Емкость конденсатора, их типы, маркировка и применение. Типы конденсаторов

  • 13.10.2019

Сегодня на рынке электронных компонентов существует много разных типов конденсаторов, и каждый тип обладает своими собственными преимуществам и недостатками. Некоторые способны работать при высоких напряжениях, другие отличаются значительной емкостью, у третьих мала собственная индуктивность, а какие-то характеризуются исключительно малым током утечки. Все эти факторы определяют области применения конденсаторов конкретных типов.

Рассмотрим, какие же бывают типы конденсаторов. Вообще их очень много, но здесь мы рассмотрим основные популярные типы конденсаторов, и разберемся, как этот тип определить.

Например К50-35 или К50-29, состоят из двух тонких полосок алюминия, скрученных в рулон, между которыми в качестве диэлектрика помещается пропитанная электролитом бумага. Рулон помещается в герметичный алюминиевый цилиндр, на одном из торцов которого (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.

Ёмкость электролитических конденсаторов измеряется микрофарадами, и может быть от 0.1 мкф до 100 000 мкф. Значительная емкость электролитических конденсаторов, по сравнению с другими типами конденсаторов, и является их главным преимуществом. Максимальное рабочее напряжение электролитических конденсаторов может достигать 500 вольт. Максимально допустимое рабочее напряжение, как и емкость конденсатора, указываются на его корпусе.

Есть у этого типа конденсаторов и недостатки. Первый из которых — полярность. На корпусе конденсатора отрицательный вывод помечен знаком минус, именно этот вывод должен быть, при работе конденсатора в схеме под более низким потенциалом, чем другой, или конденсатор не сможет нормально накапливать заряд, и скорее всего взорвется, или будет в любом случае испорчен, если долго держать его под напряжением неверной полярности.

Именно по причине полярности, электролитические конденсаторы применимы лишь в цепях постоянного или пульсирующего тока, но никак не напрямую в цепях переменного тока, только выпрямленным напряжением можно заряжать электролитические конденсаторы.

Второй недостаток конденсаторов этого типа — высокий ток утечки. По этой причине не получится использовать электролитический конденсатор для длительного хранения заряда, но он вполне подойдет в качестве промежуточного элемента фильтра в активной схеме.

Третьим недостатком является то, что емкость конденсаторов этого типа снижается с ростом частоты (пульсирующего тока), но эта проблема решается установкой на платах параллельно электролитическому конденсатору еще и керамического конденсатора сравнительно небольшой емкости, обычно в 10000 меньшей, чем у стоящего рядом электролитического.

Теперь поговорим о танталовых конденсаторах . Примером могут служить К52-1 или smd А. В их основе пентаоксид тантала. Суть в том, что при окислении тантала образуется плотная не проводящая оксидная пленка, толщину которой можно технологически контролировать.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода. Технологическая цепочка при производстве довольно сложна. В начале создают анод из чистого прессованного танталового порошка, который спекают в глубоком вакууме при температуре от 1300 до 2000°C, чтобы получилась пористая структура.

Затем, путем электрохимического окисления, на аноде формируют диэлектрик в виде пленки пентаоксида тантала, толщину которой регулируют меняя напряжение в процессе электрохимического окисления, в результате толщина пленки получается всего от сотен до тысяч ангстрем, но пленка имеет такую структуру, что обеспечивает высокое электрическое сопротивление.

Следующий этап — формирование электролита, которым выступает полупроводник диоксид марганца. Солями марганца пропитывают танталовый пористый анод, затем его подвергают нагреву, чтобы диоксид марганца появился на поверхности; процесс повторяют несколько раз до получения полного покрытия. Полученную поверхность покрывают слоем графита, затем наносят серебро — получается катод. Структуру затем помещают в компаунд.

Танталовые конденсаторы похожи свойствами на алюминиевые электролитические, однако имеют особенности. Их рабочее напряжение ограничено 100 вольтами, емкость не превышает 1000 мкф, собственная индуктивность у них меньше, поэтому применяются танталовые конденсаторы и на высоких частотах, достигающих сотен килогерц.

Недостаток их заключается в крайней чувствительности к превышению максимально допустимого напряжения, по этой причине танталовые конденсаторы выходят из строя чаще всего из-за пробоя. Линия на корпусе танталового конденсатора обозначает положительный электрод — анод. Выводные или SMD танталовые конденсаторы можно встретить на современных печатных платах многих электронных устройств.

Например типов К10-7В, К10-19, КД-2, отличаются относительно большой емкостью (от 1 пф до 0,47 мкф) при малых размерах. Их рабочее напряжение лежит в диапазоне от 16 до 50 вольт. Их особенности: малые токи утечки, низкая индуктивность, дающая им возможность работать при высоких частотах, а также малые размеры и высокая температурная стабильность емкости. Такие конденсаторы успешно работают в цепях постоянного, переменного и пульсирующего тока.

Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки - не более 3 мкА. Керамические конденсаторы устойчивы в внешним факторам, таким как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.

Керамические дисковые конденсаторы широко применяются в сглаживающих фильтрах источников питания, при фильтрации помех, в цепях межкаскадной связи, и почти во всех радиоэлектронных устройствах.

Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф.

Например К10-17А или К10-17Б, в отличие от однослойных, имеют в своей структуре чередующиеся тонкие слои керамики и металла. Их емкость поэтому больше, чем у однослойных, и может легко достигать нескольких микрофарад. Максимальное напряжение также ограничено здесь 50 вольтами. Конденсаторы этого типа способны, так же как и однослойные, исправно работать в цепях постоянного, переменного и пульсирующего тока.

Способны работать при высоком напряжении от 50 до 15000 вольт. Их емкость лежит в диапазоне от 68 до 100 нф, и работать такие конденсаторы могут в цепях постоянного, переменного или пульсирующего тока.

Их можно встретить в сетевых фильтрах в качестве X/Y конденсаторов, а также в схемах вторичных источников питания, где они используются для устранения синфазных помех и поглощения шума если схема высокочастотная. Порой без применения этих конденсаторов, выход из строя устройства может угрожать жизни людей.

Особый тип высоковольтных керамических конденсаторов — конденсатор высоковольтный импульсный , применяемый для мощных импульсных режимов. Примером таких высоковольтных керамических конденсаторов являются отечественные К15У, КВИ и К15-4. Эти конденсаторы способны работать под напряжением до 30000 вольт, а высоковольтные импульсы могут следовать с высокой частотой, до 10000 импульсов в секунду. Керамика обеспечивает надежные диэлектрические свойства, а особая форма конденсатора и расположение обкладок препятствует пробою снаружи.

Такие конденсаторы весьма популярны в качестве контурных в мощной радиоаппаратуре и очень приветствуются, например, тесластроителями (для конструирования на искровом промежутке или на лампах, - SGTC, VTTC).

Например K73-17 или CL21, на основе металлизированной пленки широко применяются в импульсных блоках питания и электронных балластах. Их корпус из эпоксидного компаунда придает конденсаторам влагостойкости, теплостойкости и делает их устойчивыми к воздействию агрессивных сред и растворителей.

Полиэстеровые конденсаторы выпускаются емкостью от 1 нф до 15 мкф, и рассчитаны на напряжение от 50 до 1500 вольт. Их отличает высокая температурная стабильность при высокой емкости и небольших размерах. Цена полиэстеровых конденсаторов не высока, поэтому они весьма популярны во многих электронных устройствах, в частности в балластах энергосберегающих ламп.

Маркировка конденсатора содержит на конце букву, обозначающую допуск по отклонению емкости от номинальной, а также букву и цифру в начале маркировки, обозначающие допустимое максимальное напряжение, например 2А102J - конденсатор на максимальное напряжение 100 вольт, емкостью 1 нф, допустимое отклонение емкости +-5%. Таблицы для расшифровки маркировки можно легко найти в интернете.

Широкий диапазон емкостей и напряжений, дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсного токов.

Полипропиленовые конденсаторы , например К78-2, в отличие от полиэстеровых, в качестве диэлектрика имеют полипропиленовую пленку. Конденсаторы этого типа выпускаются емкостью от 100 пф до 10 мкф, а напряжение может достигать 3000 вольт.

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tgδ может не превышать 0,001. Такие конденсаторы широко используются, например, в индукционных нагревателях, и могут работать на частотах измеряемых десятками и даже сотнями килогерц.

Отдельного упоминания заслуживают пусковые полипропиленовые конденсаторы , такие например, как CBB-60. Эти конденсаторы используют для пуска асинхронных двигателей переменного тока. Они наматываются металлизированной полипропиленовой пленкой на пластиковый сердечник, затем рулон заливается компаундом.

Корпус конденсатора выполнен из материала не поддерживающего горение, то есть конденсатор полностью пожаробезопасный и подходит для работы в тяжелых условиях. Выводы могут быть как проводными, так и под клеммы и под болт. Очевидно, конденсаторы этого типа предназначены для работы на промышленной сетевой частоте.

Пусковые конденсаторы выпускаются на переменное напряжение от 300 до 600 вольт, а диапазон типичных емкостей — от 1 до 1000 мкф.

Андрей Повный

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Конденсатор представляет собой две пластины, разделенные слоем диэлектрика. Если к обкладкам положить постоянное напряжение, то одна пластина зарядится положительно, другая отрицательно. После отключения конденсатора заряды на обкладках сохранятся, что позволяет использовать этот прибор в качестве накопителя электрической энергии. Количество накопленной энергии (емкость) зависит от площади обкладок, их материала, свойств и типа диэлектрика, проложенного между обкладками. Основная единица измерения емкости – фарад (Ф). Это достаточно большая величина, на практике обычно используются доли фарада — микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

1Ф = 1000000мкФ;
1мкФ = 1000нФ;
1нФ = 1000 пФ.

Второй параметр любого конденсатора, который очень важен – номинальное (рабочее) напряжение конденсатора. Это напряжение, подводимое к обкладкам, превышать которое нельзя, иначе конденсатор выйдет из строя. Напряжение в вольтах и емкость нередко обозначаются на корпусе самого конденсатора.

Следующий параметр присущ не всем типам конденсаторов – полярность. Если конденсатор полярный, то к его выводам можно прикладывать только постоянное напряжение, причем «+» источника на положительную обкладку, «-» – на отрицательную. Полярность тоже обозначается на корпусе, чаще маркировкой одного вывода (либо «+» либо «-«).

Вот так полярность обозначается на smd-конденсаторах

Полоска «минусов» расположена напротив вывода «-«

А на отечественных конденсаторах «плюсик» может стоять прямо на корпусе (сбоку или на торце)

У этого типа «минус» всегда на корпусе

Если конденсатор неполярный, то он может работать в цепях переменного и постоянного тока, причем во втором случае за полярностью напряжения следить не нужно.

На электрических схемах конденсаторы обозначаются следующим образом:

Здесь слева неполярный конденсатор, а второе и третье обозначение соответствует полярному конденсатору, причем на третьем рисунке знак «+» может отсутствовать.

И в качестве примера:

Конденсаторы на схемах обозначаются символом С, таким образом конденсатор С1 — неполярный емкостью 100 нанофарад, С2 — полярный, емкостью 30 микрофарад на номинальное напряжение 15 В.

Важно! Заменить конденсатор можно любым подходящей емкости и соответствующего типа, но на напряжение НЕ НИЖЕ указанного на схеме. Выше — пожалуйста.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.

Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов

  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры

  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры

  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.