Какие параметры транзисторов в cmos микросхемах. Логические элементы кмоп

  • 11.05.2019

Для проектирования цифровых ИС кроме биполярных п-р-п- и p-n-p-транзисторов используются также униполярные полевые и -канальные транзисторы (рис. 5.17,а), которые называются МОП-транзисторами (МOS-transistors; MOS - Metal-Oxide-Semiconductor - металл-окисел-полупроводник). В общем случае полевой транзистор имеет четыре электрода: исток S (Source), сток D (Drain), затвор G (Gate) и подложка SS (Substrate). Вывод затвора в изображении полевых транзисторов смещается ближе к истоковому выводу. Изображение канала с обогащением штриховой линией символизирует отсутствие проводимости между стоком и истоком при нулевом напряжении затвор-исток. На рис. 5.17,а символами "+" и "-" обозначены полярности напряжений на электродах для нормального режима работы полевого транзистора. Подложка обычно подключается к истоку или к одному из полюсов источника питания.

На рис. 5.17,6 показана схема включения пары комплементарных транзисторов (транзисторов с разными типами каналов), представляющая собой электронный ключ - инвертор (ЛЭ НЕ). Особенностью данного ключа является отсутствие тока через транзисторы в статическом состоянии, так как при любом значении входного сигнала один из последовательно включенных транзисторов закрыт. Ключ потребляет ток только при его переключении на интервале времени, в течение которого изменяется входной сигнал. На этом интервале оба транзистора

открыты, так как входной сигнал имеет значения приводит к значениям разностей напряжений между затворами и истоками и -канальных транзисторов, значительно отличающимися от нулевых. Наибольший ток протекает при

Полевые транзисторы позволяют построить не только цифровые, но и аналоговые ключи для коммутации двуполярных аналоговых сигналов, что невозможно сделать на биполярных транзисторах. На рис. 5.17,в показан основной элемент такого аналогового ключа (вместо потенциала земли для коммутации Двуполярных сигналов следует подать отрицательное напряжение При значениях оба транзистора закрыты (сопротивление закрытого ключа составляет ротни ключ разомкнут, а при открывается один из транзисторов в зависимости от полярности коммутируемого входного напряжения В этом Случае сопротивление между полюсами ключа проставляет от единиц до сотен Ом в зависимости от типа (сопротивленйе открытого ключа). Чем меньше зависимость величины напряжения коммутируемого сигнала, тем выше линейность ключа. При проектировании аналоговых ключей принимают меры по улучшению их линейности. Вход и выход аналогового ключа неразличимы - входом будет тот полюс ключа, на который подан коммутируемый сигнал.

Разработаны три основные технологии изготовления ИС на полевых транзисторах:

МОП технология (n-MOS technology),

МОП технология p-MOS technology),

КМОП технология CMOS technology; CMOS - Complementary MOS).

Все эти технологии постоянно совершенствуются с целью увеличения быстродействия и степени интеграции элементов на кристалле. К настоящему времени разработано несколько десятков этих технологий.

Схемотехника КМОП ИС. Первые КМОП ИС серии были разработаны фирмой в 1968 г. , затем была выпущена серия вытесненная впоследствии ( серией с улучшенными характеристиками. Данные серии ИС выпускают многие зарубежные фирмы, например, серии Серии серии серий и др. Общим

недостатком ИС всех этих серий является их низкое быстродействие (время задержки сигналов достигает сотен не) и малые значения выходных токов.

В 1981 г. фирмами Motorola и National Semiconductor были разработаны ИС серий близкие по физическим параметрам к сериям В частности, быстродействие этих КМОП и ТТЛ серий одинаково (среднее время задержки вентиля не). Еще большее быстродействие было достигнуто в КМОП сериях разработанных в 1985 г. фирмой Texas Instruments Inc. (). Положительные свойства как ТТЛ ИС, так и КМОП ИС были реализованы фирмой в ИС серии ВСТ (1987 г.), изготовляемых по BiCMOS-технологии технология с размещением биполярных и КМОП транзисторов на одном кристалле с уровнями входных и выходных сигналов ИС, совместимых с ТТЛ-уровнями) .

В табл. 5.9 приведено соответствие отечественных и зарубежных серий КМОП ИС. Напряжение питания у КМОП ИС можно изменять в широких пределах - чем выше напряжение питания, тем больше быстродействие ИС. По выполняемым функциям и (или) нумерации выводов ИС серий 4000 в большинстве своем отличаются от ТТЛ ИС аналогичного функционального назначения. Функциональный ряд ИС серий включает в себя часть ИС как ТТЛ серий 54/74, так и КМОП серий с одинаковыми номерами во всех этих сериях имеют одинаковое функциональное назначение и нумерацию выводов).

На рис. 5.18, а показаны цепи диодной защиты входов и выходов ЛЭ от электростатического напряжения у ИС серии а на рис. 5.18,6 - у ИС серии Такую защиту входов и выходов имеют все цифровые ИС, кроме преобразователей уровней напряжений которых используется другой вариант защиты входов (рис. 5.19). При первом варианте защиты входов уровни входных сигналов не должны превышать напряжения питания из-за открывания диода, включенного между входом и полюсом При втором варианте защиты уровни входных сигналов могут в несколько раз превышать значение не выводя ИС из строя (избыточное напряжение гасится на резисторе). В этом случае ИС работает как понижающий преобразователь уровня логической 1. Входная цепь обеспечивает также защиту от отрицательных значений напряжений входных сигналов. В

(см. скан)

дальнейшем цепи защиты входов и выходов, как правило, показываться не будут.

Различие между сериями (рис. 5.19,а) и (рис. 5.19,6) заключается в наличии на выходах ИС последней дополнительных буферов для развязки ИС от внешней среды. Вместо серии в настоящее время выпускается серия с небуферированными выходами, имеющая аналогичные электрические параметры (UB - Unbuffered, В - Buffered). Наличие в серии CD40005 дополнительных выходных буферов приводит к увеличению задержек сигналов в ЛЭ, но улучшает переключательные характеристики. Сравнительная характеристика этих серий приведена в табл. 5.10.

Таблица 5.10. (см. скан) Параметры ИС серий CD4000B и CD4000UB

Реализация аналогового ключа показана на рис. 5.20. При значении сигнала ОЕ = 1 (ОЕ - Output Enable) ключ открыт, а при закрыт. В закрытом состоянии ключ характеризуется большим выходным импедансом и принято говорить, что выход находится в Z-cостоянии. Вместо

потенциала земли можно подать отрицательное напряжение но при этом должно выполняться условие

Схема двухвходового представлена на рис. 5.21. Выходной каскад на двух комплементарных транзисторах является буферным каскадом, так как он изолирует все внутренние связи от выхода ЛЭ. Различие между небуферированной и буферированной сериями наглядно видно из рис. 5.22, где представлены выполняющие одинаковые функции Другое схемотехническое исполнение ЛЭ 2И-НЕ показано на рис. 5.23.

Универсальный набор элементов, состоящий из двух комплементарных пар МОП-транзисторов и инвертора, реализован в (рис. 5.24). Данный набор позволяет пользователю с помощью внешних соединений выводов ИС получать аналоговые коммутаторы и

аналоговый двухканальный коммутатор (рис. 5.25) - соединены выводы 2 и 9; 4 и 11; 3 и 6; 8, 10 и 13; 1, 5 и 12;

три инвертора - соединить выводы 2, 11 и 14; 4, 7 и 9; 8 и 13 (выход НЕ со входом 6); 1 и 5 (выход НЕ со входом 3); 10 - вход выход НЕ;

3ИЛИ-НЕ - соединить выводы 4, 7 и 9; и 11; 5, 8 и 12 (выход ЛЭ со входами 3, 6 и 10);

3И-НЕ - соединить выводы 2, 11 и 14; 4 и 8; 5 и 9; 1, 12 и 13 (выход ЛЭ со входами 3, 6 и 10);

ЛЭ, реализующий функцию соединить выводы 2 и 14; 4, 8 и 9; 1 и 11; 5, 12 и 13 (выход

ЛЭ, реализующий функцию соединить выводы 2 и 14; 7 и 9; 4 и 8; 1, 11 и 13; 5 и 12 (выход ;

инвертор с Z-состоянием выхода, выполняющий функцию

При и Z-состояние выхода при соединить выводы 8, 11 и 13;

По сравнению с ТТЛ ИС следует отметить следующие достоинства КМОП ИС серий 4000 (серий 561 и 1561):

малая мощность потребления в диапазоне частот до (в статическом режиме мощность потребления составляет на вентиль);

большой диапазон напряжения питания можно использовать нестабилизированный источник питания; очень высокое входное сопротивление ( большая нагрузочная способность на частотах до

малая зависимость характеристик от температуры. К недостаткам КМОП ИС серий 4000 (серий 561 и 1561) следует отнести:

повышенное выходное сопротивление (0,5 ... 1 кОм); большое влияние емкости нагрузки и напряжения питания на время задержки, длительность фронтов и потребляемую мощность;

большие времена задержек и длительности фронтов; большой разброс всех параметров.

Графики зависимостей рассеиваемой мощности от частоты для КМОП и ТТЛ ИС пересекаются на некоторой частоте, поскольку у ТТЛ ИС динамическая мощность очень слабо зависит от частоты переключения. На предельно допустимых частотах мощность потребления КМОП ИС оказывается такого же порядка, что и у ТТЛ ИС.

В статическом режиме (без перегрузки) у КМОП ИС уровни выходных сигналов значительно отличаются от уровней У КМОП ИС в отличие от типовых значений Требования к уровням входных сигналов также значительно различаются: у КМОП ИС в отличие от Соответственно различаются пороги переключения: для КМОП BС и 1,2 В для ТТЛ BС. Это вызывает определенные трудности при использовании в одном устройстве ТТЛ и уровень

При Способы согласования уровней будут рассмотрены в § 5.6.

В сериях выпускаются КМОП ИС двух типов: серии не согласованные по входам с ТТЛ ИС, и серии согласованные по входам с ТТЛ ИС (не требующие дополнительного преобразования уровней). Эти серии различаются выполнением входных и выходных цепей ИС, показанных на рис. 5.26,а для ИС серий на рис. 5.26,б - для ИС серий на рис. 5.27 - для ИС серий и на рис. 5.28 - для ИС серий Пороги переключения у ИС серий находятся между , а у ИС серий порог переключения равен при требовании к уровням входных сигналов, задаваемом неравенствами

Помехоустойчивость ИС серий приведена в табл. 5.11, из которой видно, что она значительно выше, чем у ТТЛ серий (см. табл. 5.5). Предельные значения параметров ИС этих серий указаны в табл. 5.12, а рекомендуемые условия эксплуатации

(см. скан)

В табл. 5.13 .

Интегральные схемы КМОП серий, имеющие одинаковые номера (у зарубежных ИС) или одинаковые буквенно-цифровые обозначения (у отечественных ИС раздельно по группам серий 176/561/564/1561 и 1564/1554), выполняют одинаковые функции и совпадают по разводке внешних выводов. В дальнейшем на рисунках для ИС КМОП серий будет указываться название ИС только одной конкретной серии, хотя аналогичные ИС могут быть и в других сериях.

Рис. 5.29 (см. скан)

На рис. 5.29 представлены ЛЭ И-НЕ, И, НЕ, ИЛИ-НЕ и сумма по модулю два, выпускаемые отечественной промышленностью. На графических обозначениях указаны номера аналогов зарубежных ИС. Логические элементы серии 176 приведены на рис. 5.30. Применение было рассмотрено выше при описании ее зарубежного аналога комплементарные пары транзисторов, G - затвор, стоки р-канального и n-канального транзисторов, SP и SN - истоки

(кликните для просмотра скана)

p-канального и n-канального транзисторов). Зарубежные ЛЭ, не имеющие в настоящее время отечественных аналогов, показаны на рис. 5.31 и 5.32.

Рис. 5.32 (см. скан)

Параметры ИС КМОП серии приведены в табл. , а в табл. П2.3 - параметры ИС серий 4000 , которые в первую очередь следует учитывать при проектировании цифровых и микропроцессорных устройств. Параметры отечественных ИС серий 176, 561 и 1561 можно найти в справочниках , а ИС серии 1554 - в . Полезный справочный материал по ИС КМОП серий имеется в .

Интегральные схемы серий 54.АС11000/74.АС11000.

Для уменьшения уровня помех у быстродействующих КМОП ИС, возникающих при переключении ЛЭ, предпочтительнее использовать центральное расположение выводов питания на

кристалле, причем выходы ИС следует располагать на той стороне, где находится общий вывод питания (GND). Фирма выпустила серии где число И указывает на центральное расположение выводов питания ИС, а числа порядковый номер ИС, как и в остальных сериях На рис. 5.33 приведены ЛЭ этих серий.

Интегральные схемы серий SN54BCT/SN74BCT.

Как указывалось выше, ИС данных серий изготовляются по BiMOS технологии. Входные цепи ИС выполняются по схеме, приведенной на рис. 5.34,а, что делает входы этих ИС совместимыми с ТТЛ-уровнями входных сигналов.

В микропроцессорных системах в большом количестве используются шинные драйверы и приемопередатчики, причем в каждый момент времени в активном состоянии находится приемопередатчик или драйвер только одного внешнего устройства, а остальные - в Z-состоянии. Драйверы и приемопередатчики, выполняемые по ТТЛ технологиям, в Z-состоянии выходов потребляют ток того же порядка, что и в активном состоянии выходов, хотя не выполняют большую часть времени полезной работы.

Основная цель разработки BiMOS ИС и заключалась в резком снижении потребляемого тока в Z-состоянии выходов ИС, предназначенных для проектирования внешних устройств микропроцессорных систем. На рис. показана схема -состоянием выхода, выполненного по BiMOS технологии входная цепь, показанная на рис. 5.34,а).

Неиспользуемые входы ИС.

При проектировании цифровых устройств на ИС могут использоваться не все их входы. Исходя из логики работы разрабатываемого устройства, на эти входы следует подать либо логический уровень 0, либо уровень 1. Логический уровень 0 как в ТТЛ, так и в КМОП ИС подается подключением неиспользуемого входа к корпусу Логический уровень 1 подается на неиспользуемые входы подключением их к источнику напряжения питания (ТТЛ ИС) или (КМОП ИС), однако входы ТТЛ ИС серий 54/74, , в которых используются многоэмиттерные транзисторы, рекомендуется подключать к источнику питания через токоограничивающий резистор для защиты от скачков напряжения, возникающих, например, при включении питания.

Для конкретной серии микросхем характерно использование типового электронного узла — базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

Ниже рассмотрим особенности базовых логических элементов различных логик.

Элементы транзисторно-транзисторной логики

Характерной особенностью ТТЛ является использование многоэмиттерных транзисторов. Эти транзисторы сконструированы таким образом, что отдельные эмиттеры не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный может моделироваться схемой на диодах (см. пунктир на рис. 3.27).

Упрощенная схема ТТЛ-элемента приведена на рис. 3.27. При мысленной замене многоэмиттерного транзистора диодами получаем элемент диодно-транзисторной логики «И-НЕ». Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то базы транзистора Т 2 будет равен нулю, и на коллекторе транзистора Т 2 будет высокий уровень напряжения. Если на оба входа подать высокий уровень , то через базу Т 2 транзистора будет протекать большой базовый и на коллекторе транзистора Т 2 будет низкий уровень , т. е. данный элемент реализует функцию И-НЕ:

u вых = u 1 · u 2 . Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 3.28).

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и Т 2 закрыт, а следовательно, закрыт и транзистор Т 4 , т. е. на выходе будет высокий уровень . Если на обоих входах одновременно действует высокий уровень напряжения, то Т 2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т 4 и запиранию транзистора Т 3 , т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Базовый логический элемент ТТЛШ (на примере серии К555)

В качестве базового элемента серии микросхем К555 использован элемент И-НЕ. На рис. 3.29, а изображена схема этого элемента, а условное графическое обозначение приведено на рис. 3.29, б .

Такой эквивалентен рассмотренной выше паре из обычного транзистора и диода Шоттки. ТранзисторVT 4 — обычный биполярный транзистор.

Если оба входных напряжения u вх1 и u вх2 имеют высокий уровень, то диодыVD 3 и VD 4 закрыты, транзисторы VT 1 ,VT 5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется низкого уровня, то транзисторы VT 1 и VT 5 закрыты, а транзисторы VT 3 и VT 4 открыты, и на входе имеет место напряжение низкого уровня. Полезно отметить, что транзисторы VT 3 и VT 4 образуют так называемый составной (схему Дарлингтона).

Микросхемы ТТЛШ

Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

● питания +5 В;

выходное напряжение низкого уровня — не более 0,4 В;

● выходное высокого уровня — не менее 2,5 В;

● помехоустойчивость — не менее 0,3 В;

● среднее время задержки распространения сигнала — 20 нс;

● максимальная рабочая частота — 25 МГц.

Микросхемы ТТЛШ обычно совместимы по логическим уровням, помехоустойчивости и питания с микросхемами ТТЛ. Время задержки распространения сигнала элементов ТТЛШ в среднем в два раза меньше по сравнению с аналогичными элементами ТТЛ.

Особенности других логик

Основой базового логического элемента ЭСЛ является токовый ключ. Схема токового ключа (рис. 3.30) подобна схеме дифференциального усилителя.

Необходимо обратить внимание на то, что микросхемы ЭСЛ питаются отрицательным напряжением (к примеру, −4,5 В для серии К1500). На базу транзистора VT 2 подано отрицательное постоянное опорное напряжение U оп. Изменение входного u вх1 приводит к перераспределению постоянного тока i э0 , заданного сопротивлением R э между транзисторами, что имеет следствием изменение напряжений на их коллекторах. Транзисторы не входят в режим насыщения, и это является одной из причин высокого быстродействия элементов ЭСЛ.

Микросхемы серий 100, 500 имеют следующие параметры:

● питания −5,2 В;

● потребляемая мощность — 100 мВт;

● коэффициент разветвления по выходу — 15;

● задержка распространения сигнала — 2,9 нс.

В микросхемах n-МОП и p-МОП используются ключи соответственно на МОП-транзисторах с n-каналом и динамической нагрузкой (рассмотрены выше) и на МОП-транзисторах с p-каналом.

В качестве примера рассмотрим элемент логики n-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31).

Он состоит из нагрузочного транзистора Т 3 и двух управляющих транзисторов Т 1 и Т 2 . Если оба транзистора Т 1 и Т 2 закрыты, то на выходе устанавливается высокий уровень . Если одно или оба напряжения u 1 и u 2 имеют высокий уровень, то открывается один или оба транзистора Т 1 и Т 2 и на выходе устанавливается низкий уровень , т. е. реализуется функция u вых = u 1 + u 2.

Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они отличаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).

КМОП — логический элемент

Рассмотрим КМОП — логический элемент, реализующий функцию ИЛИ-НЕ (рис. 3.32).

Если входные напряжения имеют низкие уровни (u 1 и u 2 меньше порогового напряжения n-МОП-транзистора U зи.порог. n), то транзисторы Т 1 и Т 2 закрыты, транзисторы Т 3 и Т 4 открыты и выходное напряжение имеет высокий уровень. Если одно или оба входных u 1 и u 2 имеют высокий уровень, превышающий U зи.порог. n , то открывается один или оба транзистора Т 1 и Т 2 , а между истоком и затвором одного или обоих транзисторов Т 3 и Т 4 устанавливается низкое напряжение, что приводит к запиранию одного или обоих транзисторов Т 3 и Т 4 , а следовательно, на выходе устанавливается низкое . Таким образом, этот элемент реализует функцию u вых = u 1 +u 2 и потребляет мощность от источника питания лишь в короткие промежутки времени, когда происходит его переключение.

Интегральная инжекционная логика (ИИЛ или И 2 Л) построена на использовании биполярных транзисторов и применении оригинальных схемотехнических и технологических решений. Для нее характерно очень экономичное использование площади кристалла полупроводника. Элементы И 2 Л могут быть реализованы только в интегральном исполнении и не имеют аналогов в дискретной схемотехнике. Структура такого элемента и его эквивалентная схема приведены на рис. 3.33, из которого видно, что транзистор T 1 (p-n-p) расположен горизонтально, а многоколлекторный Т 2 (n-p n) расположен вертикально. T 1 выполняет роль инжектора, обеспечивающего поступление дырок из эмиттера транзистора T 1 (при подаче на него положительного через ограничивающий резистор) в базу транзистора Т 2 . Если u 1 соответствует логическому «0», то инжекционный не протекает по базе многоколлекторного транзистора Т 2 и токи в цепях коллекторов транзистора Т 2 не протекают, т. е. на выходах транзистора Т 2 устанавливаются логические «1». При напряжении u 1 соответствующем логической «1», инжекционный протекает по базе транзистора Т 2 и на выходах транзистора Т 2 — логические нули.

Рассмотрим реализацию элемента ИЛИ-НЕ на основе элемента, представленного на рис. 3.34 (для упрощения другие коллекторы многоколлекторных транзисторов Т 3 и Т 4 на рисунке не показаны). Когда на один или оба входа подается логический сигнал «1», то u вых соответствует логическому нулю. Если на обоих входах логические сигналы «0», то напряжение u вых соответствует логической единице.

Логика на основе полупроводника из арсенида галлия GaAs характеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3…6 раз больше по сравнению с кремнием). Микросхемы на основе GaAs могут работать на частотах порядка 10 ГГц и более.


Цифровые микросхемы. Типы логики, корпуса

Ну сначала скажем так: микросхемы делятся на два больших вида: аналоговые и цифровые. Аналоговые микросхемы работают с аналоговым сигналом, а цифровые, соответственно – с цифровым. Мы будем говорить именно о цифровых микросхемах.

Точнее даже, мы будем говорить не о микросхемах, а об элементах цифровой техники, которые могут быть «спрятаны» внутри микросхемы.

Что это за элементы?

Некоторые названия вы слышали, некоторые, может быть – нет. Но поверьте, эти названия можно произносить вслух в любом культурном обществе – это абсолютно приличные слова. Итак, примерный список того, что мы будем изучать:

  • Триггеры
  • Счетчики
  • Шифраторы
  • Дешифраторы
  • Мультиплексоры
  • Компараторы

Все цифровые микросхемы работают с цифровыми сигналами. Что это такое?

Цифровые сигналы – это сигналы, имеющие два стабильных уровня – уровень логического нуля и уровень логической единицы. У микросхем, выполненных по различным технологиям, логические уровни могут отличаться друг от друга.

В настоящее время наиболее широко распространены две технологии: ТТЛ и КМОП.

ТТЛ – Транзисторно-Транзисторная Логика;
КМОП – Комплиментарный Металл-Оксид-Полупроводник.

У ТТЛ уровень нуля равен 0,4 В, уровень единицы – 2,4 В.
У логики КМОП, уровень нуля очень близок к нулю вольт, уровень единицы – примерно равен напряжению питания.

По-всякому, единица – когда напряжение высокое, ноль – когда низкое.

НО! Нулевое напряжение на выходе микросхемы не означает, что вывод «болтается в воздухе». На самом деле, он просто подключен к общему проводу. Поэтому нельзя соединять непосредственно несколько логических выводов: если на них будут различные уровни – произойдет КЗ.

Кроме различий в уровнях сигнала, типы логики различаются также по энергопотреблению, по скорости (предельной частоте), нагрузочной способности, и т.д.

Тип логики можно узнать по названию микросхемы. Точнее – по первым буквам названия, которые указывают, к какой серии принадлежит микросхема. Внутри любой серии могут быть микросхемы, произведенные только по какой-то одной технологии. Чтобы вам было легче ориентироваться - вот небольшая сводная таблица:

ТТЛ ТТЛШ КМОП Бастродейств. КМОП ЭСЛ
Расшифровка названия Транзисторно-Транзисторная Логика ТТЛ с диодом Шоттки Комплиментарный Металл-Оксид Полупроводник Эмиттерно-Согласованная Логика
Основные серии отеч. микросхем К155
К131
К555
К531
КР1533
К561
К176
КР1554
КР1564
К500
КР1500
Серии буржуйских микросхем 74 74LS
74ALS
CD40
H 4000
74AC
74 HC
MC10
F100
Задержка распространения, нС 10…30 4…20 15…50 3,5..5 0,5…2
Макс. частота, МГц 15 50..70 1…5 50…150 300…500
Напряжение питания, В 5 ±0,5 5 ±0,5 3...15 2...6 -5,2 ±0,5
Потребляемый ток (без нагрузки), мА 20 4...40 0,002...0,1 0,002...0,1 0,4
Уровень лог.0, В 0,4 0,5 < 0,1 < 0,1 -1,65
Уровень лог. 1, В 2,4 2,7 ~ U пит ~ U пит -0,96
Макс. выходной ток, мА 16 20 0,5 75 40

Наиболее распространены на сегодняшний день следующие серии (и их импортные аналоги):

  • ТТЛШ – К555, К1533
  • КМОП – КР561, КР1554, КР1564
  • ЭСЛ – К1500

Тип логики выбирают, в основном, исходя из следующих соображений:

Скорость (рабочая частота)
- энергопотребление
- стоимость

Но бывают такие ситуации, что одним типом никак не обойтись. Например, один блок должен иметь низкое энергопотребление, а другой – высокую скорость. Низким потреблением обладают микросхемы технологии КМОП. Высокая скорость – у ЭСЛ.

В этом случае понадобятся ставить преобразователи уровней.

Правда, некоторые типы нормально стыкуются и без преобразователей. Например, сигнал с выхода КМОП-микросхемы можно подать на вход микросхемы ТТЛ (при учете, что их напряжения питания одинаковы). Однако, в обратную сторону, т.е., от ТТЛ к КМОП пускать сигнал не рекомендуется.

Микросхемы выпускаются в различных корпусах. Наиболее распространены следующие виды корпусов:

DIP
(Dual Inline Package)

Обычный «тараканчик». Ножки просовываем в дырки на плате – и запаиваем.

Ножек в корпусе может быть 8, 14, 16, 20, 24, 28, 32, 40, 48 или 56.

Расстояние между выводами (шаг) – 2,5 мм (отечественный стандарт) или 2,54 мм (у буржуев).

Ширина выводов около 0,5 мм

Нумерация выводов – на рисунке (вид сверху). Чтобы определить нахождение первой ножки, нужно найти на корпусе «ключик».


SOIC
(Small Outline Integral Circuit)

Планарная микросхема – то есть ножки припаиваются с той же стороны платы, где находится корпус. При этом, микросхема лежит брюхом на плате.

Количество ножек и их нумерация – такие же как у DIP .

Шаг выводов – 1,25 мм (отечественный) или 1,27 мм (буржуазный).

Ширина выводов – 0,33...0,51


PLCC
(Plastic J-leaded Chip Carrier)

Квадратный (реже - прямоугольный) корпус. Ножки расположены по всем четырем сторонам, и имеют J -образную форму (концы ножек загнуты под брюшко).

Микросхемы либо запаиваются непосредственно на плату (планарно), либо вставляются в панельку. Последнее – предпочтительней.

Количество ножек – 20, 28, 32, 44, 52, 68, 84.

Шаг ножек – 1,27 мм

Ширина выводов – 0,66...0,82

Нумерация выводов – первая ножка возле ключа, увеличение номера против часовой стрелки:

Как вам эта статья?

ВВЕДЕНИЕ

Давайте поговорим о характеристиках идеального семейства логических микросхем. Они не должны рассеивать мощность, иметь нулевую задержку распространения сигнала, управляемые времена нарастания и спада сигнала, а также иметь помехоустойчивость, эквивалентную 50% размаха выходного сигнала.

Параметры современных семейств КМОП-микросхем (комплементарных МОП) приближаются к этим идеальным характеристикам.

Во-первых, КМОП-микросхемы рассеивают малую мощность. Типовое значение статической рассеиваемой мощности составляет порядка 10 нВ на один вентиль, которая образуется токами утечки. Активная (или динамическая) рассеваемая мощность зависит от напряжения источника питания, частоты, выходной нагрузки и времени нарастания входного сигнала, но ее типовое значение для одного вентиля при частоте 1 МГц и нагрузке емкостью 50 пФ не превышает 10 мВт.

Во-вторых, время задержки распространения сигнала в КМОП-вентилях хотя и не равно нулю, но достаточно мало. В зависимости от напряжения источника питания, задержка распространения сигнала для типового элемента находится в диапазоне от 25 до 50 нс.

В третьих, времена нарастания и спада контролируемы, и представляют собой скорее линейные, чем ступенчатые функции. Обычно времена нарастания и спада имеют на 20-40% большие значения, чем время задержки распространения сигнала.

И, наконец, типовое значение помехоустойчивости приближается к 50% и составляет приблизительно 45% от амплитуды выходного сигнала.

Еще одним немаловажным фактором, свидетельствующим в пользу КМОП-микросхем, является их малая стоимость, особенно при использовании в портативном оборудовании, питающемся от маломощных батарей.

Источники питания, в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит дешевле. В радиаторах и вентиляторах нет необходимости, благодаря низкой рассеиваемой мощности. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводит к снижению их стоимости.

Существует множество серий логических микросхем КМОП-структуры. Первой из них была серия К176, далее К561 (CD4000AN) и КР1561 (CD4000BN), но наибольшее развитие функциональные ряды получили в сериях КР1554 (74ACxx), КР1564 (74HCxx) и КР1594 (74ACTxx).

Функциональные ряды современных КМОП-микросхем серий КР1554, КР1564 и КР1594 содержат полнофункциональные эквиваленты микросхем ТТЛШ-серий КР1533 (74ALS) и К555 (74LS), которые полностью совпадают как по выполняемым функциям, так и по разводке выводов (цоколевке). Современные КМОП-микросхемы по сравнению с их прототипами, сериями К176 и К561, потребляют значительно меньшую динамическую мощность и многократно превосходят их по быстродействию.

Для упрощения схемотехнических решений, разработаны КМОП-серии с входным пороговым напряжением ТТЛ-уровней (КР1594 и некоторые другие), так и КМОП-уровней (КР1554, КР1564 и некоторые другие). Диапазон рабочих температур для микросхем общего применения находится в пределах -40-+85С, и -55-+125С —специального применения. В табл. 1 приведено сравнение входных и выходных характеристик КМОП и ТТЛШ-микросхем.

Таблица 1. Сравнение электрических параметров КМОП и ТТЛШ-схем

ТЕХНОЛОГИЯ

КМОП с ПКК-затвором

Улучш.

КМОП с ПКК-затвором

КМОП с Метали-ческим.-затвором

Стан-дартн.

Малопо-требля-ющая ТТЛШ

Улучшенная Малопотреб-ляющая ТТЛШ

Быстро-действу-ющая

ТТЛШ

Power dissipation per gate (mW)

Статическая

При частоте 100 кГц

Время задержки распространения

(нс) (CL = 15 пФ)

Максимальная тактовая частота

(МГц) (CL = 15 пФ)

Минимальный выходной ток (мА)

Стандартные выходы

Коэффициент разветвления по выходу (Нагрузка на на один вход К555)

Стандартные выходы

Выходы с повышенной нагрузочной способностью

Максимальный входной ток, IIL (мА) (VI = 0,4 В)

ХАРАКТЕРИСТИКИ КМОП-МИКРОСХЕМ

Цель данного раздела заключается в том, чтобы дать разработчику системы необходимые сведения о том, как работают цифровые микросхемы структуры КМОП и ведут себя при воздействии различных управляющих сигналов. Достаточно много было написано о конструкции и технологии производства микросхем КМОП, поэтому здесь рассмотрим только схемотехнические особенности микросхем этого семейства.

Основной КМОП-схемой является инвертор, показанный на рис. 1. Он состоит из двух полевых транзисторов, работающих в режиме обогащения: с каналом P-типа (верхний) и каналом N-типа (нижний). Для обозначения выводов питания приняты: VDD или VCC — для положительного вывода и VSS или GND — для отрицательного. Обозначения VDD и VCC позаимствованы из обычных МОП-схем и символизируют источники питания истока и стока транзисторов. Они не относятся непосредственно к схемам КМОП, поскольку выводами питания являются истоки обоих комплементарных транзисторов. Обозначения VSS или GND позаимствованы от ТТЛ-схем, и эта терминология сохранилась и для КМОП-микросхем. Далее будут указываться обозначения VCC и GND.

Логическими уровнями в КМОП-системе являются VCC (логическая “1”) и GND (логический “0”). Поскольку ток, протекающий во “включенном” МОП-транзисторе практически не создает на нем падения напряжения, и поскольку входное сопротивление КМОП-вентиля очень велико (входная характеристика МОП-транзистора, в основном, емкостная и выглядит подобно вольтамперной характеристике МОП-транзистора сопротивлением 1012 Ом, зашунтированного конденсатором емкостью 5 пФ), то и логические уровни в КМОП-системе будут практически равны напряжению источника питания.

Теперь давайте посмотрим на характеристические кривые МОП-транзисторов, для того чтобы получить представление о том, как времена нарастания и спада, задержки распространения сигнала и рассеиваемая мощность будут изменяться с изменением напряжения источника питания и емкости нагрузки.

На рис. 2 показаны характерные кривые N-канального и P-канального полевых транзисторов, работающих в режиме обогащения.

Из этих характеристик следует ряд важных выводов. Рассмотрим кривую для N-канального транзистора с напряжением Затвор-Исток равным VGS=15 В. Следует заметить, что для постоянного управляющего напряжения VGS, транзистор ведет себя, как источник тока для значений VDS (напряжение Сток-Исток) больших, чем VGS-VT (VT-пороговое напряжение МОП-транзистора). Для значений VDS меньше VGS-VT транзистор ведет себя, в основном, подобно резистору.

Следует также заметить, что для меньших значений VGS кривые имеют аналогичный характер, за тем исключением, что величина IDS значительно меньше, и, в действительности, IDS возрастает пропорционально квадрату VGS. P-канальный транзистор имеет практически одинаковые, но комплементарные (дополняющие) характеристики.

В случае управления емкостной нагрузкой с помощью КМОП-элементов, начальное изменение напряжения, приложенного к нагрузке, будет иметь линейный характер, благодаря “токовой” характеристике на начальном участке, получаемой округлением преобладающей резистивной характеристики, когда значение VDS мало отличается от нуля. Применительно к простейшему КМОП-инвертору, показанному на рис. 1, по мере уменьшения напряжения VDS до нуля, выходное напряжение VOUT будет стремиться к VCC или GND, в зависимости от того, какой транзистор открыт: P-канальный или N-канальный.

Если увеличивать VCC, и, следовательно, VGS, инвертор должен развивать на конденсаторе большую амплитуду напряжения. Однако, для одного и того же приращения напряжения, нагрузочная способность IDS резко возрастает, как квадрат VGS, и поэтому времена нарастания и задержки распространения сигнала, показанные на рис. 3, уменьшаются.

Таким образом, можно видеть, что для данной конструкции, и, следовательно, фиксированного значения емкости нагрузки, увеличение напряжения источника питания увеличит быстродействие системы. Увеличение VCC увеличит быстродействие, но также и рассеиваемую мощность. Это верно по двум причинам. Во-первых, произведение CV2f, а значит мощность, возрастают. Это мощность, рассеиваемая в КМОП-схеме, или любой аналогичной схеме, по названной выше причине, при управлении емкостной нагрузкой.

Для указанных значений емкости нагрузки и частоты переключения, рассеиваемая мощность возрастает пропорционально квадрату падения напряжения на нагрузке.

Вторая причина заключается в том, что произведение VI или мощность, рассеиваемая на КМОП-схеме, возрастает с ростом напряжения источника питания VCC (для VCC>2VT). Каждый раз, когда схема переключается из одного состояния в другое, кратковременно возникает сквозной ток, протекающий от VCC к GND через два одновременно открытых выходных транзистора.

Поскольку пороговые напряжения транзисторов не изменяются с ростом VCC, то диапазон входного напряжения, в пределах которого верхний и нижний транзисторы одновременно находятся в проводящем состоянии, увеличивается с ростом VCC. В то же время, большее значение VCC обеспечивает большие значения управляющих напряжений VGS, которые также приводят к увеличению токов JDS. В связи с этим, если время нарастания входного сигнала равняется нулю, то через выходные транзисторы не было бы сквозного тока от VCC к GND. Эти токи возникают по той причине, что фронты входного сигнала имеют конечно малые времена нарастания и спада, и, следовательно, входное напряжение требует определенного конечно малого времени для прохождения диапазона, в котором два выходных транзистора включены одновременно. Очевидно, что времена нарастания и спада фронтов входного сигнала должны иметь минимальное значение, для уменьшения рассеиваемой мощности.

Давайте взглянем на передаточные характеристики (рис. 5), как они изменяются с изменением питающего напряжения VCC. Условимся считать, что оба транзистора в нашем простейшем инверторе имеют идентичные, но комплементарные характеристики и пороговые напряжения. Предположим, что пороговые напряжения, VT, равны 2V. Если VCC меньше порогового напряжения 2V, ни один из транзисторов не может быть включен, и схема работать не будет. На рис. 5а показана ситуация, когда напряжение источника питания в точности соответствует пороговому напряжению. В таком случае схема должна работать со 100% гистерезисом. Однако, это не совсем гистерезис, поскольку оба выходных транзистора закрыты, и выходное напряжение поддерживается на емкостях затворов, следующих по цепи схем. Если VCC находится в пределах одного и двух пороговых напряжений (рис. 5б), происходит уменьшение величины “гистерезиса”, по мере приближения VCC к значению, эквивалентному 2VT (рис. 5в). При напряжении VCC, эквивалентном двум пороговым напряжениям, “гистерезис” отсутствует; также нет сквозного тока через два одновременно открытых выходных транзистора в моменты переключений. Когда значение VCC превышает два пороговых напряжения, кривые передаточной характеристики начинают закругляться (рис. 5г). Когда VIN проходит через область, где оба транзистора открыты, т.е. в проводящем состоянии, токи, протекающие в каналах транзисторов, создают падения напряжений, дающие закругления характеристик.

Рассматривая КМОП-систему на предмет шума, необходимо рассматривать, по крайней мере, две характеристики: помехоустойчивость и запас помехоустойчивости.

Современные КМОП-схемы имеют типичное значение помехоустойчивости равное 0,45VCC. Это означает, что ложный входной сигнал, равный 0,45VCC или менее отличающийся от VCC или GND, не будет распространяться в системе, как ошибочный логический уровень. Это не означает, что на выходе первой схемы вообще не появится никакого сигнала. На самом деле, в результате воздействия сигнала помехи, на выходе появится выходной сигнал, но он будет ослаблен по амплитуде. По мере распространения этого сигнала в системе, он будет ослаблен последующими схемами еще больше, пока он совсем не исчезнет. Обычно такой сигнал не изменяет выходное состояние логического элемента. В обычном триггере, ложный входной синхронизирующий импульс амплитудой 0,45VCC не приведет к изменению его состояния.

Производитель КМОП-микросхем также гарантирует наличие запаса помехоустойчивости 1 Вольт во всем диапазоне питающих напряжений и температур и для любой комбинации входов. Это всего лишь отклонение характеристики помехоустойчивости, для которой гарантирован особый набор входных и выходных напряжений. Другими словами, из данной характеристики следует, что для того, чтобы выходной сигнал схемы, выраженный в Вольтах, находился в пределах 0,1VCC от значения соответствующего логического уровня (“нуля” или “единицы”), входной сигнал не должен превышать значение 0,1VCC плюс 1 Вольт выше уровня “земли” или ниже уровня “питания”. Графически данная ситуация показана на рис. 4.

Данные характеристики близко напоминают запас помехоустойчивости стандартных ТТЛ-схем, который составляет 0,4 В (рис. 6). Для полноты картины зависимости выходного напряжения VOUT от входного VIN, приведем кривые передаточных характеристик (рис. 5).

АНАЛИЗ ПРИМЕНЕНИЯ В СИСТЕМЕ

В данном разделе рассмотрены различные ситуации, возникающие при разработке системы: неиспользуемые входы, параллельное включение элементов для увеличения нагрузочной способности, разводка шин данных, согласование с логическими элементами других семейств.

НЕИСПОЛЬЗУЕМЫЕ ВХОДЫ

Проще говоря, неиспользуемые входы не должны быть оставлены не подключенными. По причине очень большого входного сопротивления (1012 Ом), плавающий вход может дрейфовать между логическими “нулем” и “единицей”, создавая непредсказуемое поведение выхода схемы и связанные с этим проблемы в системе. Все неиспользуемые входы должны быть подключены к шине питания, “общему” проводу или другому используемому входу. Выбор совершенно не случаен, поскольку следует учитывать возможное влияние на выходную нагрузочную способность схемы. Рассмотрим, к примеру, четырехвходовый элемент 4И-НЕ, используемый, как двухвходовый логический вентиль 2И-НЕ. Его внутренняя структура показана на рис. 7. Пусть входы A и B будут неиспользуемыми входами.

Если неиспользуемые входы должны быть подключены к фиксированному логическому уровню, тогда входы A и B должны быть подключены к шине питания, чтобы разрешить работу остальных входов. Это приведет к включению нижних A и B транзисторов и выключению соответствующих верхних A и B. В таком случае, не более двух верхних транзисторов могут быть включены одновременно. Однако если входы A и B подключены к входу C, входная емкость утроится, но каждый раз, когда на вход C поступает уровень логического “нуля”, верхние транзисторы A, B и C — включаются, утраивая значение максимального выходного тока уровня логической “единицы”. Если на вход D поступает также уровень логического “нуля”, все четыре верхних транзистора — включены. Таким образом, подключение неиспользуемых входов элемента И-НЕ к шине питания (ИЛИ-НЕ к “общему” проводу) приведет к их включению, но подключение неиспользуемых входов к другим используемым входам гарантирует увеличение выходного вытекающего тока уровня логической “единицы”, в случае элемента И-НЕ (или выходного втекающего тока уровня логического “нуля”, в случае элемента ИЛИ-НЕ).

Для последовательно включенных транзисторов увеличения выходного тока не происходит. Учитывая это обстоятельство, многовходовый логический элемент может быть использован для непосредственного управления мощной нагрузкой, к примеру, обмоткой реле или лампой накаливания.

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

В зависимости от типа логического элемента, объединение входов гарантирует увеличение нагрузочной способности для вытекающего или втекающего токов, но не двух одновременно. Для того чтобы гарантировать увеличение двух выходных токов необходимо параллельно включить несколько логических элементов (рис. 8). В таком случае, увеличение нагрузочной способности достигается за счет параллельного включения нескольких цепочек транзисторов (рис. 7), таким образом, увеличивая соответствующий выходной ток.

РАЗВОДКА ШИН ДАННЫХ

Для этого существует два основных способа. Первый способ — это параллельное соединение обычных буферных КМОП-элементов (например, ). И второй, наиболее предпочтительный, способ — соединение элементов с тремя выходными состояниями.

ФИЛЬТРАЦИЯ ПОМЕХ ИСТОЧНИКА ПИТАНИЯ

Поскольку КМОП-схемы могут работать в широком диапазоне питающих напряжений (3-15 В), необходима минимальная фильтрация. Минимальное значение напряжения источника питания определяется максимальной рабочей частотой самого быстрого элемента в системе (обычно очень небольшая часть системы работает на максимальной частоте). Фильтры должны быть выбраны из расчета поддержания питающего напряжения примерно посередине между указанным минимальным значением и максимальным напряжением, при котором микросхемы еще работоспособны. Однако если требуется минимизировать рассеиваемую мощность, напряжение источника питания должно быть выбрано как можно меньшим, при одновременном удовлетворении требований быстродействия.

МИНИМИЗАЦИЯ РАССЕИВАЕМОЙ МОЩНОСТИ СИСТЕМЫ

Для того чтобы минимизировать энергопотребление системы, она должна работать на минимальной скорости, выполняя поставленную задачу при минимальном питающем напряжении. Мгновенные значения динамической (AC) и статической (DC) потребляемой мощностей возрастают, как при увеличении частоты, так и напряжения источника питания. Динамическая потребляемая мощность (AC) представляет собой функцию произведения CV2f. Это мощность, рассеиваемая в буферном элементе, управляющим емкостной нагрузкой.

Очевидно, что динамическая потребляемая мощность возрастает прямо пропорционально частоте и пропорционально квадрату напряжения источника питания. Она также возрастает с увеличением емкости нагрузки, определяемой, в основном, системой, и не является переменной величиной. Статическая (DC) потребляемая мощность рассеивается в моменты переключения и представляет собой произведение VI. В любом КМОП элементе возникает мгновенный ток от шины питания на “общий” провод (при VCC>2VT) рис. 9.

Максимальная амплитуда тока — это быстро возрастающая функция входного напряжения, которое, в свою очередь, представляет собой функцию напряжения источника питания (рис. 5г).
Действительная величина произведения VI мощности, рассеиваемой системой, определяется тремя показателями: напряжением источника питания, частотой и временами фронтов нарастания и спада входного сигнала. Очень важным фактором является время нарастания входного сигнала. Если время нарастания велико, рассеиваемая мощность возрастает, т.к. устанавливается токовый путь в течение всего времени, пока входной сигнал проходит область между пороговыми напряжениями верхнего и нижнего транзисторов. Теоретически, если время нарастания считать равным нулю, токовый путь не возникал бы, и VI мощность равнялась бы нулю. Однако, поскольку время нарастания имеет конечно малую величину, всегда появляется сквозной ток, который быстро возрастает с увеличением напряжения питания.

Есть еще одно обстоятельство, касающееся времени нарастания входного сигнала и потребляемой мощности. Если схема используется для управления большим числом нагрузок, время нарастания выходного сигнала будет возрастать. Это приведет к увеличению VI рассеиваемой мощности в каждом устройстве, управляемом такой схемой (но не в самой управляющей схеме). Если потребляемая мощность достигает критического значения, необходимо увеличить крутизну выходного сигнала параллельным включением буферных элементов или разделением нагрузок для того, чтобы уменьшить общую потребляемую мощность.

Теперь подведем итоги влияния эффектов напряжения источника питания, входного напряжения, времен нарастания и спада фронтов входного сигнала, емкости нагрузки на рассеиваемую мощность. Можно сделать следующие выводы:

  1. Напряжение источника питания. Произведение CV2f рассеиваемой мощности возрастает пропорционально квадрату напряжения питания. Произведение VI рассеиваемой мощности возрастает приблизительно пропорционально квадрату напряжения источника питания.
  2. Уровень входного напряжения. Произведение VI рассеиваемой мощности возрастает, если входное напряжение находится в пределах между “нулевым потенциалом (GND) плюс пороговое напряжение” и “напряжением питания (VCC) минус пороговое напряжение”. Наибольшая рассеиваемая мощность наблюдается, когда VIN приближается к 0,5 VCC. На произведение CV2f уровень входного напряжения влияния не оказывает.
  3. Время нарастания входного сигнала. Произведение VI рассеиваемой мощности возрастает с увеличением времени нарастания, поскольку сквозной ток через одновременно открытые выходные транзисторы устанавливается на более продолжительное время. На произведение CV2f время нарастания входного сигнала влияния также не оказывает.
  4. Емкость нагрузки. Произведение CV2f мощности, рассеиваемой в схеме, возрастает пропорционально емкости нагрузки. Произведение VI рассеиваемой мощности не зависит от емкости нагрузки. Однако увеличение емкости нагрузки приведет к увеличению времен нарастания фронтов выходного сигнала, что, в свою очередь, приведет к росту произведения VI рассеиваемой мощности в управляемых этим сигналом логических элементах.

СОГЛАСОВАНИЕ С ЛОГИЧЕСКИМИ ЭЛЕМЕНТАМИ ДРУГИХ СЕМЕЙСТВ

Существует два основных правила для согласования элементов всех других семейств с микросхемами КМОП. Во-первых, КМОП-схема должна обеспечивать необходимые требования по входным токам и напряжениям элементов других семейств. И, во-вторых, что еще важнее, амплитуда выходного сигнала логических элементов других семейств должна максимально соответствовать напряжению источника питания КМОП-схемы.

P-КАНАЛЬНЫЕ МОП-СХЕМЫ

Существует целый ряд требований, которые необходимо обеспечить при согласовании P-МОП и КМОП-схем. Во-первых, это набор источников питания с различными напряжениями. Большинство P-МОП-схем рассчитаны для работы при напряжении от 17 В до 24 В, в то время как схемы-КМОП рассчитаны на максимальное напряжение 15 В. Другой проблемой P-МОП-схем, в отличие от КМОП, является значительно меньшая амплитуда выходного сигнала, чем напряжение источника питания. Выходное напряжение P-МОП-схем изменяется в пределах практически от более положительного потенциала питающего напряжения (VSS) до нескольких вольт выше более отрицательного потенциала (VDD). Поэтому, даже в случае работы P-МОП-схемы от источника напряжением 15 В, амплитуда ее выходного сигнала все равно будет меньше необходимой, чтобы обеспечить согласование с КМОП-схемой. Существует несколько способов решения данной проблемы, в зависимости от конфигурации системы. Рассмотрим два способа построения системы полностью на МОП-схемах и один способ, когда в системе используются ТТЛШ-схемы.

В первом примере используются только P-МОП и КМОП-схемы с напряжением питания менее 15 В (см. рис. 10). В этой конфигурации КМОП-схема управляет P-МОП непосредственно. Однако P-МОП-схема не может управлять КМОП напрямую, поскольку ее выходное напряжение уровня логического нуля значительно превышает нулевой потенциал системы. Для “подтягивания” выходного потенциала схемы к нулю, вводится дополнительный резистор RPD. Его величина выбирается достаточно малой, чтобы обеспечить желаемую постоянную времени RC при переключении выхода из “единицы” в “ноль” и, в то же время, достаточно большой, чтобы обеспечить необходимую величину уровня логической “единицы”. Этот способ подходит также и для выходов P-МОП-схем с открытыми стоками.

Другим способом в полностью МОП-системе является применение источника опорного напряжения на основе обычного стабилитрона для формирования более отрицательного потенциала, питающего КМОП-схему (рис. 11).

В этой конфигурации используется источник питания P-МОП-схемы напряжением 17-24 В. Опорное напряжение выбирается таким образом, чтобы уменьшить напряжение питания КМОП-схем до минимального размаха выходного напряжения P-МОП-схемы. КМОП-схема может по-прежнему управлять P-МОП непосредственно, но теперь, P-МОП-схема может управлять КМОП без “подтягивающего” резистора. Другими ограничениями являются: питающее напряжение КМОП-схем, которое должно быть меньше 15 В, и необходимость обеспечения опорным источником достаточного тока для питания всех КМОП-схем в системе. Это решение вполне пригодно, если источник питания P-МОП-схемы должен быть больше 15 В, и потребляемый ток КМОП-схемами достаточно мал, чтобы его мог обеспечить простейший параметрический стабилизатор.

Если в системе используются ТТЛШ-схемы, то должны быть, по крайней мере, два источника питания. В таком случае, КМОП-схема может работать от однополярного источника и управлять P-МОП-схемой непосредственно (рис. 12).

N-КАНАЛЬНЫЕ МОП-СХЕМЫ

Согласование КМОП с N-МОП-схемами проще, хотя некоторые проблемы существуют. Во-первых, N-МОП-схемы требуют меньшего напряжения источника питания, обычно в диапазоне 5-12 В. Это позволяет согласовывать их с КМОП-схемами непосредственно. Во вторых, амплитуда выходного сигнала КМОП-схем находится в диапазоне практически от нуля до напряжения источника питания минус 1-2 В.

При более высоких значениях напряжения источника питания N-МОП и КМОП-схемы могут работать напрямую, поскольку выходной уровень логической единицы N-МОП-схемы будет отличаться от напряжения источника питания всего на 10-20%. Однако, при меньших значениях напряжения питания, напряжение уровня логической единицы будет меньше уже на 20-40%, поэтому необходимо включение “подтягивающего” резистора (рис. 13).

ТТЛ-, ТТЛШ-СХЕМЫ

При согласовании данных семейств с КМОП-схемами возникают два вопроса. Во-первых, достаточно ли напряжения уровня логической единицы биполярных семейств для непосредственного управления КМОП-схемами? ТТЛ- и ТТЛШ-схемы вполне способны управлять КМОП-схемами серии 74HCXX напрямую без дополнительных “подтягивающих” резисторов. Однако, КМОП-схемами серии CD4000 (К561, КР1561) они управлять не способны, поскольку характеристики последних не гарантируют работоспособность в случае непосредственного подключения без подтягивающих резисторов.

ТТЛШ-схемы способны непосредственно управлять КМОП-схемами во всем диапазоне рабочих температур. Стандартные ТТЛ-схемы способны непосредственно управлять КМОП-схемами в большей части температурного диапазона. Однако, ближе к нижней границе температурного диапазона, напряжение уровня логической единицы ТТЛ-схем уменьшается и рекомендуется введение “подтягивающего” резистора (рис. 14).

Согласно зависимости допустимых значений напряжений входных уровней от напряжения источника питания для КМОП-схем (см. рис. 4), если входное напряжение превышает значение VCC-1,5 В (при VCC=5 В), то выходное напряжение не превысит 0,5В. Следующий КМОП-элемент усилит это напряжение 0,5 В до соответствующего напряжения VCC или GND. Напряжение уровня логической “1” для стандартных ТТЛ-схем составляет минимум 2,4 В при выходном токе 400 мкА. Это наихудший случай, поскольку выходное напряжение ТТЛ-схемы будет только приближаться к этому значению при минимальной температуре, максимальном значении входного уровня “0” (0,8 В), максимальных токах утечки и минимальном напряжении питания (VCC=4,5 В).

При нормальных условиях (25°С, VIN=0,4 В, номинальных токах утечки в КМОП-схеме и напряжении источника питания VCC=5 В) уровень логической “1” будет скорее соответствовать VCC-2VD или VCC-1,2 В. При изменении одной только температуры, выходное напряжение будет изменяться по зависимости “два умножить -2 мВ на один градус температуры” или “-4 мВ на градус”. Напряжения VCC-1,2 В вполне достаточно для непосредственного управления КМОП-схемой без необходимости включения “подтягивающего” резистора.

Если при определенных условиях выходное напряжение ТТЛ-схемы уровня логической “1” может упасть ниже VCC-1,5 В необходимо использовать резистор для управления КМОП-схемой.
Вторым вопросом является, сможет ли КМОП-схема обеспечить достаточный выходной ток, чтобы обеспечить входное напряжение уровня логического “0” для ТТЛ-схемы? Для логической “1” такой проблемы не существует.

Для ТТЛШ-схемы входной ток достаточно мал, чтобы обеспечить непосредственное управление двумя такими входами. Для стандартной ТТЛ-схемы входной ток в десять раз превышает ток ТТЛШ-схемы и, следовательно, выходное напряжение КМОП-схемы, в таком случае, превысит максимально допустимое значение напряжения уровня логического “0” (0,8 В). Однако, внимательно изучая спецификацию выходной нагрузочной способности КМОП-схем, можно заметить, что двухвходовый элемент И-НЕ может управлять одним ТТЛ-входом, хотя и в крайнем случае. К примеру, выходное напряжение уровня логического “нуля” для приборов MM74C00 и MM74C02 во всем температурном диапазоне составляет 0,4 В при токе 360 мкА, при входном напряжении 4,0 В и напряжении питания 4,75 В. Обе схемы показаны на рис. 15.

Обе схемы имеют одинаковую нагрузочную способность, но их структуры различны. Это означает, что каждый из двух нижних транзисторов прибора MM74C02 может обеспечить тот же ток, что и два последовательно включенных транзистора MM74C00. Два транзистора MM74C02 вместе могут обеспечить вдвое больший ток при заданном выходном напряжении. Если допустить увеличение выходного напряжения логического “нуля” до значения 0,8 В, то прибор MM74C02 сможет обеспечить в четыре раза больший выходной ток, чем 360мкА, т.е. 1,44 мА, что близко к 1,6 мА. На самом деле, ток 1,6 мА — это максимальный входной ток для ТТЛ-входа, и большинство ТТЛ-схем работают при токе не более 1 мА. Также, ток 360 мкА — это минимальный выходной ток для КМОП-схем. Реальное значение находится в пределах 360-540 мкА (что соответствует входному току 2-3 ТТЛШ-входов). Ток 360мкА указан для входного напряжения 4 В. Для входного напряжения 5 В, выходной ток будет порядка 560 мкА во всем диапазоне температур, делая управление ТТЛ-входом еще проще. При комнатной температуре и входном напряжении 5 В, выход КМОП-схемы может обеспечить ток 800 мкА. Следовательно, двухвходовый элемент ИЛИ-НЕ обеспечит выходной ток 1,6 мА при напряжении 0,4 В, если на оба входа элемента ИЛИ-НЕ поступает напряжение 5 В.

Отсюда можно заключить, что один двухвходовый элемент ИЛИ-НЕ, входящий в состав прибора MM74C02, можно использовать для управления стандартным ТТЛ-входом вместо специального буфера. Однако это приведет к некоторому снижению помехоустойчивости в диапазоне температур.

Источники информации