Двигатель постоянного тока с параллельным возбуждением – схема работы. Характеристики двигателей параллельного возбуждения

  • 04.09.2019

Электродвигатели – это машины, способные превращать электрическую энергию в механическую. В зависимости от типа потребляемого тока они делятся на двигатели переменного и постоянного тока. В данной статье речь пойдет о вторых, которые сокращенно называются ДПТ. Электродвигатели постоянного тока окружают нас каждый день. Ими оснащаются электроинструменты, работающие от батареек или аккумуляторов, электротранспорт, некоторые промышленные станки и многое другое.

Устройство и принцип работы

ДПТ по своему строению напоминает синхронный электродвигатель переменного тока, разница между ними только в типе потребляемого тока. Двигатель состоит из неподвижной части – статора или индуктора, подвижной части – якоря и щеточноколлекторного узла. Индуктор может быть выполненным в виде постоянного магнита, если двигатель маломощный, но чаще он снабжается обмоткой возбуждения, имеющей два или больше полюса. Якорь состоит из набора проводников (обмоток), закрепленных в пазах. В простейшей модели ДПТ использовались только один магнит и рамка, по которой проходил ток. Такую конструкцию можно рассматривать только в качестве упрощенного примера, тогда как современная конструкция – это усовершенствованный вариант, имеющий более сложное устройство и развивающий необходимую мощность.

Принцип работы ДПТ основан на законе Ампера: если в магнитное поле поместить заряженную проволочную рамку, она начнет вращаться. Ток, проходя по ней, образует вокруг себя собственное магнитное поле, которое при контакте с внешним магнитным полем начнет вращать рамку. В случае с одной рамкой вращение будет продолжаться, пока она не займет нейтральное положение параллельно внешнему магнитному полю. Чтобы привести систему в движение, нужно добавить еще одну рамку. В современных ДПТ рамки заменены якорем с набором проводников. На проводники подается ток, заряжая их, в результате чего вокруг якоря возникает магнитное поле, которое начинает взаимодействовать с магнитным полем обмотки возбуждения. В результате этого взаимодействия якорь поворачивается на определенный угол. Далее ток поступает на следующие проводники и т.д.
Для попеременной зарядки проводников якоря используются специальные щетки, выполненные из графита или сплава меди с графитом. Они играют роль контактов, которые замыкают электрическую цепь на выводы пары проводников. Все выводы изолированы между собой и объединены в коллекторный узел – кольцо из нескольких ламелей, находящееся на оси вала якоря. Во время работы двигателя щетки-контакты поочередно замыкают ламели, что дает возможность двигателю вращаться равномерно. Чем больше проводников имеет якорь, тем более равномерно будет работать ДПТ.

Двигатели постоянного тока делятся на:
— электродвигатели с независимым возбуждением;
— электродвигатели с самовозбуждением (параллельные, последовательные или смешанные).
Схема ДПТ с независимым возбуждением предусматривает подключение обмотки возбуждения и якоря к разным источникам питания, так что между собой они не связаны электрически.
Параллельное возбуждение реализовывается путем параллельного подключения обмоток индуктора и якоря к одному источнику питания. Двигатели этих двух типов обладают жесткими рабочими характеристиками. У них частота вращения рабочего вала не зависит от нагрузки, и ее можно регулировать. Такие двигатели нашли применение в станках с переменной нагрузкой, где важно регулировать скорость вращения вала
При последовательном возбуждении якорь и обмотка возбуждения подключены последовательно, поэтому значение электрического тока у них одинаковое. Такие двигатели более «мягкие» в работе, имеют больший диапазон регулирования скоростей, но требуют постоянной нагрузки на вал, иначе скорость вращения может достичь критической отметки. У них высокое значение пускового моменты, что облегчает запуск, но при этом скорость вращения вала зависит от нагрузки. Применяются они на электротранспорте: в кранах, электропоездах и городских трамваях.
Смешанный тип, при котором одна обмотка возбуждения подключается к якорю параллельно, а вторая – последовательно, встречается редко.

Краткая история создания

Первопроходцем в истории создания электрических двигателей стал М.Фарадей. Создать полноценную рабочую модель он не смог, зато именно ему принадлежит открытие, которое сделало это возможным. В 1821 году он провел опыт с использованием заряженной проволоки, помещенной в ртуть в ванную с магнитом. При взаимодействии с магнитным полем металлический проводник начинал вращаться, превращаю энергию электрического тока в механическую работу. Ученые того времени работали над созданием машины, работа которой основывалась бы на этом эффекте. Они хотели получить двигатель, работающий по принципу поршневого, то есть, чтобы рабочий вал двигался возвратно-поступательно.
В 1834 году был создан первый электрический двигатель постоянного тока, который разработал и создал русский ученый Б.С.Якоби. Именно он предложил заменить возвратно-поступательное движение вала его вращением. В его модели два электромагнита взаимодействовали между собой, вращая вал. В 1839 году он же успешно испытал лодку, оснащенную ДПТ. Дальнейшая история этого силового агрегата, по сути – это совершенствование двигателя Якоби.

Особенности ДПТ

Как и другие виды электродвигателей, ДПТ отличается надежностью и экологичностью. В отличие от двигателей переменного тока у него можно регулировать скорость вращения вала в широком диапазоне, частоту, к тому же он отличается легким запуском.
Двигатель постоянного тока можно использовать как собственно двигатель и как генератор. Также у него можно менять направление вращения вала путем изменения направления тока в якоре (для всех типов) или в обмотке возбуждения (для двигателей с последовательным возбуждением).
Регулирование скорости вращение достигается путем подключения в цепь переменного сопротивления. При последовательном возбуждении оно находится в цепи якоря и дает возможность сокращать обороты в соотношениях 2:1 и 3:1. Такой вариант подходит для оборудования, которое имеет длительные периоды простоя, потому что во время работы происходит значительный нагрев реостата. Увеличение оборотов обеспечивается подключением реостата в цепь обмотки возбуждения.
Для двигателей с параллельным возбуждением также используются реостаты в цепи якоря для понижения оборотов в пределах 50% от номинальных значений. Установка сопротивления в цепи обмотки возбуждения позволяет увеличивать обороты до 4 раз.
Использование реостатов всегда связано со значительными потерями тепла, поэтому в современных моделях двигателей они заменены на электронные схемы, позволяющие управлять скоростью без значительных потерь энергии.
КПД двигателя постоянного тока зависит от его мощности. Маломощные модели отличаются низкой эффективностью с КПД порядка 40%, тогда как двигатели с мощностью 1000 кВт могут иметь КПД, достигающий 96%.

Достоинства и недостатки ДПТ

К основным достоинствам двигателей постоянного тока относятся:
— простота конструкции;
— легкость в управлении;
— возможность регулирования частоты вращения вала;
— легкий запуск (особенно у двигателей с последовательным возбуждением);
— возможность использования в качестве генераторов;
— компактные размеры.
Недостатки:
— имеют «слабое звено» — графитовые щетки, которые быстро изнашиваются, что ограничивает срок службы;
— высокая себестоимость;
— при подключении к сети требуют наличия выпрямителей тока.

Сфера применения

Широкое применение двигатели постоянного тока нашли в транспорте. Они устанавливаются в трамваях, электричках, электровозах, паровозах, теплоходах, самосвалах, кранах и т.д. кроме того, их используют в инструментах, компьютерах, игрушках и подвижных механизмах. Часто их можно встретить и на производственных станках, где требуется регулирование частоты вращения рабочего вала в широком диапазоне.

Двигатель с параллельным возбуждением является наилучшим среди двигателей постоянного тока для привода механизмов, требующих почти постоянной частоты вращения и в то же время экономичного регулирования скорости. Схема этого двигателя показана на рис. 4-25.

Рис. 4-25. Двигатель параллельного возбуждения.

Зажимы пускового реостата обозначаются: Л - присоединяемый к линии (питающей сети); М - к зажимам обмотки возбуждения и Я - к зажимам якоря. Черными кружками (рис. 4-25) обозначены рабочие контакты, а пропуски между ними соответствуют секциям сопротивлений реостата. Металлическая дуга 3 при работе двигателя постоянно соединяет зажим Л с зажимами шунтового реостата, регулирующего ток возбуждения Перед замыканием рубильника Необходимо убедиться, что рычаг (подвижный контакт) 1 пускового реостата 2 стоит на холостом контакте 0. Подвижный контакт шунтового реостата в цепи возбуждения должен находиться в крайнем левом положении, при котором сопротивление реостата минимально.

При замыкании рубильника и переводе рычага пускового реостата на первый из рабочих контактов ток двигателя разветвляется на ток якоря и ток обмотки возбуждения

Таким образом, ток в питающей цепи

Первый бросок тока в зависимости от величины пускового сопротивления Под действием начального вращающего момента якорь начинает вращаться и с нарастанием скорости ток якоря уменьшается. Тогда рычаг пускового реостата, может быть переведен на второй контакт. При этом ток якоря, увеличившись броском, вызовет увеличение вращающего момента и дальнейшее приращение скорости, а затем вновь начинает уменьшаться. Тогда рычаг реостата переводят на следующий контакт и т. д. Пуск заканчивается, когда все сопротивление выведено и на якорь подано полное напряжение Сопротивление пускового реостата обычно рассчитано на кратковременную работу пуска и оставлять рукоятку реостата на промежуточных контактах длительно нельзя.

Рис. 4-26. Скоростные характеристики двигателя параллельного возбуждения.

Чем быстрее нарастает противо-э. д. с. якоря, тем скорее, уменьшается ток и тем меньше нагрев обмотки якоря. Поэтому пуск производят всегда при наибольшем токе возбуждения, замыкая, накоротко сопротивление регулировочного реостата (рис. 4-25). Тогда магнитный поток машины Ф и противо-э. д. с. будут максимальны. Кроме того, электродвигатель при пуске должен развивать повышенный вращающий, момент, а это может быть также при наибольшем магнитном потоке формула (4-8)].

Перед отключением двигателя переводят рычаг пускового реостата на нулевой контакт, а затем размыкают рубильник. Этим исключается подгорание контактов рубильника.

Скоростная характеристика двигателя при показана на рис. 4-26 кривой 1. При отсутствии механической нагрузки ток холостого хода и скорости наибольшая:

При увеличении нагрузки (момента сопротивления) на валу двигателя частота вращения падает незначительно, так как автоматическое увеличение вращающего момента происходит за счет увеличения тока в цепи якоря который согласно уравнению (4-14а) резко возрастает при незначительном уменьшении противо-э. д. с. вследствие малой величины сопротивления цепи якоря Такая характеристика называется жесткой.

Рис. 4-27. Рабочце характеристики двигателя параллельного возбуждения.

При неизменном токе возбуждения магнитный поток Ф можно считать приблизительно постоянным, так как влияние реакции якоря незначительно.

Тогда вращающий момент двигателя

приблизительно пропорционален току Поэтому если отложить М по оси абсцисс на рис. 4-26, то получится механическая характеристика двигателя, т. е.

Очень удобны для пользования рабочие характеристики (рис. 4-27), даваемые в каталогах и описаниях электродвигателя. Это

при , где - к. п. д. двигателя, а - полезная мощность на валу.

Развиваемая на валу мощность двигателя

а вращающий момент

При неизменной частоте вращения зависимость была бы прямой линией, проходящей через начало координат. Однако скорость при увеличении падает и момент не пропорционален Ток при неизменном U пропорционален мощности в цепи питания Так как потери двигателя малы, то ток приблизительно пропорционален .

Регулирование скорости двигателя с параллельным возбуждением обычно производится изменением тока возбуждения. Этот способ дает экономичное плавное регулирование в пределах 1: 1,5, а в специальном исполнении - до 1:8. Регулирование происходит следующим образом. Вращающий момент двигателя при Ф = const пропорционален току а ток

Вследствие малой величины падение напряжения в цепи якоря невелико. Поэтому при постоянных значениях U и якоря может значительно возрасти при небольшом уменьшении противо-э. д. с.

Например, при и при токе якоря противо-э. д. с. . Если противо-э. д. с. уменьшится всего на 10 В (примерно на 5%) и будет , то ток якоря , т. е. увеличится в 3 раза.

Таким образом, если при некоторой постоянной нагрузке и частоте вращения уменьшить ток возбуждения например на 5%, то. на столько же сразу уменьшатся магнитный поток Ф и противо-э. д. с. Е. Это вызовет резкое увеличение тока якоря и вращающего момента, причем избыточный момент пойдет на ускорение вращения якоря. Однако по мере нарастания скорости якоря противо-э. д. с. снова увеличится, ток якоря уменьшится до величины, при которой вращающий момент примет прежнее значение. Таким образом, при равенстве установится новая постоянная частота вращения, большая прежней.

При таком способе регулирования потери энергии в регулировочном реостате (мощность потерь Гвгв) очень малы, так как составляет всего

Этот способ позволяет изменять частоту вращения двигателя в сторону ее увеличения выше номинальной.

Если при неизменной нагрузке на валу двигателя включить добавочное сопротивление гл последовательно с обмоткой якоря, то в первый момент ток якоря уменьшится, отчего уменьшится вращающий момент и, так как момент сопротивления окажется больше, скорость уменьшится. Однако вследствие уменьшения скорости и противо-э. д. с. ток якоря станет возрастать, будет возрастать вращающий момент и при равенстве моментов дальнейшее снижение скорости прекратится.

Двигатель будет продолжать работать с постоянной, но пониженной частотой вращения. Этот способ - регулирования неэкономичен вследствие значительных потерь энергии в сопротивлении реостата.

Лекция №9

Двигатели постоянного тока

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

Схемы возбуждения электродвигателей постоянного тока показаны на рисунке.

Рис. 9.1 Схемы возбуждения электродвигателей постоянного тока: а - независимое, б - параллельное, в - последовательное, г - смешанное

Основные формулы и уравнения

Если принять скорость вращения якоря в системе СИ (рад/с), то формула 4.13 из лекции №4 примет вид

М - электромагнитный момент машины постоянного тока, Н/м (ньютон делить на метр)

k - постоянная для данной машины величина;

Ф - основной маг­нитный поток, Вб (вебер)

р - число пар полюсов обмотки якоря

N - число пазовых сторон обмотки якоря

а - число пар параллельных ветвей обмотки якоря

I а или просто I - ток якоря, А;

Для двигателя, работающего с постоянной час­тотой вращения, можно получить уравнение на­пряжений (Э.Д.С.) для цепи якоря генератора:

Это уравнение получают на основании второго закона Кирхгофа

. (9.3)

Сумма сопротивлений всех участков цепи якоря:

Обмотки якоря r а или, r я

Обмотки добавочных полюсов r д,

Компенсационной обмотки r ко,

Последовательной обмотки возбуждения r с

Переходного щеточного контакта r щ.

При отсутствии в машине каких-либо из указан­ных обмоток в (9.4) не входят соответствующие слагаемые.

Из (9.3) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря.

На основании (9.3) получим формулу тока якоря

. (9.5)

Умножив обе части уравнения (9.3) на ток яко­ря I а, получим уравнение мощности для цепи якоря:

, (9.6)

, (9.7)

(9.8)

ω- угловая частота вращения якоря;

Электромаг­нитная мощность двигателя.

Следовательно, выражение представляет собой электромаг­нитную мощность двигателя.

Рабочие характеристики

Рабочие характеристики двигателя представлены на рис 9.2б

Частота вращения двигателя с ростом нагрузки Р 2 уменьшается, а график ω= f(Р 2) приобретает падающий вид . Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбу­ждения применяют легкую (с небольшим числом витков) последо­вательную обмотку возбуждения, которую называют стаби­лизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.

Изменение частоты вращения двигателя при переходе от но­минальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения:

, (9.12)

∆ω ном = 100

где 0 (n 0) - частота вращения двигателя в режиме х.х.

Обычно для двигателей параллельного возбуждения ∆ω ном =2-8%, поэтому характеристику частоты вращения двигателя па­раллельного возбуждения называют жесткой .

Зависимость полезного момента от нагрузки установлена формулой . При график имел бы вид прямой. Однако с увеличением нагрузки частота вращения двига­теля снижается, и поэтому зависимость криволинейна .

График зависимости М эл =f(Р 2) проходит параллельно кривой М 2 =f(Р 2) .

Пуск двигателя

Ток якоря двигателя определяется формулой

В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС Е а =0. Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

I п = (9.13)

Обычно сопротивление невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10-20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7-1,0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3-5 раз превышает номинальный, что не представляет опасности для двигателя.

Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо реостат ввести, т.е поставить наибольшее сопротивление. Затем включают рубиль­ник и постепенно уменьшают сопротивление реостата.

Рис. 9.4. Схема включения пускового реостата

Пусковой ток якоря при полном сопротивлении пускового реостата

. (9.14)

Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2-3 раза.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения.

Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двига­теля в схеме «генератор-двигатель».

Реверсирование двигателей

Реверсирование двигателя - это изменение направления вращения якоря.

Реверсирование двигателя осуществляется либо изменением полярности напряжения на обмотке якоря, либо на обмотке возбуждения. В обоих случаях изменяется знак электромагнитного момента двигателя М эм и соответственно направление вращения якоря.

КПД машин постоянного тока

η = P 2 /P 1 , (9.20)

Р 2 - полезная мощность машины (у генератора - это электрическая мощность, отдаваемая приемнику, у двигателя - механическая мощность на валу);

Р 1 - подводимая к машине мощность (у генератора - это механическая мощность, сообщаемая ему первичным двигателем, у двигателя - мощность, потребляемая им от источника постоянного тока; если генератор имеет независимое возбуждение, то P 1 включает в себя также мощность, необходимую для питания цепи обмотки возбуждения).

Очевидно, мощность Р 1 может быть выражена следующим образом: Р 1 = Р 2 + ΣΔP,

где ΔP - сумма перечисленных выше потерь мощности.

С учетом последнею выражения

η = P 2 /(P 2 + ΣΔP). (9.21)

Когда машина работает вхолостую, полезная мощность Р 2 равна нулю и η = 0. Характер изменения КПД при увеличении полезной мощности зависит от значения и характера изменения потерь мощности. Примерный график зависимости η=f(Р 2) приведен на рис. 9.5.

При увеличении полезной мощности КПД сначала возрастает при некотором значении Р 2 , достигает наибольшего значения, а затем уменьшается. Последнее объясняется значительным увеличением переменных потерь, пропорциональных квадрату тока. Машины рассчитывают обычно таким образом, чтобы наибольшее значение КПД находилось в области, близкой к номинальной мощности Р 2ном. Номинальное значение КПД машин мощностью от 1 до 100 кВт лежит примерно в пределах от 0,74 до 0,92 соответственно.

Литература: Кацман М.М. Электрические машины. Глава 29.

§29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 29.8, 29.10

Лекция №9

Двигатели постоянного тока

Способы возбуждения электродвигателей постоянного тока

Двигатели постоянного тока используются в промышленности в случае необходимости регулирования скорости ЭП (электропривода). В основном применяются системы УВ-Д (управляемый выпрямитель-двигатель), которые обеспечивают регулирование скорости с высоким качеством.

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешанным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Двигатели с независимым возбуждением и параллельным возбуждением обладают одинаковыми свойствами, поэтому эти группы объединяют и относят к одной группе: двигатели с независимым возбуждением предназначенные для работы в регулируемых ЭП.

Промышленность выпускает двигатели постоянного тока основной общепромышленной серии 2П и 4П, они подразделяются по следующим признакам:

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

По напряжению на якоре (110В, 220В, 340В, 440В);

На напряжению обмотке возбуждения (110 и 220 В);

Если напряжение на якоре и на обмотке возбуждения (ОВ) совпадают, то обмотка возбуждения подключается параллельно обмотке якоря.

Кроме серий 2П и 4П выпускаются и другие специализированные серии.

Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы.

Характеристики двигателя постоянного тока с параллельным возбуждением

Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = I я + I в, где I я - ток якоря, I в – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом I в не зависит от I я, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.

В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:

  • Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
  • Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).

При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.

Сферы применения двигателя

Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:

  • вентиляторами;
  • насосами;
  • шахтными подъемниками;
  • подвесными электрическими дорогами;
  • станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).

Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.

Регулирование частоты вращения

Регулирование скорости – это целенаправленное изменение скорости электродвигателя в принудительном порядке при помощи специальных устройств или приспособлений. Оно позволяет обеспечить оптимальный режим работы механизма, его рациональное использование, а также уменьшить расход энергии.

Существует три основных способа регулирования скорости двигателя:

  1. Изменение магнитного потока главных полюсов. Осуществляется при помощи регулировочного реостата: при увеличении его сопротивления магнитный поток главных полюсов и ток возбуждения I в уменьшаются. При этом увеличивается число оборотов якоря на холостом ходу, а также угол наклона механической характеристики. Жесткость механических характеристик сохраняется. Однако увеличение скорости может привести к механическим повреждениям агрегата и к ухудшению коммутации, поэтому не рекомендуется увеличивать частоту вращения этим методом более чем в два раза.
  2. Изменение сопротивления цепи якоря. К якорю последовательно подключается регулировочный реостат. Скорость вращения якоря уменьшается при увеличении сопротивления реостата, а наклон механических характеристик увеличивается. Регулировка скорости вышеуказанным способом:
  • способствует уменьшению частоты вращения относительно естественной характеристики;
  • связана с большой величиной потерь в регулировочном реостате, следовательно, неэкономична.
  1. Безреостатное изменение подаваемого на якорь напряжения. В этом случае необходимо наличие отдельного источника питания с регулируемым напряжением, например, генератора или управляемого вентиля.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.

Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.

Схема двигателя.

Схема двигателя параллельного возбуждения изображена на рис. 1.25. Обмотка якоря и обмотка возбуждения включены параллельно. В этой схеме: I – ток, потребляемый двигателем из сети, I я – ток якоря, I в – ток возбуждения. Из первого закона Кирхгофа следует, что I = I я + I в.

Естественная механическая характеристика. Естественная механическая характеристика описывается формулой (1.6).

При холостом ходе М = 0 и n х = U/С Е Ф.

Если Ф = const, то уравнение механической характеристики принимает вид:

n = n х b М, (1.8)

где b = R я /С Е Ф.

Из (1.8) следует, что механическая характеристика (рис. 1.26, прямая 1) – прямая с углом наклона a и угловым коэффициентом b. Так как у двигателей постоянного тока R я мало, то с увеличением нагрузки на валу частота вращения n изменяется незначительно – характеристики подобного типа называются «жесткими».

Ток, потребляемый двигателем из сети, практически растет пропорционально моменту нагрузки. Действительно, М » М эм = С м I я Ф, и так как у двигателя параллельного возбуждения Ф = const, то I я ~ М.

Регулирование частоты вращения.

Регулирование частоты вращения возможно из (1.6) тремя способами: изменением магнитного потока главных полюсов Ф, изменением сопротивления цепи якоря R я и изменением подводимого к цепи якоря напряжения U (изменение n за счет изменения момента нагрузки М в понятие регулирования не входит).

Регулирование n изменением магнитного потока Ф осуществляется с помощью регулировочного реостата R р. При увеличении сопротивления реостата ток возбуждения I в и магнитный поток главных полюсов Ф уменьшаются. Это приводит, во-первых, к увеличению частоты вращения холостого хода n х и, во-вторых, к увеличению коэффициента b, т.е. к увеличению угла наклона механической характеристики. Однако b остается небольшим и жесткость механических характеристик сохраняется. На рис. 1.28 помимо естественной характеристики 1, соответствующей максимальному магнитному потоку Ф, приведено семейство механических характеристик 2-4, снятых при уменьшенном магнитном потоке. Из характеристик следует, что изменением магнитного потока можно только увеличивать частоту вращения относительно естественной характеристики. Практически частоту вращения таким методом можно увеличивать не более чем в 2 раза, так как увеличение скорости приводит к ухудшению коммутации и даже механическим повреждениям машины.

Другой способ регулирования скорости связан с включением последовательно с якорем регулировочного реостата R я.р (пусковой реостат R п для этой цели непригоден, так как он рассчитан на кратковременный режим работы). Формула (1.6) при этом принимает вид:

n = ,

откуда следует, что скорость при холостом ходе при любом сопротивлении R я.р одинакова, а коэффициент b и, следовательно, наклон механических характеристик 5-7 увеличивается (рис. 1.26). Регулирование частоты вращения этим способом приводит к уменьшению частоты вращения относительно естественной характеристики. Кроме того, оно неэкономично, так как связано с большой мощностью потерь (R я.р I ) в регулировочном реостате, по которому протекает весь ток якоря.

Третий способ регулирования частоты вращения – безреостатное изменение подводимого к якорю напряжения. Он возможен только в случае, когда якорь двигателя питается от отдельного источника, напряжение которого можно регулировать. В качестве регулируемого источника применяются отдельные, специально предназначенные для данного двигателя генераторы или управляемые вентили (тиратроны, ртутные выпрямители, тиристоры). В первом случае образуется система машин, называемая системой Г-Д (генератор – двигатель), (рис. 1.27). Она применяется для плавного регулирования в широких пределах частоты вращения мощных двигателей постоянного тока и в системах автоматического управления. Система регулирования с управляемыми вентилями УВ (рис. 1.28) находит применение для регулирования частоты вращения двигателей меньшей мощности. Ее преимущество – большая экономичность.

Регулирование частоты вращения изменением U практически возможно только в сторону уменьшения, так как увеличение напряжения выше номинального недопустимо из-за резкого ухудшения коммутации. Из (1.9) следует, что при уменьшении напряжения уменьшается скорость холостого хода n х, а наклон механических характеристик 8-10 не изменяется (см. рис. 1.26), они остаются жесткими даже при низких напряжениях. Диапазон регулирования (n max /n min) таким способом 6:1-8:1. Он может быть значительно расширен при применении специальных схем с обратными связями.

Регулировочная характеристика.

Регулировочная характеристика n=f(I в) двигателя параллельного возбуждения изображена на рис. 1.29.

Ее характер определяется зависимостью (1.5), из которой следует, что частота вращения обратно пропорциональна магнитному потоку и, следовательно, току возбуждения I в. При токе возбуждения I в = 0, что может быть при обрыве цепи возбуждения, магнитный поток равен остаточному Ф ост и частота вращения становится настолько большой, что двигатель может механически разрушиться, – подобное явление называется разносом двигателя.

Физически явление разноса объясняется тем, что вращающий момент (1.2) при уменьшении магнитного потока, казалось бы, должен уменьшиться, однако ток якоря I я = (U – E)/R я увеличивается значительнее, так как уменьшается Е (1.1) и разность U – E увеличивается в большей степени (обычно Е » 0,9 U).

Тормозные режимы.

Тормозные режимы двигателя имеют место тогда, когда электромагнитный момент, развиваемый двигателем, действует против направления вращения якоря. Они могут возникать в процессе работы двигателя при изменении условий работы или создаваться искусственно с целью быстрого уменьшения скорости, остановки или реверсирования двигателя.

У двигателя параллельного возбуждения возможны три тормозных режима: генераторное торможение с возвратом энергии в сеть, торможение противовключением и динамическое торможение.

Генераторное торможение возникает в тех случаях, когда частота вращения якоря n становится больше частоты вращения при идеальном (т.е. при М пр = 0) холостом ходе n x (n>n x). Переход в этот режим из режима двигателя возможен, например, при спуске груза, когда момент, создаваемый грузом, приложен к якорю в том же направлении, что и электромагнитный момент двигателя, т.е. тогда, когда момент нагрузки действует согласно с электромагнитным моментом двигателя и он набирает скорость, большую чем n x . Если n>n x , то Е>U c (где U c – напряжение сети) и ток двигателя изменяет свой знак (1.4) – электромагнитный момент из вращающего становится тормозным, а машина из режима двигателя переходит в режим генератора и отдает энергию в сеть (рекуперация энергии). Переход машины из двигательного режима в генераторный иллюстрируется механической характеристикой (рис. 1.30). Пусть в двигательном режиме a 1 – рабочая точка; ей соответствует момент М. Если частота вращения увеличивается, то рабочая точка по характеристике 1 из квадранта I переходит в квадрант II, например, в рабочую точку a 2 , которой соответствует частота вращения n΄ и тормозной момент – М΄.

Торможение противовключением возникает в работающем двигателе, когда направление тока в якоре или тока возбуждения переключается на противоположное. Электромагнитный момент при этом изменяет знак и становится тормозным.

Работе двигателя с противоположным направлением вращения соответствуют механические характеристики, располагающиеся в квадрантах II и III (например, естественная характеристика 2 на рис. 1.30).

Внезапный переход на эту характеристику практически недопустим, так как сопровождается чрезмерно большим броском тока и тормозного момента. По этой причине одновременно с переключением одной из обмоток в цепь якоря включается добавочное сопротивление R доб, ограничивающее ток якоря.

Механическая характеристика режима с R доб имеет большой наклон (прямая 3). При переходе в режим противовключения частота вращения n в первый момент измениться не может (из-за инерционности якоря) и рабочая точка из положения a 1 перейдет в положение a 3 на новой характеристике. Из-за появления М тор частота вращения n будет быстро падать до тех пор, пока рабочая точка a 3 не перейдет в положение a 4 , соответствующее остановке двигателя. Если в этот момент двигатель не отключить от источника питания, то якорь изменит направление вращения. Машина начнет работать в двигательном режиме с новым направлением вращения, а ее рабочая точка a 5 будет находиться на механической характеристике 3 в квадранте III.

Динамическое торможение возникает в тех случаях, когда якорь двигателя отключается от сети и замыкается на сопротивление динамического торможения R д.т. Уравнение характеристики (1.6) принимает вид:

n =

что соответствует семейству прямых 4 (при разных R д.т), проходящих через начало координат. При переключении в этот режим рабочая точка a 1 переходит на одну из характеристик 4, например, в точку a 6 , а затем перемещается по прямой 4 до нуля. Якорь двигателя тормозится до полной остановки. Изменением сопротивления R д.т можно регулировать ток якоря и скорость торможения.