Магнетрон для микроволновой печи устройство описание. Как проверить магнетрон в микроволновке. Как работает микроволновая печь: ее разновидности

  • 29.10.2019

К сожалению, у всякой техники есть свой срок службы, и микроволновые печи не являются исключением. Порой мы сталкиваемся с тем, что на разогрев блюда начинает уходить больше времени, чем обычно. А порой устройство внешне работает исправно, но еда так и остается холодной. Часто причиной такого поведения микроволновки, является неисправный магнетрон. Где же находится эта деталь и как ее проверить?

Микроволновки могут сильно различаться между собой, но есть одна деталь, без которой не сможет работать ни одна существующая модель, будь то Самсунг, Филипс или другая известная марка.

Именно от качественного магнетрона и зависит вся .

Из чего же состоит эта деталь?

  1. Для излучения волн прибор оснащен специальной антенной.
  2. Для изоляции антенны от рабочей поверхности используется специальный цилиндр, изготовленный из качественного металла.
  3. За распределение магнитных полей отвечает особый магнитопровод.
  4. А вот за распределение потоков отвечают магниты.
  5. Для того чтобы деталь не перегревалась, важной комплектующей для нее является радиатор.
  6. Чтобы излучения микроволновой печи не приносили вреда, магнетрон оснащен специальными фильтрами.

Такая конструкция как магнетрон, понятна только профессионалам. Ремонтировать ее самостоятельно – процесс трудоемкий и неблагодарный. Если вы уверены в том, что проблема именно в нем, лучше обратиться к специалисту.

Какие проблемы могут возникнуть

Изучив устройство магнетрона, становится понятно, что из строя выходит не вся деталь. Возможно, не работает какая-то из его частей, что и необходимо установить. Существует несколько распространенных причин поломки. Как проверить магнетрон и узнать, где именно кроется неисправность?

  1. Одной из важных составляющих магнетрона является специальный колпачок, который сохраняет вакуумность трубы. Если проблема в нем, то заменить его не составит труда.
  2. Если деталь перегревается, то значит, из строя вышел радиатор.
  3. Из-за перегрева может произойти обрыв нити накаливания. Для диагностики этой неисправности потребуется специальный тестер. В рабочем состоянии нить показывает напряжение 5-7 Ом. Если она вышла из строя, то напряжение упадет до 2-3 Ом, если же произошел обрыв, то прибор покажет бесконечность.
  4. Поломка фильтра проверяется тестером. Если деталь исправна, прибор покажет бесконечность, в случае поломки – вы увидите численное сопротивление.

Существуют поломки, которые вы не сможете диагностировать самостоятельно. Для этого необходимо обладать не только знаниями, но и специальным оборудованием.

Как проверить магнетрон

Цена замены этой детали настолько высока, что многие предпочитают приобрести новую микроволновку, а не ремонтировать старую. Прежде чем отправить испортившийся прибор на помойку, необходимо убедиться в том, что проблема именно в этой дорогостоящей детали. Для этого необходимо проделать определенные манипуляции:

  1. Первое, что вы должны сделать, чтобы проверить магнетрон – это отключить питание в микроволновке, выключив устройство из сети.
  2. Осмотрите внутренние стенки микроволновой печи. В случае неисправности магнетрона, вы обнаружите оплавленные участки, потемневшие или сгоревшие стены.
  3. Если внешних признаков нет, необходимо произвести диагностику тестером.
  4. Проверьте, исправен ли предохранитель.

Основными признаками того, что магнетрон вышел из строя, являются странные звуки, дым или . После таких внешних проявлений микроволновка перестает корректно работать.

Устанавливаем новую деталь

Если у вас дорогостоящая модель СВЧ, то разумней все же заменить поломавшуюся деталь, а не покупать новую печку. Конечно, лучше всего обратиться в сервисный центр, но можно попробовать произвести замену самостоятельно.

Покупая новый магнетрон, обратите внимание на то, чтобы совпадала мощность, соответствовали контакты и отверстия для крепления. В противном случае вы рискуете приобрести бесполезную деталь.

Подсоединить новый магнетрон не составляет труда, так как он имеет всего два основных контакта . Подробная информация обо всех обозначениях есть на схеме, главное, проверить соответствие следующих частей устройства:

  1. Антенна должна соответствовать диаметру заводской.
  2. Следите за плотным прилеганием нового устройства к волноводу.
  3. Длина неисправной антенны должна соответствовать новой.

Лучше всего, выкрутить старую деталь и отправиться в сервис с ней, чтобы специалисты подобрали вам нужную.

Заключение

Микроволновка – незаменимая помощница на любой кухне. С ее помощью можно и быстро подогреть еду, и приготовить вкусное блюдо. Поломка этого технического чуда вызывает некоторый ступор и парализует привычный ритм жизни. Многие из можно решить самостоятельно, но если из строя вышел магнетрон, обратитесь к специалисту. Производить ремонт самостоятельно опасно не только для техники, но и для вас.

Энциклопедичный YouTube

    1 / 5

    ✪ ✅Самодельная МАГНЕТРОННАЯ ПУШКА из микроволновки и электрошокера

    ✪ ✅На что способна микроволновка! Высоковольтная дуга

    ✪ Магнетрон

    ✪ Что такое магнетрон?

    ✪ Emp Jammer / Как сделать карманный EMP излучатель своими руками!

    Субтитры

    хочу предоставить вам наше новое изобретени електро-магнитная пушка и показать на что она способна против мопеда громкой музыки и шпионской техники источником СВЧ излучения являются магнитроны который я вынел из миковолновок питаются высоковольтным иппульсом с электрошокера секрет большой дальности в правильном согласовании магнитронов и рупорной антены чего было трудно добиться используется мошный шокер с усилиннымм питанием и боевыми конденсаторами настало время показать её в действии предварительно мы убрали все ценную электронику а сами надели зашитные экранирующие костюмы из фольги проверить наличие мощного электромагнитного поля можно с помощью лампочек. Так как под воздествием излучения они начинают светиться вкючаем накал на наших магнитронах и что там происходит сейчас я зумом наведу давай давай еще лампочки моргают теперь проверим насколько эффективна эта пушка против шпионского оборудования как мы видим жучок работает, его чувствительный микрофона прекрасно улавливает речь соседей и передает мне на телефон попробуем облучить его с 15 метрового расстояния слышны сильные помехи но он всё равно продолжает работать подходи ближе, где-то в два раза, в три даже, может быть становись сигнал пропал жучок обезврежен ну что же, настало время испытать нашу пушку на чём-то более серьезном и мы отправились за город, чтобы облучить скутер - ни фига себе - что случилось? - не знаю, я, я, я, его... ....этот... заглох? что-то коротнуло, походу смотри сколько дыма блин, что же произошло-то? там аккумулятор смотри может лемку надо снять. Воняет как палёной проводкой домой-то так как на нем ехать? а ну, дай я попробую завести ножка не возвращается доигрались мы с магнетроном и теперь нам в таком виде придется идти толкать! Толкать скутер домой через город что же происходит почему магнетронная пушка так легко выводит из строя электронику весь секрет в мощных импульсах высоковольтные разряды шокером питают магнитроны, которые генерируют короткие, но мощные электромагнитные импульсы. электрические схемы в технике улавливает эти импульсы превращая их в электричество которое пробивает и разрушает в них полупроводники но зато меньше вредит живым организмам так как нагрев от коротких импульсов меньше чем в микроволновке поэтому костюма из фольги вполне достаточно чтобы защититься от вредного излучения а сейчас я испытаю этот магнетронный бластер против громкой музыки ну что, врубаем? - у меня шапочка дрожит! - ладно, сейчас будем испытывать! чтобы было по-честному, мы попробоуем через эту стену включаю накал снимаю шокер с предохранителя всё готово ну, поехали гудел страшно всё работает - ты просто громкость прикрутил, да? - да в общем, эта пушка не разрушила, но мы попробуем с ближнего через одну стену. Посмотрим как будет эффект поехали - ой! блин, что случилось? не знаю!@#% ! а вот технике пришлось несладко после долгих проверок выяснилось, что в скутере сгорело электронное зажигание, проводка и как ни странно аккумулятор я заменил реле зажигания, ремень вариатора и почистил глушитель и скутер стал ехать еще лучше чем до магнетрона хочешь еще безумных изобретений тогда поддержи канал подпиской ай-ай-ай! спасён!

История

В 1912 году швейцарский физик Генрих Грейнахер изучал способы вычисления массы электрона . Он собрал установку, в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева - Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297-1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева - Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9 .)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон . Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты . Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры , что позволило устанавливать её на самолетах .

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор "митрон" - mitron ).

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) - ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике (хотя их начинают вытеснять активные фазированные антенные решётки) и в микроволновых печах. Фактически магнетрон по состоянию на 2017 год последний тип массово производимого электровакуумного прибора после свёртывания производства кинескопов в начале 2010 годов.

Конструкция

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов . Резонаторы образуют кольцевую колебательную систему . К анодному блоку закрепляется цилиндрический катод . Внутри катода закреплён подогреватель. Магнитное поле , параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π -вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π . При наличии рядом с рабочей частотой (ближе 10%) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводиться различные связки либо применяться магнетроны с разными размерами резонаторов (четные резонаторы с одним размером, нечётные - с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае - по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается, и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду, и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии . Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Примечания

  1. , с. 353.
  2. H. Greinacher (1912) "Über eine Anordnung zur Bestimmung von e/m" (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft , 14 : 856-864. (нем.)

Впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева - Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297-1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева - Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9 .)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты . Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры , что позволило устанавливать ее на самолетах .

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон - генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) - ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Магнетрон в продольном сечении

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов . Резонаторы образуют кольцевую колебательную систему . К анодному блоку закрепляется цилиндрический катод . Внутри катода закреплён подогреватель. Магнитное поле , параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π -вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N - число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π .

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные - другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае - по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии . Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Источники

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор · Мемристор
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод · Триод · Тетрод · Пентод · Гексод · Гептод · Пентагрид · Октод · Нонод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны
Устройства отображения Электронно-лучевая трубка ·

Легко управлять микроволновкой сегодня может даже ребенок. Она стала привычной и надежной помощницей. И при этом очень редко задумываемся, каким образом пища разогревается за считаные минуты. А происходит это, благодаря микроволнам, которые производит магнетрон. Разберемся, каким образом прибор работает.

Что такое магнетрон в СВЧ

Магнетрон - это главная деталь микроволновой печи . Его неслучайно называют сердцем агрегата. СВЧ исправно выполняет свои функции только при исправном магнетроне.Основная задача детали - создание электромагнитных полей. Возможность руководить их возникновением была установлена почти 100 лет назад.

Справка. В 1921 году физик из США А.Халл в процессе проводимых опытов и экспериментов обнаружил возможность изменять массу электронов.

Он же ввел в употребление само название магнетрона. Но высокочастотные электромагнитные волны были открыты тремя годами позже, в 1924 г. С этого времени ученые не только изучили СВЧ, но и научились их использовать.

Справка . В микроволновых печах данные генераторы волн используются с 60-х годов XX века.

Как устроен магнетрон в СВЧ

Устройство детали требует минимальных знаний по физике. Поток электронов возникает в пространстве между анодом и катодом.

Анод

В микроволновке для анода используют медь. Из нее выполнена оболочка цилиндра. Внутри он полый. Стенка цилиндра толстая, ее внутренняя поверхность неровная. В разрезе анод выглядит как окружность, по всей длине которой расположены небольшие полукольца.

Они необходимы для создания дополнительного резонанса. Воздуха внутри анода нет, там создано вакуумное пространство. Чтобы создаваемые СВЧ волны не оставались внутри, в одном из полуколец-резонаторов имеется специальный выход.

Катод

Через центр анода проложен катод. Для него воспользовались нитью накаливания. Для ее подогрева предусмотрены провода. Они соединяют катод с источником подогрева.

Важно! Анод и катод размещают в специальном блоке, который содержит магниты.

Принцип работы магнетрона

Итак, теперь мы знаем, что в главной детали СВЧ взаимодействуют 2 разных поля .

  • Первое из них - электронное . При включении прибора и подаче напряжения у катода появляются электроны, которые движутся к положительному полюсу - к аноду.
  • Второе поле - магнитное . Оно воздействует на частицы и возвращает их назад, к катоду.

После того как электроны образуют кольцо, внутри магнетрона возникает заряд. Причем количество зарядов увеличивается, так как в каждом полукольце-резонаторе образуются дополнительные электронные кольца. Это становится причиной возникновения высокочастотных колебаний. Таким образом, волновое поле сверхвысоких частот появляется в результате взаимодействия электронного и магнитного полей. Возникающие при этом микроволны и выполняют обработку продуктов.

Принцип действия магнетрона основан на влиянии электрического и магнитного полей на траекторию движения электронов. По своей сути, магнетрон является электровакуумным диодом. Другими словами «электронной лампой» с двумя электродами. В основе работы электровакуумных приборов лежит явление термоэлектронной эмиссии. Термоэлектронная эмиссия возникает при разогреве поверхности эмиттера (катода), в следствии чего увеличивается количество электронов, способных совершить работу выхода. Для того, что бы выяснить, как электроны ведут себя в электрическом поле, рассмотрим принцип действия обычного электровакуумного диода.

На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.

Перейдем ко второй части рисунка. На части «Б» данного рисунка все та же схема, но ключ «К» на ней замкнут. Следовательно — на аноде появилось напряжение «Ua = x», поданное с положительного полюса батареи питания «В» через ключ «К». В результате чего, между электродами диода возникло электрическое поле. Под действием силы этого поля электроны начали покидать катод и устремились к аноду. Таким образом, цепь замкнулась и по цепи начал протекать ток анода определенной величины «Ia = y». Из выше изложенного можно сделать вывод, что электрическое поле заставляет электроны двигаться по прямой вдоль, своих силовых линий.

Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.

Теперь рассмотрим внутренности магнетрона. Отличительной особенностью конструкции магнетрона – является конструкция анода. Анод магнетрона представляет собой толстостенный медный цилиндр с системой резонаторов внутри. В поперечном сечении, вид конструкции анода напоминает колесо телеги со спицами. Каждая «спица» — является резонатором. В центре анода расположен катод с подогревателем. По краям анодного блока находятся два кольцевых магнита, которые образуют магнитную систему, между полюсами которой и располагается анод. Если бы данная магнитная система отсутствовала, то не было бы и магнитного поля и в этом случае, при подаче напряжения накала и анодного напряжения, электроны двигались бы по прямой, от катода — к аноду т. е. вдоль силовых линий электрического поля.

На рисунке сверху изображена очень упрощенная схема работы магнетрона. На ней голубым цветом выделена приблизительная форма траектории движения одного электрона покинувшего катод и стремящегося к аноду. На рисунке видно, что благодаря наличию магнитного поля, траектория движения электрона изменяется таким образом, что покинувший катод электрон достигает анода, далеко не сразу. Из-за такого влияния магнитного поля на движение электрона, в рабочей области образуется своеобразное «электронное облако», которое вращается вокруг катода – внутри анода. Пролетая мимо резонаторов, электроны отдают им часть своей энергии и наводят в них токи высокой частоты которые в свою очередь, создают сильное СВЧ поле в полостях резонаторов. В одну из таких полостей помещена петля связи (на схеме не показана), посредством которой энергия СВЧ поля выводится наружу.

Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.