепи батареи элементов, в зависимости от того, как они соединены -- последовательно или параллельно. Таким образом он объясняет (как это делается теперь в учебниках), чем определяется внешний ток батареи,-- вопрос, который был довольно темным для первых исследователей. Ом надеялся, что его экспериментальные работы откроют ему путь в университет, чего он так желал. Однако статьи прошли незамеченными. Тогда он оставил место преподавателя в кельнской гимназии и отправился в Берлин, чтобы теоретически осмыслить полученные результаты. В 1827 г. в Берлине он опубликовал свой главный труд «Die galvanische Kette, mathe-matisch bearbeitet» («Гальваническая цепь, разработанная математически»).

Эта теория, при разработке которой он вдохновлялся, как мы уже указывали, аналитической теорией теплоты Фурье, вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», как ее называет Ом, электропроводности (Starke der Leitung) и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи.

Но теоретические исследования Ома также остались незамеченными, а если кто-нибудь и писал о них, то лишь для того, чтобы, высмеять «болезненную фантазию, единственной целью которой является стремление принизить достоинство природы». И лишь лет десять спустя его гениальные работы постепенно начали пользоваться должным признанием: в

Германии их оценили Поггендорф и Фехнер, в России -- Ленц, в Англии -- Уитстон, в Америке -- Генри, в Италии -- Маттеуччи.

Одновременно с опытами Ома во Франции проводил свои опыты А. Беккерель, а в Англии -- Барлоу. Опыты первого особенно замечательны введением дифференциального гальванометра с двойной обмоткой рамки и применением «нулевого» метода измерения. Опыты же Барлоу стоит упомянуть потому, что они экспериментально подтвердили постоянство силы тока во всей цепи. Этот вывод был проверен и распространен на внутренний ток батареи Фехнером в 1831 г., обобщен в 1851 г. Рудольфом Кольраушем

(180Э--1858) на жидкие проводники, а затем еще раз подтвержден тщательными опытами Густава Нидмана (1826--1899).

5. Электрические измерения

Беккерель применил дифференциальный гальванометр для сравнения электрических сопротивлений. На основе проведенных им исследований он сформулировал известный закон зависимости сопротивления проводника от его длины и сечения. Эти работы были продолжены Пуйе и описаны им в последующих изданиях его известных «Elements de

physique experimentale» («Основы экспериментальной физики»), первое издание которых появилось в 1827 г. Сопротивления определялись методом сравнения.

Уже в 1825 г. Марианини показал, что в разветвляющихся цепях электрический ток распределяется по всем проводникам независимо от того, из какого материала они сделаны, вопреки утверждению Вольты, который полагал, что если одна ветвь цепи образуется металлическим проводником, а остальные -- жидкими, то весь ток должен проходить по металлическому проводнику. Араго и Пуйе популяризировали во Франции наблюдения Марианини. Не зная еще закона Ома, Пуйе в 1837 г. воспользовался этими наблюдениями и законами Беккереля, чтобы показать, что проводимость цепи, эквивалентной двум

разветвленным цепям, равна сумме проводимостей обеих цепей. Этой работой Пуйе положил начало изучению разветвленных цепей. Пуйе установил для них целый ряд терминов,

которые живы и до сих пор, и некоторые частные законы, обобщенные Кирхгофом в 1845 г. в его известных «принципах»..

Самый большой толчок для проведения электрических измерений, и в частности измерений сопротивления, был дан возросшими потребностями техники, и в первую очередь проблемами, возникшими с появлением электрического телеграфа. Впервые мысль об использовании электричества для передачи сигналов на расстояние родилась еще в XVIII веке. Вольта описал проект телеграфа, а Ампер еще в 1820 г. предлагал использовать электромагнитные явления для передачи сигналов. Идея Ампера была подхвачена многими учеными и техниками: в 1833 г. Гаусс и Вебер построили в Геттингене простейшую телеграфную линию, соединявшую астрономическую обсерваторию и физическую лабораторию. Но практическое применение телеграф получил благодаря американцу Самуэлу Морзе (1791--1872), которому в 1832 г. пришла удачная мысль создать телеграфный алфавит, состоящий всего из двух знаков. После многочисленных попыток Морзе в 1835 г. наконец удалось построить частным образом первую грубую модель телеграфа в Нью-Йоркском университете. В 1839 г. была проведена экспериментальная

линия между Вашингтоном и Балтиморой, а в 1844 г. возникла организованная Морзе первая американская компания по коммерческой эксплуатации нового изобретения. Это было также первое практическое применение результатов научных изысканий в области электричества.

В Англии изучением и усовершенствованием телеграфа занялся Чарльз Уитстон (1802--1875), бывший мастер по изготовлению музыкальных инструментов. Понимая важность

измерений сопротивления, Уитстон стал искать наиболее простые и точные методы таких измерений. Бывший в то время в ходу метод сравнения, как мы видели, давал ненадежные результаты, главным образом из-за отсутствия стабильных источников питания. Уже в 1840 г. Уитстон нашел способ измерения сопротивления независимо от постоянства электродвижущей силы и показал свое устройство Якоби. Однако статья, в которой это устройство описано и которую вполне можно назвать первой работой в области электротехники, появилась лишь в 1843 г. В этой статье дано описание знаменитого «мостика», названного затем в честь Уитстона. Фактически такое устройство было описано -

еще в 1833 г. Гюнтером Кристи и независимо от него в 1840 г. Марианини; оба они предлагали метод сведения к нулю, но их теоретические объяснения, при которых не учитывался закон Ома, оставляли желать лучшего.

Уитстон же был поклонником Ома и очень хорошо знал его закон, так что данная им теория «мостика Уитстона» ничем не отличается от приводимой сейчас в учебниках. Кроме того, Уитстон, чтобы можно было быстро и удобно изменять сопротивление одной стороны мостика для получения нулевой силы тока в гальванометре, включенном в диагональное плечо мостика, сконструировал три типа реостатов (само это слово было предложено им по

аналогии с «реофором», введенным Ампером, в подражание которому Пекле ввел также термин «реометр»). Первый тип реостата с подвижной скобкой, применяемый и сейчас, был создан Уитстоном по аналогии со схожим приспособлением, применявшимся Якоби в 1841 г. Второй тип реостата имел вид деревянного цилиндра, вокруг которого была намотана часть подключенного в цепь провода, который легко перематывался с деревянного цилиндра на бронзовый. Третий тип реостата был похож на «магазин сопротивлений», который Эрнст

Вернер Сименс (1816--1892), ученый и промышленник, в 1860 г. улучшил и широко распространил. «Мостик Уитстона» дал возможность измерять электродвижущие силы и сопротивления.

Создание подводного телеграфа, пожалуй, еще более, нежели воздушного телеграфа, потребовало разработки методов электрических измерений. Опыты с подводным телеграфом начались еще в 1837 г., и одной из первых проблем, которую предстояло разрешить, было определение скорости распространения тока. Еще в 1834 г. Уитстон с помощью вращающихся зеркал, о чем мы уже упоминали в гл. 8, произвел первые измерения этой скорости, но полученные им результаты противоречили результатам Латимера Кларка, а последние в свою очередь не соответствовали более поздним исследованиям других ученых.

В 1855 г. Уильям Томсон (получивший впоследствии титул лорда Кельвина) объяснил причину всех этих расхождений. Согласно Томсону, скорость тока в проводнике не имеет определенной величины. Подобно тому как скорость распространения тепла в стержне зависит от материала, так и скорость тока в проводнике зависит от произведения его сопротивления на электрическую емкость. Следуя этой своей теории, которая в""его времена

подверглась ожесточенной критике, Томсон занялся проблемами, связанными с подводным телеграфом.

Первый трансатлантический кабель, соединивший Англию и Америку, функционировал около месяца, но затем испортился. Томсон рассчитал новый кабель, провел многочисленные измерения сопротивления и емкости, придумал новые передающие аппараты, из коих следует упомянуть астатический отражательный гальванометр, замененный «сифонным регистратором» его же изобретения. Наконец, в 1866 г. новый трансатлантический кабель успешно вступил в действие. Созданию этого первого большого электротехнического сооружения сопутствовала разработка системы единиц электрических и магнитных измерений.

Основа электромагнитной метрики была заложена Карлом Фридрихом Гауссом (1777--1855) в его знаменитой статье «Intensitas vis magneticae terrestris ad mensuram absolutam revocata» («Величина силы земного магнетизма в абсолютных мерах»), опубликованной в 1832 г. Гаусс заметил, что различные магнитные единицы измерения несоотносимы между

собой, по крайней мере в большей своей части, и поэтому предложил систему абсолютных единиц, основанную на трех основных единицах механики: секунде (единице времени), миллиметре (единице длины) и миллиграмме (единице массы). Через них он выразил все остальные физические единицы и придумал ряд измерительных приборов, в частности магнетометр для измерения в абсолютных единицах земного магнетизма. Работу Гаусса продолжил Вебер, который построил много собственных приборов и приборов, задуманных еще Гауссом. Постепенно, особенно благодаря работам Максвелла, проводившимся в созданной Британской ассоциацией специальной комиссии по измерениям, которая издавала ежегодные отчеты с 1861 по 1867 г., возникла идея создать единые системы мер, в частности систему электромагнитных и электростатических мер.

Мысли о создании таких абсолютных систем единиц были подробно изложены в историческом отчете за 1873 г. второй комиссии Британской ассоциации. Созванный в Париже в 1881 г. Международный конгресс впервые установил международные единицы измерения, присвоив каждой из них название в честь какого-нибудь великого физика. Большая часть этих названий сохраняется до сих пор: вольт, ом, ампер, джоуль и т. д. После

многих перипетий в 1935 г. была введена международная система Джорджи, или MKSQ, которая принимает за основные единицы метр, килограмм-массу, секунду и ом.

С «системами» единиц связаны «формулы размерностей», примененные впервые Фурье в его аналитической теории тепла (1822 г.) и распространенные Максвеллом, которым и установлены применяемые в них обозначения. Метрология прошлого века, основывавшаяся на стремлении объяснить все явления с помощью механических моделей, придавала большое значение формулам размерностей, в которых она хотела видеть не больше и не меньше как ключ к тайнам природы. При этом выдвигался ряд утверждений почти догматического характера. Так, чуть ли не обязательным догматом было требование, чтобы основных величин было непременно три. Но к концу века начали понимать, что формулы размерностей -- это чистая условность, вследствие чего интерес к теориям размерностей стал постепенно падать.

Заключение

О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году:

"Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников".

Список используемых источников

Дорфман Я. Г. Всемирная история физики . М., 1979 Ом Г. Определение закона, по которому металлы проводят контактное электричество. - В кн.: Классики физической науки. М., 1989

Энциклопедия Сто человек. Которые изменили мир. Ом.

Прохоров А. М. Физический энциклопедический словарь, М., 1983

Орир Дж. Физика , т. 2. М., 1981

Джанколи Д. Физика , т. 2. М., 1989

http://www.portal-slovo.ru/

http://www.polarcom.ru/~vvtsv/s_doc9c.html)

Размещено на Allbest.ru

Подобные документы

    История открытия Исааком Ньютоном "Закона всемирного тяготения", события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.

    презентация , добавлен 25.07.2010

    Изучение движения тела под действием постоянной силы. Уравнение гармонического осциллятора. Описание колебания математического маятника. Движение планет вокруг Солнца. Решение дифференциального уравнения. Применение закона Кеплера, второго закона Ньютона.

    реферат , добавлен 24.08.2015

    История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.

    презентация , добавлен 29.03.2011

    Изучение "Закона Архимеда", проведение опытов по определению архимедовой силы. Вывод формул для нахождения массы вытесненной жидкости и расчета плотности. Применение "Закона Архимеда" для жидкостей и газов. Методическая разработка урока по данной теме.

    конспект урока , добавлен 27.09.2010

    Биографические сведения о Ньютоне - великом английском физике, математике и астрономе, его труды. Исследования и открытия ученого, эксперименты по оптике и теории цвета. Первый вывод Ньютоном скорости звука в газе, основанный на законе Бойля-Мариотта.

    презентация , добавлен 26.08.2015

    Изучение причины магнитной аномалии. Методы определения горизонтальной составляющей напряженности магнитного поля Земли. Применение закона Био-Савара-Лапласа. Определение причины поворота стрелки после подачи напряжения на катушку тангенс–гальванометра.

    контрольная работа , добавлен 25.06.2015

    Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.

    презентация , добавлен 16.12.2014

    Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.

    реферат , добавлен 25.07.2010

    Проверка справедливости соотношений при параллельном соединении резисторов и первого закона Кирхгофа. Особенности сопротивления приемников. Методика расчета напряжения и тока для различных соединений. Сущность закона Ома для участка и для всей цепи.

    лабораторная работа , добавлен 12.01.2010

    Фундаментальные взаимодействия в природе. Взаимодействие электрических зарядов. Свойства электрического заряда. Закон сохранения электрического заряда. Формулировка закона Кулона. Векторная форма и физический смысл закона Кулона. Принцип суперпозиции.

Что же собой представляет закон Ома для полной цепи? Итак, это формула, в которой наглядно видна связь основных параметров электрической цепи: тока, напряжения и сопротивления. Для того чтобы понять суть закона, давайте для начала разберемся с некоторыми понятиями.

Что называют электрической цепью?

Электроцепь - это путь в электрической схеме, которым протекают заряды (электрические элементы, провода и другие устройства). Конечно же, ее началом считается источник электропитания. Под воздействием электромагнитного поля, фотонных явлений или химических процессов электрические заряды стремятся перейти на противоположную клемму этого источника электропитания.

Что такое электрический ток?

Направленное движение заряженных частиц при воздействии на них электрического поля либо других сторонних сил и называется электрическим током. Его направление определяется направленностью протонов (положительных зарядов). Ток будет постоянным, если с течением времени не изменилась ни его сила, ни направление.

История закона Ома

При проведении экспериментов с проводником физику Георгу Ому удалось установить, что сила тока пропорциональна напряжению, которое приложено к его концам:

I / sim U или I = G / U,

где G - электропроводность, а величина R = 1 / G - электрическое сопротивление проводника. Это открытие было установлено знаменитым немецким физиком в 1827 году.

Законы Ома

Для полной цепи определение будет следующим: сила тока в электроцепи равна отношению электродвижущей силы (далее ЭДС) источника к сумме сопротивлений:

I = E / (R + r),

где R - сопротивление внешней цепи, а r - внутреннее сопротивление Довольно часто формулировка закона вызывает затруднения, поскольку не всем знакомо понятие ЭДС, ее отличие от напряжения, далеко не все знают, что означает и откуда появляется внутреннее сопротивление. Для этого и нужны пояснения, ведь закон Ома для полной цепи имеет глубокий смысл.

Формулировку закона для участка цепи можно назвать прозрачной. Речь идет о том, что для ее понимания не нужны дополнительные разъяснения: ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению:

Смысл

Закон Ома для полной цепи прочно связан с законом сохранения энергии. Давайте предположим, что источник тока не имеет внутреннего сопротивления. Что же в таком случае должно происходить? Оказывается, если бы отсутствовало сопротивление, то во внешнюю цепь отдавался бы ток большей величины, соответственно и мощность была бы большей.

Теперь пришло время разобраться с понятием электродвижущей силы. Эта величина представляет собой разность между электрическими потенциалами на клеммах источника, но только без какой-либо нагрузки. В качестве примера давайте возьмем напор воды в приподнятом баке. Уровень воды будет находиться на месте, пока ее не начнут расходовать. При открытии крана уровень жидкости будет уменьшаться, поскольку нет подкачки. Попадая в трубу, вода испытывает сопротивление, то же самое происходит и с электрическими зарядами в проводе.

При отсутствии нагрузок, клеммы находятся в разомкнутом состоянии, получается, что ЭДС и напряжение совпадают по величине. Если же мы, к примеру, включим лампочку, цепь замкнется, а электродвижущая сила создаст напряжение в ней, выполняя полезную работу. Часть энергии из-за внутреннего сопротивления рассеется (это называют потерями).

В том случае, если сопротивление потребителя меньше внутреннего, то на источнике тока выделяется большая мощность. И тогда происходит падение ЭДС во внешней цепи, а на внутреннем сопротивлении теряется существенная часть энергии. Суть законов сохранения заключается в том, что природа не может взять больше, чем отдать.

Хорошо знакома сущность внутреннего сопротивления обитателям «хрущевок», у которых в квартирах имеются кондиционеры, а старая проводка так и не была заменена. Электрический счетчик вращается с бешеной скоростью, нагревается розетка и стена в тех местах, где проходят старые алюминиевые провода, в результате чего кондиционер еле-еле охлаждает воздух в помещении.

Природа r

«Полный Ом» (как привыкли закон называть электрики) плохо понимается, поскольку у внутреннего сопротивления источника, как правило, не электрическая природа. Давайте разберемся с этим на примере солевой батарейки. Известно, что электрическая батарея состоит из нескольких элементов, мы же будем рассматривать лишь один. Итак, у нас имеется готовая батарея «Крона», состоящая из 7 последовательно соединенных элементов.

Как же происходит выработка тока? В сосуд с электролитом поместим угольный стержень в марганцевой оболочке, состоящий из положительных электродов или анодов. Конкретно в данном примере угольный стержень выступает токосъемником. Металлический цинк составляют отрицательные электроды (катоды). В покупных батарейках, как правило, гелевый электролит. Жидкий используется очень редко. В качестве отрицательного электрода выступает цинковый стаканчик с электролитом и анодами.

Оказывается, секрет батарейки кроется в том, что у марганца электрический потенциал не так высок, как у цинка. Поэтому электроны притягиваются к катоду, а он, в свою очередь, отталкивает положительно заряженные ионы цинка к аноду. В результате катод постепенно расходуется. Пожалуй, каждый знает, что если севшую батарейку своевременно не заменить, то она может потечь. С чем же это связано? Все очень просто: через разъединенный стаканчик начнет вытекать электролит.

При движении зарядов на угольном стержне в марганцевой оболочке накапливаются положительные заряды, в то время как на цинке собираются отрицательные. Поэтому их и называют анодом и катодом, однако внутри батарейки выглядят иначе. Разность между зарядами и создаст электродвижущую силу Заряды прекратят движение в электролите, когда разность потенциалов материала электрода приравняется к величине ЭДС, а силы притяжения будут равны силам отталкивания.

Давайте теперь замкнем цепь: для этого достаточно подключить лампочку к батарейке. Проходя через искусственный источник света, заряды будут возвращаться каждый на свое место («дом»), а лампочка загорится. Внутри батарейки снова начнется движение электронов и ионов, поскольку заряды ушли наружу, и снова появилась притягивающая или отталкивающая сила.

На самом деле батарейка вырабатывает ток, почему и светится лампочка, происходит это за счет расхода цинка, превращающегося при этом процессе в иные химические соединения. Для извлечения чистого цинка, согласно закону сохранения энергии, нужно ее затратить, но не в электрическом виде (ровно столько же, сколько было отдано лампочке).

Теперь наконец-то мы можем разобраться с природой внутреннего сопротивления источника. В батарейке - это препятствие движению больших ионов. Движение электронов без ионов невозможно, потому что отсутствует сила притяжения.

В промышленных генераторах r появляется не только из-за электрического сопротивления обмоток, но и за счет внешних причин. Так, к примеру, в гидроэлектростанциях значение величины зависит от КПД турбины, сопротивления тока воды в водоводе, а также от потерь в механической передаче. Кроме того, некоторое влияние оказывает температура воды и то, насколько она заилена.

Переменный ток

Мы уже рассмотрели закон Ома для всей цепи для постоянного тока. Как же изменится формула при переменном токе? Прежде чем мы это узнаем, давайте охарактеризуем само понятие. Переменный ток - это движение электрически заряженных частиц, направление и значение которых изменяется с течением времени. В отличие от постоянного он сопровождается дополнительными факторами, порождающими новый вид сопротивления (реактивного). Свойственно оно конденсаторам и катушкам индуктивности.

Закон Ома для полной цепи для переменного тока имеет вид:

где Z - комплексное сопротивление, состоящее из активных и реактивных.

Не все так плохо

Закон Ома для полной цепи, помимо того что указывает на потери энергии, еще и подсказывает способы их устранения. Обычные электрики редко используют формулу нахождения комплексного сопротивления при наличии в схеме емкостей или индуктивностей. В большинстве случае ток измеряют клещами или специальным тестером. А когда известно напряжение, можно без затруднений вычислить комплексное сопротивление (если это действительно необходимо).

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

В результате нового эксперимента Ом пришел к формуле:

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи .

Закон Ома для участка цепи

Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Таким образом формула для расчета сопротивления проводника примет вид:

R = p ⋅ l / s

Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

I = U / R + r

Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )