Протокол HTTP. Все о протоколах передачи данных http и https

  • 26.08.2019

В статье раскрывается сущность работы протокола HTTP, кроме этого рассказывается о разных схемах его работы. Особое внимание уделяется сущности взаимодействия браузера и сервера.

Сущность работы HTTP

В первую очередь следует вникнуть в процесс взаимодействия сервера и пользовательского браузера. Чтобы отобразить на экране страницу сайта, браузер посылает сигнал с запросом на сервер, после этого с сервера приходит закодированное содержимое сайта, которое преобразуется в привычный вид сайта. Изучение этого процесса для веб-разработчика важно тем, что вникнув в суть процесса, можно ускорить работу быстродействия своего ресурса.

Обмен данными между сервером и браузером идет через HTTP протокол . Сам браузер с точки зрения программирования является HTTP клиентом , так как он пользуется этим протоколом при отправке запросов и для получения ответных данных.

Теперь раскроем суть понятия HTTP протокол

HTTP (англ. HyperText Transfer Protocol) – процесс, согласно которому проводятся все виды обмена информацией в всемирной сети Интернет.

Нас, как веб-разработчиков интересует только сам процесс обмена и вывода информации.

Синхронизированный протокол

Обмен данных осуществляется по схеме «клиент-сервер». В этой схеме клиентом называется устройство которое отправляет запрос на предоставление какой-либо информации, а сервером – система, которая принимает запрос, обрабатывает его и отправляет обратно клиенту ответ. Сам процесс взаимодействия можно разделить на два этапа: отправка HTTP-запроса и получение HTTP-ответа.

Запросы и ответы не имеют возможности передаваться одновременно, обязательно должна сохраняться синхронизация процесса. То есть передача ответа начнется только после завершения отправки запроса, работа по другому принципу невозможна. Чтобы было понятней, проведем аналогию с автобусом: вы не сможете им воспользоваться, пока он не приедет на остановку.

Как осуществляется запрос?

Процесс отправки запроса на сервер можно разбить на несколько составных частей:

  1. В первую очередь осуществляется DNS-запрос, который должен преобразовать адрес сайта из URI формата в IP (числовая форма URI-адреса). Именно такой формат адреса используется в Всемирной сети.
  2. После определения IP устанавливается связь между сервером и HTTP клиентом.
  3. Пересылка запроса.
  4. Задержка, в которую входит пересылка информации на сервер, ее обработка и отправка ответа на запрос. Программисты называют этот временной промежуток ожиданием ответа.
  5. Получение ответа на запрос.

Отследить все эти этапы можно с помощью панели веб-разработчика в браузере.

Из перечня всех этапов достаточно длительным является первый. В начале развития протокол HTTP использовал устаревшую схему обработки данных, которая предусматривала разрыв связи после того, как будет получен ответ на требуемый запрос. Это очень тормозило процесс работы в интернет-пространстве. Однако, после того как вышла новая стандартизация работы протокола HTTP версии 1.1, стал доступным новый режим работы соединения - keep-alive , согласно которому связь стала неразрывной. Вследствие этого после обработки первого запроса не требуется заново проходить первый этап, а сразу переходить ко второму.

Заметка

Связь сохраняется только в пределах одного веб-ресурса. При переходе на другой хост связь разрывается и первый этап снова становится составляющей частью процесса обработки запроса.

Наиболее длительным процессом в работе протокола является ожидание ответа. В этом случае модернизация спецификации никак не способствует сокращению времени обработки. Также на этот процесс не оказывает никакого влияния мощность устройства, через которое выводится ресурс. Компьютеры вступают в процесс только на завершающем этапе, когда ответ пришел и его нужно обработать.

Такая форма работы сводит шансы сайтов к нулю в конкурентной борьбе с десктопными приложениями. Отсюда выплывает и первый способ ускорить работу сайта – нужно минимизировать количество обращений к серверу, прописанных в коде.

Параллельное HTTP соединение

Чтобы решить проблему большого времени ожидания и прерывания связи с хостом, была создана параллельная схема связи между клиентом и сервером. Другими словами можно одновременно установить соединение с несколькими хостами. Разработчики стандарта HTTP 1.1 советуют подключать не более 2 каналов соединения одновременно. Но следует учитывать, что спецификация вышла на свет еще во времена древних динозавров. Сейчас браузеры легко поддерживают связь с 4 каналами одновременно по умолчанию, а если порыться в настройках клиента, то этот показатель можно увеличить до 8.

Каждый канал работает по старой схеме соединения, но рост их количества привел к существенным изменениям в плане времени загрузки ресурса.

Конвейерное HTTP соединение

С развитием технологий существенно начал развиваться и процесс взаимодействия сервера и браузера. Существенным прорывом в этом вопросе стало создание конвейерной схемы отправки запросов на сервер (в оригинале - HTTP pipelining ). Согласно этой схеме стало возможным по одному каналу отправлять несколько запросов, не дожидаясь ответа на них. В свою очередь сервер стал отправлять ответы на каждый запрос в порядке очереди.

Благодаря этому нововведению стало также возможным сокращение количества TCP/IP-пакетов . Таким образом, можно в один такой пакет поместить несколько HTTP-запросов . Вследствие этого улучшится не только работа протокола, но и повысится эффективность функционирования сети Интернет в целом.

Подводя итог

На сегодняшний день спецификация HTTP 1.1 является морально устаревшей сводкой правил. Над ее модернизацией ведутся работы уже достаточно давно, ярким примером этого являются HTTP-NG и SPDY . Развивать HTTP можно и силами усовершенствования языка программирования сайтов HTML5 . Все эти процессы позволят ускорить работу протокола, однако правило минимизации обращения к серверу, что позволит увеличить скорость работы ресурса, будет всегда актуальным.

HTTP - это протокол передачи гипертекста между распределёнными системами. По сути, http является фундаментальным элементом современного Web-а. Как уважающие себя веб разработчики, мы должны знать о нём как можно больше.

Давайте взглянем на этот протокол через призму нашей профессии. В первой части пройдёмся по основам, посмотрим на запросы/ответы. В следующей статье разберём уже более детальные фишки, такие как кэширование, обработка подключения и аутентификация.

Также в этой статье я буду, в основном, ссылаться на стандарт RFC 2616 : Hypertext Transfer Protocol -- HTTP/1.1.

Основы HTTP

HTTP обеспечивает общение между множеством хостов и клиентов, а также поддерживает целый ряд сетевых настроек.

В основном, для общения используется TCP/IP, но это не единственный возможный вариант. По умолчанию, TCP/IP использует порт 80, но можно заюзать и другие.

Общение между хостом и клиентом происходит в два этапа: запрос и ответ. Клиент формирует HTTP запрос, в ответ на который сервер даёт ответ (сообщение). Чуть позже, мы более подробно рассмотрим эту схему работы.

Текущая версия протокола HTTP - 1.1, в которой были введены некоторые новые фишки. На мой взгляд, самые важные из них это: поддержка постоянно открытого соединения, новый механизм передачи данных chunked transfer encoding, новые заголовки для кэширования. Что-то из этого мы рассмотрим во второй части данной статьи.

URL

Сердцевиной веб-общения является запрос, который отправляется через Единый указатель ресурсов (URL). Я уверен, что вы уже знаете, что такое URL адрес, однако для полноты картины, решил всё-таки сказать пару слов. Структура URL очень проста и состоит из следующих компонентов:

Протокол может быть как http для обычных соединений, так и https для более безопасного обмена данными. Порт по умолчанию - 80. Далее следует путь к ресурсу на сервере и цепочка параметров.

Методы

С помощью URL, мы определяем точное название хоста, с которым хотим общаться, однако какое действие нам нужно совершить, можно сообщить только с помощью HTTP метода. Конечно же существует несколько видов действий, которые мы можем совершить. В HTTP реализованы самые нужные, подходящие под нужды большинства приложений.

Существующие методы:

GET : получить доступ к существующему ресурсу. В URL перечислена вся необходимая информация, чтобы сервер смог найти и вернуть в качестве ответа искомый ресурс.

POST : используется для создания нового ресурса. POST запрос обычно содержит в себе всю нужную информацию для создания нового ресурса.

PUT : обновить текущий ресурс. PUT запрос содержит обновляемые данные.

DELETE : служит для удаления существующего ресурса.

Данные методы самые популярные и чаще всего используются различными инструментами и фрэймворками. В некоторых случаях, PUT и DELETE запросы отправляются посредством отправки POST, в содержании которого указано действие, которое нужно совершить с ресурсом: создать, обновить или удалить.

Также HTTP поддерживает и другие методы:

HEAD : аналогичен GET. Разница в том, что при данном виде запроса не передаётся сообщение. Сервер получает только заголовки. Используется, к примеру, для того чтобы определить, был ли изменён ресурс.

TRACE : во время передачи запрос проходит через множество точек доступа и прокси серверов, каждый из которых вносит свою информацию: IP, DNS. С помощью данного метода, можно увидеть всю промежуточную информацию.

OPTIONS : используется для определения возможностей сервера, его параметров и конфигурации для конкретного ресурса.

Коды состояния

В ответ на запрос от клиента, сервер отправляет ответ, который содержит, в том числе, и код состояния. Данный код несёт в себе особый смысл для того, чтобы клиент мог отчётливей понять, как интерпретировать ответ:

1xx: Информационные сообщения

Набор этих кодов был введён в HTTP/1.1. Сервер может отправить запрос вида: Expect: 100-continue, что означает, что клиент ещё отправляет оставшуюся часть запроса. Клиенты, работающие с HTTP/1.0 игнорируют данные заголовки.

2xx: Сообщения об успехе

Если клиент получил код из серии 2xx, то запрос ушёл успешно. Самый распространённый вариант - это 200 OK. При GET запросе, сервер отправляет ответ в теле сообщения. Также существуют и другие возможные ответы:

  • 202 Accepted : запрос принят, но может не содержать ресурс в ответе. Это полезно для асинхронных запросов на стороне сервера. Сервер определяет, отправить ресурс или нет.
  • 204 No Content : в теле ответа нет сообщения.
  • 205 Reset Content : указание серверу о сбросе представления документа.
  • 206 Partial Content : ответ содержит только часть контента. В дополнительных заголовках определяется общая длина контента и другая инфа.

3xx: Перенаправление

Своеобразное сообщение клиенту о необходимости совершить ещё одно действие. Самый распространённый вариант применения: перенаправить клиент на другой адрес.

  • 301 Moved Permanently : ресурс теперь можно найти по другому URL адресу.
  • 303 See Other : ресурс временно можно найти по другому URL адресу. Заголовок Location содержит временный URL.
  • 304 Not Modified : сервер определяет, что ресурс не был изменён и клиенту нужно задействовать закэшированную версию ответа. Для проверки идентичности информации используется ETag (хэш Сущности - Enttity Tag);

4xx: Клиентские ошибки

Данный класс сообщений используется сервером, если он решил, что запрос был отправлен с ошибкой. Наиболее распространённый код: 404 Not Found. Это означает, что ресурс не найден на сервере. Другие возможные коды:

  • 400 Bad Request : вопрос был сформирован неверно.
  • 401 Unauthorized : для совершения запроса нужна аутентификация. Информация передаётся через заголовок Authorization.
  • 403 Forbidden : сервер не открыл доступ к ресурсу.
  • 405 Method Not Allowed : неверный HTTP метод был задействован для того, чтобы получить доступ к ресурсу.
  • 409 Conflict : сервер не может до конца обработать запрос, т.к. пытается изменить более новую версию ресурса. Это часто происходит при PUT запросах.

5xx: Ошибки сервера

Ряд кодов, которые используются для определения ошибки сервера при обработке запроса. Самый распространённый: 500 Internal Server Error. Другие варианты:

  • 501 Not Implemented : сервер не поддерживает запрашиваемую функциональность.
  • 503 Service Unavailable : это может случиться, если на сервере произошла ошибка или он перегружен. Обычно в этом случае, сервер не отвечает, а время, данное на ответ, истекает.

Форматы сообщений запроса/ответа

На следующем изображении вы можете увидеть схематично оформленный процесс отправки запроса клиентом, обработка и отправка ответа сервером.

Давайте посмотрим на структуру передаваемого сообщения через HTTP:

Message = *() CRLF [] = Request-Line | Status-Line = Field-Name ":" Field-Value

Между заголовком и телом сообщения должна обязательно присутствовать пустая строка. Заголовков может быть несколько:

Тело ответа может содержать полную информацию или её часть, если активирована соответствующая возможность (Transfer-Encoding: chunked). HTTP/1.1 также поддерживает заголовок Transfer-Encoding.

Общие заголовки

Вот несколько видов заголовков, которые используются как в запросах, так и в ответах:

General-header = Cache-Control | Connection | Date | Pragma | Trailer | Transfer-Encoding | Upgrade | Via | Warning

Что-то мы уже рассмотрели в этой статье, что-то подробней затронем во второй части.

Заголовок via используется в запросе типа TRACE, и обновляется всеми прокси-серверами.

Заголовок Pragma используется для перечисления собственных заголовков. К примеру, Pragma: no-cache - это то же самое, что Cache-Control: no-cache. Подробнее об этом поговорим во второй части.

Заголовок Date используется для хранения даты и времени запроса/ответа.

Заголовок Upgrade используется для изменения протокола.

Transfer-Encoding предназначается для разделения ответа на несколько фрагментов с помощью Transfer-Encoding: chunked. Это нововведение версии HTTP/1.1.

Заголовки сущностей

В заголовках сущностей передаётся мета-информация контента:

Entity-header = Allow | Content-Encoding | Content-Language | Content-Length | Content-Location | Content-MD5 | Content-Range | Content-Type | Expires | Last-Modified

Все заголовки с префиксом Content- предоставляют информацию о структуре, кодировке и размере тела сообщения.

Заголовок Expires содержит время и дату истечения сущности. Значение “never expires” означает время + 1 код с текущего момента. Last-Modified содержит время и дату последнего изменения сущности.

С помощью данных заголовков, можно задать нужную для ваших задач информацию.

Формат запроса

Запрос выглядит примерно так:

Request-Line = Method SP URI SP HTTP-Version CRLF Method = "OPTIONS" | "HEAD" | "GET" | "POST" | "PUT" | "DELETE" | "TRACE"

SP - это разделитель между токенами. Версия HTTP указывается в HTTP-Version. Реальный запрос выглядит так:

GET /articles/http-basics HTTP/1.1 Host: www.articles.com Connection: keep-alive Cache-Control: no-cache Pragma: no-cache Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Список возможных заголовков запроса:

Request-header = Accept | Accept-Charset | Accept-Encoding | Accept-Language | Authorization | Expect | From | Host | If-Match | If-Modified-Since | If-None-Match | If-Range | If-Unmodified-Since | Max-Forwards | Proxy-Authorization | Range | Referer | TE | User-Agent

В заголовке Accept определяется поддерживаемые mime типы, язык, кодировку символов. Заголовки From, Host, Referer и User-Agent содержат информацию о клиенте. Префиксы If- предназначены для создания условий. Если условие не прошло, то возникнет ошибка 304 Not Modified.

Формат ответа

Формат ответа отличается только статусом и рядом заголовков. Статус выглядит так:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

  • HTTP версия
  • Код статуса
  • Сообщение статуса, понятное для человека

Обычный статус выглядит примерно так:

HTTP/1.1 200 OK

Заголовки ответа могут быть следующими:

Response-header = Accept-Ranges | Age | ETag | Location | Proxy-Authenticate | Retry-After | Server | Vary | WWW-Authenticate

  • Age время в секундах, когда сообщение было создано на сервере.
  • ETag MD5 сущности для проверки изменений и модификаций ответа.
  • Location используется для перенаправления и содержит новый URL адрес.
  • Server определяет сервер, где было сформирован ответ.

Думаю, на сегодня теории достаточно. Теперь давайте взглянем на инструменты, которыми мы можем пользоваться для мониторинга HTTP сообщений.

Инструменты для определения HTTP трафика

Существует множество инструментов для мониторинга HTTP трафика. Вот несколько из них:

Наиболее часто используемый - это Chrome Developers Tools:

Если говорить об отладчике, можно воспользоваться Fiddler :

Для отслеживания HTTP трафика вам потребуется curl, tcpdump и tshark.

Библиотеки для работы с HTTP - jQuery AJAX

Поскольку jQuery очень популярен, в нём также есть инструментарий для обработки HTTP ответов при AJAX запросах. Информацию о jQuery.ajax(settings) можете найти на официальном сайте .

Передав объект настроек (settings), а также воспользовавшись функцией обратного вызова beforeSend, мы можем задать заголовки запроса, с помощью метода setRequestHeader().

$.ajax({ url: "http://www.articles.com/latest", type: "GET", beforeSend: function (jqXHR) { jqXHR.setRequestHeader("Accepts-Language", "en-US,en"); } });

Если хотите обработать статус запроса, то это можно сделать так:

$.ajax({ statusCode: { 404: function() { alert("page not found"); } } });

Итог

Вот такой вот он, тур по основам протокола HTTP. Во второй части будет ещё больше интересных фактов и примеров.

Позволяющий получать различные ресурсы, например HTML-документы. Протокол HTTP лежит в основе обмена данными в Интернете. HTTP является протоколом клиент-серверного взаимодействия, что означает инициирование запросов к серверу самим получателем, обычно веб-браузером. Полученный итоговый документ будет реконструирован из различных субдокументов, например, из отдельно полученного текста, описания структуры документа, изображений, видео-файлов, скриптов и многого другого.

Клиенты и серверы взаимодействуют, обмениваясь индивидуальными сообщениями (а не потоком данных). Сообщения, отправленные клиентом, обычно веб-браузером, называются запросами , а сообщения, отправленные сервером, называются ответами .

Хотя HTTP был разработан еще в начале 1990-х годов, за счет своей расширяемости в дальнейшем он все время совершенствовался. HTTP является протоколом прикладного уровня, который чаще всего использует возможности другого протокола - TCP (или TLS - защищённый TCP) - для пересылки своих сообщений, однако любой другой надежный транспортный протокол теоретически может быть использован для доставки таких сообщений. Благодаря своей расширяемости, он используется не только для получения клиентом гипертекстовых документов либо изображений и видео, но и для передачи контента серверам, например, с помощью HTML-форм. HTTP также может быть использован для получения только частей документа с целью обновления веб-страницы по запросу.

Компоненты систем, основанных на HTTP

HTTP - это клиент-серверный протокол, то есть запросы отправляются какой-то одной стороной - юзер-агентом (user-agent) (либо прокси вместо него). Чаще всего в качестве юзер-агента выступает веб-браузер, но им может быть кто угодно, например, робот, путешествующий по Сети для пополнения и обновления данных индексации веб-страниц для поисковых систем.

Каждый индивидуальный запрос (англ. request ) отправляется серверу, который обрабатывает его и возвращает ответ (англ. response ). Между этими запросами и ответами существуют многочисленные посредники, называемые прокси , которые выполняют различные операции и работают как шлюзы или кэш , например.

В реальности, между браузером и сервером гораздо больше различных устройств-посредников, которые играют какую-либо роль в обработке запроса: роутеры, модемы и так далее. Благодаря тому, что Сеть построена на основе системы уровней (слоёв) взаимодействия, эти посредники "спрятаны" на сетевом и транспортном уровнях. В этой системе уровней HTTP занимает самый верхний уровень, который называется "прикладным" (или "уровнем приложений"). Знания об уровнях сети, таких как представительский, сеансовый, транспортный, сетевой, канальный и физический, имея важное значение для понимания работы сети и диагностики возможных проблем, не требуются для описания и понимания HTTP.

Клиент: юзер-агент

Юзер-агент - это любой инструмент или устройство, действующие от лица пользователя. Эта роль преимущественно принадлежит веб-браузеру; в некоторых случаях юзер-агентами выступают программы, которые используются инженерами и веб-разработчиками для отладки своих приложений.

Браузер всегда является той сущностью, которая инициирует запрос. Сервер никогда этого не делает (хотя за многие годы существования сети были созданы механизмы, которые могут симулировать запросы со стороны сервера).

Чтобы отобразить веб страницу, браузер отправляет начальный запрос для получения HTML-документа этой страницы. После этого браузер анализирует этот документ, и запрашивает дополнительные файлы, необходимые для отбражения содержания веб-страницы (исполняемые скрипты, информацию о макете страницы - CSS таблицы стилей, дополнительные ресурсы в виде изображений и видео-файлов). Далее браузер соединяет все эти ресурсы для отображения их пользователю в виде единого документа - веб-страницы. Скрипты, выполняемые самим браузером, могут получать по сети дополнительные ресурсы на последующих этапах обработки веб-страницы, и браузер соотвествующим образом обновляет представление этой страницы для пользователя.

Веб-страница является гипертекстовый документом. Это означает, что некоторые части отображаемого текста являются ссылками, которые могут быть активированы (обычно нажатием кнопки мыши) с целью получения и соответственно отображения новой веб-страницы. Это позволяет пользователю направлять своего юзер-агента, осуществляя навигацию по Сети. Браузер транслирует эти "направления движения" в HTTP-запросы и в дальнейшем интерпретирует HTTP-ответы в понятном для пользователя виде.

Веб-сервер

На другой стороне коммуникационного канала расположен сервер, который обслуживает (англ. serve ) пользователя, предоставляя ему документы по запросу. С точки зрения конечного пользователя, сервер всегда является некой одной виртуальной машиной, полностью или частично генерирующей документ, хотя фактически он может быть группой серверов, между которыми балансируется нагрузка, то есть перераспределяются запросы различных пользователей, либо сложным программным обеспечением, опрашивающим другие компьютеры (такие как кэширующие серверы, серверы баз данных, серверы приложений электронной коммерции и другие).

Сервер не обязательно расположен на одной машине, и наоборот - несколько серверов могут быть расположены (хоститься) на одной и той же машине. В соответствии с версией HTTP/1.1 и имея Host заголовок, они даже могут делить тот же самый IP-адрес.

Прокси

Между веб-браузером и сервером находятся большое количество сетевых узлов передающих HTTP сообщения. Из за слоистой структуры, большинство из них оперируют также на транспортном сетевом или физическом уровнях, становясь прозрачным на HTTP слое и потенциально снижая производительность. Эти операции на уровне приложений называются прокси . Они могут быть прозрачными, или нет, (изменяющие запросы не пройдут через них), и способны исполнять множество функций:

  • caching (кеш может быть публичным или приватными, как кеш браузера)
  • фильтрация (как сканирование антивируса, родительский контроль, …)
  • выравнивание нагрузки (позволить нескольким серверам обслуживать разные запросы)
  • аутотентификация (контролировать доступом к разным ресурсам)
  • протоколирование (разрешение на хранение истории операций)

Основные аспекты HTTP

HTTP - прост

Даже с большей сложностью, введенной в HTTP/2 путем инкапсуляции HTTP-сообщений в фреймы, HTTP, как правило, прост и удобен для восприятия человеком. HTTP-сообщения могут читаться и пониматься людьми, обеспечивая более легкое тестирование разработчиков и уменьшенную сложность для новых пользователей.

HTTP - расширяемый

Введенные в HTTP/1.0 HTTP-заголовки сделали этот протокол легким для расширения и экспериментирования. Новая функциональность может быть даже введена простым соглашением между клиентом и сервером о семантике нового заголовка.

HTTP не имеет состояния, но имеет сессию

HTTP не имеет состояния: не существует связи между двумя запросами, которые последовательно выполняются по одному соединению. Из этого немедленно следует возможность проблем для пользователя, пытающегося взаимодействовать с определенной страницей последовательно, например, при использовании корзины в электронном магазине. Но хотя ядро HTTP не имеет состояния, куки позволяют использовать сессии с сохранением состояния. Используя расширяемость заголовков, куки добавляются к рабочему потоку, позволяя сессии на каждом HTTP-запросе делиться некоторым контекстом, или состоянием.

HTTP и соединения

Содинение управляется на транспортном уровне, и потому принципиально выходит за границы HTTP. Хотя HTTP не требует, чтобы базовый транспортного протокол был основан на соединениях, требуя только надёжность , или отсутствие потерянных сообщений (т.е. как минимум представление ошибки). Среди двух наиболее распространенных транспортных протоколов Интернета, TCP надёжен, а UDP -- нет. HTTP впоследствии полагается на стандарт TCP, являющийся основанным на соединениях, несмотря на то, что соединение не всегда требуется.

HTTP/1.0 открывал TCP-соединение для каждого обмена запросом/ответом, имея два важных недостатка: открытие соединения требует нескольких обменов сообщениями, и потому медленно, хотя становится более эффективным при отправке нескольких сообщений, или при регулярной отправке сообщений: теплые соединения более эффективны, чем холодные .

Для смягчения этих недостатков, HTTP/1.1 предоставил конвеерную обработку (которую оказалось трудно реализовать) и устойчивые соединения: лежащее в основе TCP соединение можно частично контролировать через заголовок Connection . HTTP/2 сделал следующий шаг, добавив мультиплексирование сообщений через простое соединение, помогающее держать соединение теплым и более эффективным.

Проводятся эксперименты по разработке лучшего транспортного протокола, более подходящего для HTTP. Например, Google эксперементирует с QUIC , которая основана на UDP, для предоставления более надёжного и эффективного транспортного протокола.

Чем можно управлять через HTTP

Естественная расширяемость HTTP со временем позволила большее управление и функциональность Сети. Кэш и методы аутентификации были ранними функциями в истории HTTP. Способность ослабить первоначальные ограничения, напротив, была добавлена в 2010-е.

Ниже перечислены общие функции, управляемые с HTTP.


  • Сервер может инструктировать прокси и клиенты: что и как долго кэшировать. Клиент может инструктировать прокси промежуточных кэшей игнорировать хранимые документы.
  • Ослабление ограничений источника
    Для предотвращения шпионских и других, нарушающих приватность, вторжений, веб-браузер обчеспечивает строгое разделеление между веб-сайтами. Только страницы из того же источника могут получить доступ к информации на веб-странице. Хотя такие ограничение нагружают сервер, заголовки HTTP могут ослабить строгое разделение на стороне сервера, позволяя документу стать частью информации с различных доменов (по причинам безопасности).
  • Аутентификация
    Некоторые страницы доступны только специальным пользователям. Базовая аутентификация может предоставляться через HTTP, либо через использование заголовка WWW-Authenticate и подобных ему, либо с помощью настройки спецсессии, используя куки.
  • Прокси и тунелирование
    Серверы и/или клиенты часто располагаются в интранете, и скрывают свои истинные IP-адреса от других. HTTP запросы идут через прокси для пересечения этого сетевого барьера. Не все прокси -- HTTP прокси. SOCKS-протокол, например, оперирует на более низком уровне. Другие, как, например, ftp, могут быть обработаны этими прокси.
  • Сессии
    Использование HTTP кук позволяет связать запрос с состоянием на сервере. Это создает сессию, хотя ядро HTTP -- протокол без состояния. Это полезно не только для корзин в интернет-магазинах, но также для любых сайтов, позволяющих пользователю настроить выход.

HTTP поток

Когда клиент хочет взаимодействовать с сервером, являясь конечным сервером или промежуточным прокси, он выполняет следующие шаги:

  1. Открытие TCP соединения: TCP-соедиенение будет использоваться для отправки запроса или запросов, и получения ответа. Клиент может открыть новое соединение, переиспользовать существующее, или открыть несколько TCP-соединений к серверу.
  2. Отправка HTTP-сообщения: HTTP-собщения (до HTTP/2) -- человеко-читаемо. Начиная с HTTP/2, простые сообщения инкапсилуруются во фреймы, делая невозможным их чтения напрямую, но принципиально остаются такими же. GET / HTTP/1.1 Host: сайт Accept-Language: fr
  3. Читает ответ от сервера: HTTP/1.1 200 OK Date: Sat, 09 Oct 2010 14:28:02 GMT Server: Apache Last-Modified: Tue, 01 Dec 2009 20:18:22 GMT ETag: "51142bc1-7449-479b075b2891b" Accept-Ranges: bytes Content-Length: 29769 Content-Type: text/html
  4. Закрывает или переиспользует соединение для дальнейщих запросов.

Если активирован HTTP-конвеер, несколько запросов могут быть отправлены без ожидания получения первого ответа целиком. HTTP-конвеер тяжело внедряется в существующие сети, где старые куски ПО сосуществуют с современными версиями. HTTP-конвеер был заменен в HTTP/2 на более надежные мультиплексивные запросы во фрейме.

HTTP сообщения

HTTP/1.1 и более ранние HTTP сообщения человеко-читаемы. В версии HTTP/2 эти сообщения встроены в новую бинарную структуру, фрейм, позволяющий оптимизации, такие как компрессия заголовков и мультиплексирование. Даже если часть оригинального HTTP сообщения отправлена в этой версии HTTP, семантика каждого сообщения не изменяется и клиент воссоздаёт (виртуально) оригинальный HTTP-запрос. Это также полезно для понимания HTTP/2 сообщений в формате HTTP/1.1.

Основной протокол для страниц в интернете — HTTP. Используется этот протокол каждый раз, когда вы заходите на новый сайт, когда на сайте отображается текст, картинка, когда вы нажимаете ссылки.

Весь интернет основывается на HTTP, пусть большая часть пользователей даже и не подозревают, насколько популярен в их привычной жизни HTTP.

HTTP — протокол, по которому передается гипертекст (HyperText Transfer Protocol).

На этом протоколе строится взаимодействие вашего браузера и сервера с информацией. Благодаря его простоте, браузер и сервер соединяются очень быстро. Но нам не обязательно вникать во все подробности работы протокола, мы объясним лишь базовый принцип его работы.

В Интернете можно пользоваться множеством протоколов, HTTP — лишь один многих, у которого собственные задачи с целями.

Все настолько просто, что вы уже знакомы с программным обеспечением, необходимым для работы с HTTP — это ваш браузер.

Независимо от названия браузера, к адресной строке всегда по умолчанию добавляется название протокола: «http://». Вы можете и не видеть эту надпись, если браузер ее скрывает. Но стоит только скопировать название сайта, вместе с ним в нужном месте вставится и протокол HTTP.

- Что значит приставка «http://» перед названием сайта?
- Это значит, что вы обращаетесь к ресурсу по HTTP протоколу.

Зачем создали протокол HTTP

С его помощью передают гипертекстовые документы, а проще говоря — страницы на нужных нам сайтах.

Принимает веб-страницы клиент (браузер), а отдаёт страницы сервер. Эта технология так и называется — клиент-серверная технология.

Благодаря HTTP стало возможно передавать веб-страницы в интернете. А что же содержится в самих страницах, которые пересылает нам сервер? Обыкновенный HTML-код, который поступает в браузер, которому остается только верно интерпретировать полученную информацию и показать вам готовый сайт.

Еще в 2006 году практически половина HTTP-трафика Северной Америки складывалась из потокового звука и видео.

Как работает HTTP

  1. Браузер отправляет запрос, запрашивая нужную страницу сервера.
  2. Сервер получает запрос и начинает искать страницу.
  3. Браузер получает ответ от сервера с результатами запроса:
    • Код запрашиваемой страницы и служебная информация — если страница найдена.
    • Код ошибки и служебная информация в случае сбоя.

Когда браузер дает запрос на файл, запрос содержит специальную команду HTTP. Если запрашиваемый файл и правда есть на сервере, файл отправляется. А вот принимающей странице уже стоит решить, показать файл на экране, сохранить на диск или сделать с результатом что-то еще.

Чтобы идентифицировать ресурсы в сети, протокол HTTP пользуется глобальными URI. Отличие HTTP от других протоколов — он не сохраняет свое состояние. То есть не сохраняется состояние между парой «запрос-ответ».

HTTP — это не единственный протокол, который используют в Интернете. Также используются:

  • FTP (File Transfer Protocol) — протокол передачи файлов.
  • POP (Post Office Protocol) и SMTP (Simple Mail Transport Protocol) — для обмена сообщениями электронной почты.
  • SHTTP (Secure Hypertext Transfer Protocol) — шифрованная разновидность HTTP. Информация, которая передается по этому протоколу, кодируется. Обычно безопасность важна в случае обмена конфиденциальными данными.

И другие протоколы, у которых есть одно хорошее свойство — все они работают незаметно для нас с вами.

Март 1991 года — Тим Бернерс-Ли предложил использовать HTTP.

Именно Бернерс-Ли разработал все первое, что связано с Интернетом: браузер, сервер, гиперссылки, первый сайт (info.cern.ch) Как выглядел первый сайт, можно увидеть по ссылке.

Версии HTTP со временем совершенствуются, популярной стала версия HTTP 1.1, которая позволяет на долгое время оставлять открытым соединение сервера с браузером, что сделало протокол более эффективным.

В 2015 году появился HTTP/2, который стал бинарным, изменились способы, которыми информацию разбивали на фрагменты.

Безопасность протокола HTTP

Сам HTTP не подразумевает шифрование информации. Но есть расширение для протокола, которое умеет упаковывать данные в протокол SSL или TLS.

HTTPS (S — Secure) — популярное решение, которое не позволяет перехватывать передаваемую информацию и защитить информацию от MITM- атак «man-in-the-middle» или атака посредника.

MITM по сути испорченный телефон, в котором информация подменяется намеренно. О подмене не знает ни клиент ни сервер.

Из чего состоит HTTP

Мы много упоминали, что сервер и клиент отправляют и получают запросы. Так что же содержится в этих запросах? Каждое сообщение HTTP состоит из трех частей:

  1. Стартовая строка, которая определяет тип сообщения.
  2. Заголовки, с помощью которых характеризуют тело сообщения.
  3. Тело сообщения, где содержатся уже нужные данные.

Благодаря особенностям HTTP, сумели создать поисковые машины, форумы, интернет-магазины. В интернет пришла коммерция, начали появляться интернет провайдеры и другие компании, деятельность которых проходит в сети Интернет. А все благодаря протоколу HTTP, с которым вы теперь хорошо знакомы.

Вы уже наверное немало раз слышали о том, что Google отдает предпочтение сайтам, которые используют безопасный протокол соединения HTTPS. Правда ли это? В данной статье рассмотрим протоколы HTTP и HTTPS , какая разница между ними и стоит ли вообще переходить вашему сайту на HTTPS.

HTTP – используется для получения данных с веб-сайтов в качестве прикладного протокола. HTTPS – расширение для протокола HTTP, которое имеет поддержку по протоколам SSL и TLS. Как видим HTTP и HTTPS это не разные протоколы, а HTTPS это только надстройка для шифрования, применяется для защищенного процесса обмена информацией и авторизации серверов, которым необходима дополнительная безопасность.

Протокол передачи гипертекста (HTTP) прежде всего используется для доступа к HTML-страницам. Протокол не сохраняет информации о предыдущей сессии пользователя, поэтому он посылает меньше данных и соответственно работает быстрее.

Безопасный HTTPS применяется для авторизации и защищенных транзакций. Он работает идентично HTTP, но использует дополнительный криптографический уровень защиты данных – протокол SSL. С технической стороны оба протокола применяют два разных порта для коммуникации: в отличии от HTTP, безопасный аналог применяет 443 TCP-порт. Благодаря SSL обмен данными производится на защищенном уровне, а это очень важно для сайтов, которые хранят конфиденциальную информацию клиентов, например, данные банковских карт.

Совсем не странно, что поисковая система Google более доверительно относится к сайтам, которые беспокоятся о безопасности посетителей, поэтому проекты с HTTPS ранжируются выше. Переход на “безопасный режим” будет полезен даже сайтам, которым не нужно беспокоиться о личных данных пользователей. Такие сайты получат преимущество в выдаче и соответственно привлекут еще больше посетителей на свои страницы.

Какие технические аспекты положены в основу TLS (Transport Layer Security) :

  • кодирование информации для повышения безопасности ее передачи;
  • сохранность целосности данных, которые не изменяются и не искажаются при передачи;
  • аутинтификация, которая гарантирует, что посетитель попадает именно на тот сайт, который ему необходим.

Хотя поисковик и ранжирует сайты с HTTPS выше, но пока этот фактор имеет малый вес по сравнению с другими, на которых он также обращает внимание, например, качественный контент.

Преимущества при переходе на HTTPS с точки зрения :

  1. сохранение защищенных реферальных данных пользователя;
  2. повышение позиций в поиске (хотя данный фактор пока мало весом, но в будущем он обязательно повысит свое значение);
  3. конфиденциальность: шифрование всех коммуникаций, недоступность для третьих лиц, защита личной информации.

Но кроме всех выше перечисленных преимуществ, есть и недостатки такого перехода, которых опасаются многие веб-мастера. К примеру, если не придерживаться советов специалистов, то переход на HTTPS немного снижает скорость загрузки сайта. Кроме того сайт на HTTP и на HTTPS для поисковика два разных ресурса, поэтому нужно время для того, чтобы система поняла, что это один и тот же сайт и склеила их. Плюс ко всему, чтобы перейти на безопасный режим нужно покупать SSL сертификат, ценовой диапазон которого зависит от его вида.

Для того, чтобы избежать проблем при переходе, необходимо придерживаться следующих правил:

  • выбирайте необходимый для вашего ресурса сертификат: для одного домена, мульти или wildcard;
  • применяйте сертификаты с 2048-битными ключами;
  • не закрывайте от индексации HTTPS-страницы в файле robots.txt;
  • по максимуму старайтесь не использовать noindex в метатеге «robots»;
  • анализируйте переходы с HTTP на HTTPS в программе Google Webmaster Tools;
  • применяйте относительные URL без указания протокола для всех остальных доменов и тп.

Если придерживаться данных советов, можно безболезненно перейти на безопасный протокол HTTPS. Поверьте, Ваши посетители и клиенты это оценят. Ведь сайту, который беспокоится о сохранности данных своих пользователей доверяют намного больше. Переходи на HTTPS: Устанавливаем SSL бесплатно! Детали .

В компании HyperHost Вы сможете приобрести необходимый для вашего онлайн проекта SSL-сертификат и тем самым осуществить переход на HTTPS. Наша техническая поддержка поможет сделать все необходимые настройки и ответит на все интересующие Вас вопросы. О преимуществах SSL-сертификата и его видах можете ознакомиться в предыдущей статье: . Преимущества перехода на HTTPS описаны более детально .

5075 раз(а) 5 Сегодня просмотрено раз(а)