Бесперебойное питание вашей электроники. Добавляем резервный аккумуляторный источник питания в небольшие электронные устройства

  • 07.08.2019

И так - как-то в одно время потихоньку на нашем предприятии (фирма очень бедная: как и большинство ТЕПЛОЕНЕРГО в Украине) начали выходить из строя, т.е. выгорать "по горячей стороне" импульсные БП которые в последствии были заменены.
Пришлось сообразить, т.е. сделать 6шт. источников питания для питания некоторых приборов (имеют отношение к метрологии, КИПиА).
Требования к ним были такими:
1) стабилизированное питание датчика - 20:28В/0.1А
2) стабилизированное питание самого прибора - 10:14В/0.2А
3) гальваническая развязка между каналами питания
4) резервное питание прибора (датчика нет) от АКБ 12В (дальше перечислять не буду)
Решил велосипед не изобретать, а использовать уже наработанные схемные решения, тем более надо было, чтоб получилось дешево и качественно. Да и как то сильно не заморачивался с выбором схемотехники - в голове сами по себе вырисовывались примеры реализации БП.
Ну вот и вся история а теперь - к делу.
Схема устройства:

Как видно из схемы, БП состоит из двух независимых каналов 24В и 12В построенных на "кренках". По 12В к LM7812 установлен диод VD5, что поднимает напряжение до 12.7В для компенсации падения на VD12. Больше по стабилизаторам нечего сказать, так как это общеизвестная схемотехника и описана в любом справочнике и конечно, все это есть в "Обучалке".
Для обеспечения бесперебойного питания используется аккумуляторная батарея (в моем случае - это "GEMBIRD 12V4.5A").
Схема, показанная на рисунке, исключает повреждение аккумуляторов из-за получения ими избыточного заряда. Она автоматически отключает процесс заряда при повышении напряжения на элементах выше допустимой величины и состоит из стабилизатора тока на транзисторе VT3, усилителя VT2, детектора уровня напряжения на VT1 .
Индикатором процесса заряда является свечение светодиода VD4, который при его окончании гаснет.
Настройку устройства начинаем со стабилизатора тока. Для этого временно замыкаем вывод базы транзистора VT3 на общий провод, а вместо аккумуляторов подключаем эквивалентную нагрузку с миллиамперметром 0...500 мА. Контролируя прибором ток в нагрузке, подбором резистора R3 устанавливаем номинальный ток заряда для конкретного типа аккумуляторов.
Вторым этапом настройки является установка уровня ограничения выходного напряжения с помощью подстроечного резистора R4. Для этого, контролируя напряжение на нагрузке, увеличиваем сопротивление нагрузки до момента появления максимально допустимого напряжения (13.8 В для АКБ 12В/4.5А). Резистором R5 добиваемся отключения тока в нагрузке (погаснет светодиод).
Трансформатор подойдет любой малогабаритный с напряжением на вторичных обмотках 15...18 В; для 24В-го канала - 25..28В.
Транзистор VT3 крепится к теплорассеивающей пластине. Для удобства настройки в качестве R4 желательно использовать многооборотный резистор типа СП5-2 или аналогичный, остальные резисторы подойдут любого типа.
Для осуществления резервного питания по 12В от АКБ используются цепи схемы на элементах VD7, VT4, VT5 и реле (импортное 12В) с одной группой контактов переключения. При наличии сетевого питания а значит и +U на конденсаторах С4, С5 , транзистор VT4 открыт и реле обесточено, через замкнутые контакты происходит заряд АКБ. При пропадании напряжения в сети, транзистор VT4 закрывается - VT5 открывается и срабатывает реле - своими контактами подключая "+" АКБ через VD11 к нагрузке.
Теперь немного об использованных деталях:
- диоды - любые..исходя из токов и напряжений, я применил самые дешевые импортные 1N4007;
- транзисторы VT1, VT2, VT4 - КТ3102, можно КТ315 или импортные аналоги.
- транзистор VT3 можно применить КТ814 или КТ816 - зависит от емкости АКБ и тока которым будет заряжаться;

Теперь немного в фотографиях - процесс изготовления:

Печатная плата. Впаял "релюху" - потом вспомнил, что надо для истории сфотографировать. Дорожки не залуживал, т.к. сам текстолит оказался плохого качества - отслаивались дорожки даже при мин. температуре паяльника. После пайки покрыл всю плату лаком.

Принципиальная схема устройства автоматического переключения, показанная здесь, построена на интегральной микросхеме LTC4412 от Linear Technologies. Эта схема может быть использована для автоматического переключения нагрузки между батареей и сетевым адаптером (блоком питания). Микросхема LTC4412 управляет внешним P-канальным MOSFET транзистором, чтобы создать подобие диода Шоттки, функционируещего как выключатель питания для распределения нагрузки. Это делает LT4412 идеальной заменой в источниках питания. Широкий спектр МОП полевых транзисторов может управляться с помощью интегральной микросхемы, и это дает большую гибкость в плане выбора тока нагрузки.

Принципиальная схема переключателя питания

LT4412 также имеет кучу хороших функций, таких как защита аккумулятора от переплюсовки, ручное управление, защита затвора в транзисторе и другие. Собственный ток потребления схемы составляет всего 11 мкA. Диод D1 предотвращает обратное протекание тока к сетевому адаптеру, когда нет питающей сети. Конденсатор С1 – конденсатор выходного фильтра. Вывод 4 интегральной микросхемы называется выводом состояния. Некоторых функций микросхемы не показано на схеме.

Транзистор FDN306P не рекомендуется при использовании брать руками, полевые транзисторы очень часто выходят из строя именно по причине статического напряжения, которое есть на теле каждого человека. При пайке его на печатную плату было бы не плохо заземлить себя специальном браслетом, и заземлить сам паяльник, но если используете паяльную станцию, этого делать не надо. Основные параметры полевого транзистора таковы (из даташита):

  • 1) Максимальный долговременный ток-2.6А;
  • 2) Максимальное напряжение VDSS 12В;
  • 3) Быстрая скорость переключения;
  • 4) Высокая производительность технологии;

Рабочая температура транзистора составляет от -55 до +150 градусов Цельсия. Рабочая температуры микросхемы от -40 до +80, температура при пайке составляет 300 градусов, в течении не более 10 секунд. Распиновку выводов можно увидеть в даташите по ссылке выше или на картинке.

  • 1) Схему собирайте на печатной плате высокого качества;
  • 2) Входное напряжение адаптера может быть от 3 до 28В;
  • 3) Напряжение батареи может лежать в пределах от 2.5V к 28V;
  • 4) Не подключайте нагрузку, которая потребляют более 2А;
  • 5) D1 (1N5819) -диод Шоттки, ращитаный на 1А;
  • 6) Q1 (FDN306P) – P-канальный MOSFET транзистор.

Применение данной схемы – различные источники резервного питания, где нужна экономичность и стабильность.

Довольно часто возникает необходимость обеспечить резервное питания вашего устройства, в данной статье рассматривается 4 способа как обеспечить это.

Самый простой

Самый простой способ перейти на резервное питание-2 диода

Будет открыт только один из диодов, от того источника питания, напряжение на котором больше. Преимущества схемы-простота и дешевизна. Недостатки схемы очевидны, зависимость напряжения на нагрузке от тока, типа диода(шотки или обычный), температуры. Напряжение всегда будет ниже чем у источника на величину падения напряжения на диоде.

Немного сложней

Это схема немного сложнее, работает она следующим образом: когда напряжение VCC присутствует, и оно больше чем напряжение резервного источника(в данном случае это батарея BT2), то мосфет закрыт, потому что напряжение на затворе(Gate) выше чем на Истоке(Source), пропуск напряжения к нагрузке и Истоку обеспечивает открывшийся диод D3. Когда VCC пропадет, напряжение на Затворе пропадет вслед за ним, зато откроется диод внутри мосфета, обеспечив напряжение на Истоке, ну а поскольку на истоке теперь есть напряжение, а на Затворе нет, то транзистор полностью откроется, обеспечив коммутацию батареи без потери напряжения. Данный способ отлично подходит для коммутации питания для модуля GSM, внешнее напряжение выбираем 4,5в, тогда к модулю через диод D3 придет 4,2-4,3в а от батареи напряжение будет идти без потерь.

Дорогой но без потерь

Без потерь напряжения можно коммутировать источники с помощью специальных микрочхем, в частности LTC4412 скачать даташит Однако, эта микросхема бывает дефицитной и дорогой.

Оптимальный без потерь

Ну вот и подошли к оптимальному способу, причем без потерь. Для начала рассмотрим блок схему LTC4412

Сразу понятно, что в ней нет ничего сложного, так почему бы не повторить её на дискретных элементах? Блок PowerSorceSelector-это матрица из двух диодов, обеспечивает питание остальной схемы, A1-это компаратор, AnalogController-непонятно что, однако можно предположить, что ничего особо важного он не делает, позже станет понятно почему.

Попробуем изобразить это.

DA3-это компаратор. Он сравнивает напряжения на двух источниках. Питается через диод D4 или D5. Когда напряжение на VCC больше чем на батарее, на выходе компаратора устанавливается высокий уровень, это закрывает VT2, и открывает VT3, потому что он подключен на выход через инвертор. Таким образом, VCC проходит на нагрузку без потерь. В случае, когда VCC будет меньше батареи, низкий уровень на выходе компаратора закроет VT3 и откроет VT2.

Надо сказать пару слов о выборе деталей. DA3, DD1 должны иметь потребление, которое допустимо в данной системе, выбор очень широк, от единиц миллиампер, до сотен наноампер (например MCP6541UT-E/OT и 74LVC1G02). Диоды обязательно шотки, если падение на диоде будет выше порога открытия транзистора(а у IRLML6402TR он может быть -0,4в), то он не сможет полностью закрыться.

В работе электроснабжения коттеджа или загородного дома нередко случаются перебои в электропитании, особенно при большом удалении от мегаполисов. Для обеспечения автономного резервного электроснабжения сегодня предлагается немало эффективных приборов и схем, которые защищают чувствительную к перепадам напряжения бытовую технику и высокотехнологичное оборудование. Несложно представить себе, как чувствуют себя в глубинке хозяева домов в холодное время года при отключении электричества, особенно если на нем работает система автономного отопления и все электроприборы. Чтобы решить эту проблему, стоит установить в доме резервное электроснабжение.

Способы устранения перебоев в системе подачи электроэнергии

Выключение линии электропередач несет немало неудобства, и чтобы предотвратить многие проблемы, связанные с отключением электричества, разработано немало вариантов. Специалисты рекомендуют не отказывать себе во всех благах цивилизации, тем более, что ничего не надо изобретать - приборы для резервного электроснабжения дома есть в продаже. Они призваны стать альтернативным источником, который будет обеспечивать электричеством в том объеме, который длительное время будет обеспечивать работу основных электроприборов:

  • охранных и противопожарных систем;
  • принудительную вентиляцию и кондиционирование;
  • запуск твердотопливного котла;
  • насосы для работы водоснабжения и канализации;
  • бытовые электроприборы и другое оборудование.

Все они не могут работать без электросети, поэтому так важна эффективная схема резервного электроснабжения. У многих загородных построек не всегда гарантируется надежная работа централизованной подачи электричества. Из-за нестабильных характеристик напряжения в сети и частых неплановых отключений электроснабжения на несколько часов, а то и суток, такие системы или чувствительные электроприборы выходят из строя. Загородный дом не должен быть местом решения постоянных проблем, а отличным местом для отдыха. Бесперебойное автономное электроснабжение коттеджа или загородного домовладения должно функционировать стабильно - для работы всех систем жизнеобеспечения.

Существует несколько вариантов решения проблемы с перебоями электропитания. Например, монтаж автономного резервного источника электроснабжения бесперебойного типа, который можно приобрести вместе с комплектом АКБ (аккумуляторных батарей). Они способны работать автономно некоторое время, в зависимости от их мощности и общей нагрузки.

Аккумуляторы для резервной системы питания гарантирует бесперебойное снабжение электроэнергией потребителей при длительных отключениях сети или при отсутствии внешних электросетей в удаленных районах.

Проект резервного электроснабжения

В проект резервного электроснабжения входит вся документация, где учитывается суммарная мощность всех автономных источников. В систему резервного автономного энергоснабжения загородного дома могут входить и ультрасовременные мини-электростанции, и традиционные источники электричества. Чем больше предполагается источников питания сети, тем больше эффективность. Однако, в такой проект должны быть внесены все показатели мощности генераторов и емкости аккумуляторов.

Проектная мощность автономного резервного электроснабжения, включая инвертор, рассчитывается так - суммарная мощность работающих устройств плюсуется и умножается на 3. Это вызвано тем, что при запуске техника тянет максимальное количество энергии. Данный показатель учитывается для того, чтобы автономная сеть справлялась с максимально возможной нагрузкой по проектной мощности. В расчеты входят потребности электропитания питаемых схемой приборов:

  • активные нагревательные (плита и электрочайник, лампочки накаливания);
  • индуктивные (холодильник, стиральная машина, телевизор, микроволновка и пр.)

Их потребляемую мощность суммируют (по таблице или согласно прилагаемой инструкции) и добавляют 20-25% от максимальной величины, на тот случай, если все электроприборы будут работать одновременно. То есть, небольшая дача с минимальным освещением, телевизором и холодильником будет работать по схеме резервного электроснабжения загородного дома при мощности в 2 кВт. Если пользоваться электроинструментом и другими приборами, то прибавляем еще 5-6 кВт.

Разновидности генераторов

Сегодня наиболее распространенные автономные резервные источники электроснабжения:

  • станция бесперебойного питания;
  • дизельный генератор;
  • ветряной генератор;
  • бензиновый генератор;
  • инвертор.

1. Бензиновый электрогенератор считается одним из наиболее эффективных, хотя экономичным его не назовешь. Но для его достаточно при потребляемой мощности порядка 6 кВт. Такие источники энергии уместны там, где нет другой альтернативы, а бензин можно транспортировать без проблем. Например, если загородный дом стоит где-то у трассы или недалеко от бензоколонки.

Основные преимущества:

  • почти бесшумная работа;
  • хорошо запускается в зимний период;
  • может использоваться как резервный источник.

2. В большом домовладении потребление энергии довольно больше, особенно если много осветительных приборов и нет другого отопления, кроме электрокаминов. При потребляемой мощности более 6 кВт специалисты рекомендуют приобрести дизельный генератор. Однако тут тоже не обойдется без значительных финансовых вложений. Зато он работает практические в любых условиях.

3. Ветряной генератор, или в просторечии «ветряк», довольно эффективен, но он может быть установлен в местности, где всегда дуют довольно сильные ветра или тянут по гонному ущелью сезонные сквозняки.

4. Среди резервных источников электроснабжения нового поколения также нередко используются импульсные конденсаторы (ИКЭ). Прекрасная альтернатива другим системам автономного электропитания, практически инновационное оборудование, которое можно приобрести в готовом виде. Эти портативные модели предлагают улучшенные характеристики бесперебойного питания, которые могут работать автономно или в системе резервного электроснабжения. Они предполагают такой комплект:

  • преобразователь напряжения;
  • реле переключения от сети к аккумулятору;
  • зарядное устройство.

При подключении к схеме инвертора и автономных аккумуляторных батарей тоже получается мини-электростанция с достаточной мощностью.

Инверторная система на основе солнечных панелей

Во всем мире установка на крышу солнечных панелей - не новинка, а привычное дело. Правда стоит это дорого, но инвестиции через время окупаются. Энергия солнца легко преобразуется в переменный ток, однако не в каждом регионе ее достаточно для зарядки мощных батарей и полноценного обеспечения целого жилого дома.

В летнее время для зарядки аккумулятора для резервного электроснабжения этого может быть вполне достаточно, чтобы накапливать его для работы электросети в вечернее время - в течение нескольких часов. С дрогой стороны, такие панели оправданы, когда есть второй источник автономного электроснабжения, такой как дизельный генератор или инвертор.

Основное оборудование для работы по схеме получения энергии солнца и преобразования в электричество:

  • солнечные панели, монтируемые на крыше дома или в другом месте;
  • контроллер электрической зарядки;
  • автоматическая защита постоянного/переменного тока;
  • набор аккумуляторных батарей большой емкости;
  • инверторный блок требуемой мощности.

Получается небольшая домашняя электростанция на территории удаленного больших городов коттеджа. Она может быть дополнена эффективной схемой инверторного типа, где источники энергии призваны эффективно дополнять друг друга.

Система инверторного типа идеально подходит для обеспечения бесперебойного питания в комплексе с солнечными панелями. Генератор можно отключать, пока работает аккумулятор, заряжаемый от энергии солнца, существенно увеличивая срок его работы.

Инвертор

Инвертор - важная составляющая автономного электроснабжения загородного дома или коттеджа. Он дает возможность периодически отключать генератор, чтобы минимизировать расходы топлива. За рубежом, как альтернативная схема обеспечения электричеством, инверторы считаются неотъемлемой частью автономного электропитания. Они универсальны и в том случае, когда нет возможности использовать энергию ветра и солнца.

Этот аппарат сверхнадежен, функционирует по схеме «включи и забудь». Современные инверторы гарантируют бесперебойное резервное питание не только объектов недвижимости, но и «мобильного» жилья типа вагончики, яхты и авто-трейлеры и пр.

Для защиты от перебоев электропитания при отключении электричества хорошо справляется инвертор для резервного электроснабжения дома. При напряжении 220В он способен обеспечить снабжение электроэнергией, при минимальных затратах на обслуживание. При этом он предоставляет возможность подключать аккумуляторные батареи, дающие длительное резервное снабжение электричеством. Инверторы относят к линейке наиболее выносливых ИБП для использования домашних электроприборов и чувствительной к перепадам напряжения технике.

Важные плюсы инвертора:

  • бесшумное функционирование;
  • возможность установки в любом помещении;
  • минимальный уход и обслуживание;
  • высокая надежность;
  • длительная гарантия производителя;
  • отменное качество;
  • стабильная подача электричества;
  • автоматический переход с подключением на схему резервного электроснабжения.

Инвертор при отключении питания линии электропередач на улице или в поселке сроком до суток - вне конкуренции. Бесперебойное электроснабжение дачи или загородного участка с помощью инвертора при частом отключении выгоднее схемы работы с генератором.

Совет: Как вариант - генератор плюс инвертор. Тут суммируются их «плюсы» и нивелируются «минусы». Инвертор способен запустить генератор если разряжены аккумуляторы, а потом отключится без необходимости. Генератор шумит, поэтому целесообразно включать его днём, пока находиться на работе или вне дома, а вечером переходить на бесшумный инвертор.

Особенности работы электрогенератора

Электрические генераторы работают на разных источниках энергии и вырабатывают:

  • 1-фазный ток - для питания приборов на 220 Вт;
  • 3-фазный ток - на 380 Вт.

Генератор для резервного электроснабжения очень эффективен, а его мощность может превышать 16 кВт, поэтому вполне подходит для полноценного автономного обеспечения загородного дома. Как вариант - для поддержки бесперебойного питания при частых отключениях электричества.

Генератор открытого исполнения идет в комплекте с:

  • автоматической системой вентиляции;
  • щитом для обеспечения работы;
  • системой газоотведения выхлопов;
  • модулем автоматической топливной дозаправки;
  • системой автоматического тушения пламени (противопожарные меры).

Минусы генератора:

Без смены фильтров, свечей и масла генератор выходит из строя, а также ему требуется:

  • помещение с вентиляцией;
  • канистры для транспортировки дизельного топлива или качественной зимней солярки для работы в холодное время года;
  • фоновый шум и претензии соседей при несогласованных включениях;
  • запах перерабатываемого дизтоплива;
  • потребность в периодическом облуживании, заправке и контроле работы;
  • соблюдение графика замены расходных материалов.

Хотя этих проблем не так много, чтобы отказаться от возможности его использования, но это нарушает покой и нормальный отдых в загородном доме. И хотя он гарантирует резервное электроснабжение и бесперебойное питание дома, его лучше использовать в комплексе с другими системами и в отсутствие хозяев дома.

Именно по этой причине дизельные электрогенераторы чаще всего применяется как резервный источник обеспечения электричеством. Сегодня на отечественном рынке предлагается немало разновидностей дизель-генераторов, используемых для резервного электроснабжения загородных домов, а также для отопления и подачи воды. Современные дизельные электростанции идут в модульном и классическом (открытом) варианте.

Для обеспечения бесперебойной работы любого электронного устройства необходимо резервировать питание, или иными словами – вводить в схему дополнительные (резервные) источники электроэнергии. Для гарантированной непрерывной работы требуется как минимум один источник независимого питания. Как правило, это аккумуляторная батарея .

Самое приятное в этой задаче – простота реализации. Для резервирования питания любой маломощной электронной схемы достаточно всего три компонента: выпрямительный диод , резистор и аккумулятор .

Схема резервирования

Схема резервирования питания может выглядеть как-то так:

Рисунок 1. Простая схема резервного питания устройства.

Схема условно состоит из трёх частей: сетевой (левая часть схемы), к выходным клеммам 2-3 которого подключено электронное устройство (правая часть схемы); параллельно с выходом источника питания подключается аккумулятор GB1 через зарядное сопротивление R1 и нагрузочный диод VD1.

Для нормальной работы схемы источника питания должно быть чуть выше номинального напряжения аккумулятора GB1. При недостаточном напряжении источника питания аккумулятор GB1 всегда будет в недозаряженном состоянии, что ускорит ухудшение его характеристик. При напряжении источника питания, значительно превышающего напряжение батареи, будет происходить её перезаряд с преждевременным ухудшением характеристик, и кроме того, при питании устройства от батареи в режиме резервирования питания может наблюдаться недостаток напряжения питания. Это может быть критично для работы схем от стабилизированного питания, не имеющих собственной стабилизации напряжения.

Принцип действия

Представленная к рассмотрению схема имеет два режима работы, которые есть смысл рассматривать:

Нормальный режим питания

Рассмотрим рисунок 2.

Рисунок 2. Нормальный режим питания схемы.

В нормальном режиме сетевой источник питания обеспечивает энергией электронное устройство и параллельно заряжает аккумуляторную батарею GB1 через зарядное сопротивление R1. VD1 в этом режиме заперт, поскольку на его катоде присутствует повышенный потенциал от источника питания, по отношению к электрическому потенциалу анода, подключенному к аккумуляторной батарее. Это исключает возникновение недопустимо большого заряда при сильно разряженной батарее, и перегрузку источника питания. Максимальный ток заряда ограничивает R1. В идеале его нужно подобрать таким образом, чтобы при полном заряде батареи через него протекал ток, равный по величине току утечки батареи.

Стрелками красного цвета показаны токи. Ток источника питания складывается из тока электронного устройства и тока заряда батареи.

Режим резервного питания

Переходим к рисунку 3.

Рисунок 3. Режим резервного питания.

При исчезновении или значительном снижении напряжения со стороны сетевого источника питания, когда электрический потенциал на катоде диода VD1 становится ниже потенциала его анода, подключенного к аккумулятору, диод открывается и через него течёт основной ток нагрузки, питающий устройство. Через R1 так же будет протекать часть тока нагрузки. Ток нагрузки показан стрелками зелёного цвета.

При восстановлении напряжения со стороны сетевого источника питания, электрический потенциал катода снова возрастает, диод запирается, и схема переходит в нормальный режим питания, при котором энергией источника питания снабжается устройство и заряжается аккумуляторная батарея GB1.

Если в данной схеме использовать батарею из обычных гальванических элементов питания, то необходимо исключить из схемы резистор R1 для исключения процесса заряда, к которому они не приспособлены. При расходовании энергии элементов, они подлежат замене на новые.