Как определить количество информации в сообщении. Урок по информатике и ИКТ "Количество информации как мера уменьшения неопределенности знаний. Определение количества информации"

  • 04.09.2019

Все мы привыкли к тому, что все вокруг можно измерить. Мы можем определить массу посылки, длину стола, скорость движения автомобиля. Но как определить количество информации, содержащееся в сообщении? Ответ на вопрос в статье.

Итак, давайте для начала выберем сообщение. Пусть это будет «Принтер — устройство вывода информации. «. Наша задача — определить, сколько информации содержится в данном сообщении. Иными словами — сколько памяти потребуется для его хранения.

Определение количества информации в сообщении

Для решения задачи нам нужно определить, сколько информации несет один символ сообщения, а потом умножить это значение на количество символов. И если количество символов мы можем посчитать, то вес символа нужно вычислить. Для этого посчитаем количество различных символов в сообщении. Напомню, что знаки препинания, пробел — это тоже символы. Кроме того, если в сообщении встречается одна и та же строчная и прописная буква — мы считаем их как два различных символа. Приступим.

В слове Принтер 6 различных символов (р встречается дважды и считается один раз), далее 7-й символ пробел и девятый — тире . Так как пробел уже был, то после тире мы его не считаем. В слове устройство 10 символов, но различных — 7, так как буквы с , т и о повторяются. Кроме того буквы т и р уже была в слове Принтер . Так что получается, что в слове устройство 5 различных символов. Считая таким образом дальше мы получим, что в сообщении 20 различных символов.

2 i =N

Подставив в нее вместо N количество различных символов, мы узнаем, сколько информации несет один символ в битах. В нашем случае формула будет выглядеть так:

2 i =20

Вспомним и поймем, что i находится в диапазоне от 4 до 5 (так как 2 4 =16, а 2 5 =32). А так как бит — минимальная и дробным быть не может, то мы округляем i в большую сторону до 5. Иначе, если принять, что i=4, мы смогли бы закодировать только 2 4 =16 символов, а у нас их 20. Поэтому получаем, что i=5, то есть каждый символ в нашем сообщении несет 5 бит информации.

Осталось посчитать сколько символов в нашем сообщении. Но теперь мы будем считать все символы , не важно повторяются они или нет. Получим, что сообщение состоит из 39 символов. А так как каждый символ — это 5 бит информации, то, умножив 5 на 39 мы получим:

5 бит x 39 символов = 195 бит

Это и есть ответ на вопрос задачи — в сообщении 195 бит информации. И, подводя итог, можно написать алгоритм нахождения объема информации в сообщении :

  • посчитать количество различных символов.
  • подставив это значение в формулу 2i=N найти вес одного символа (округлив в большую сторону)
  • посчитать общее количество символов и умножить это число на вес одного символа.

Объемный способ измерения информации

Технический способ измерения количества информации (или, точнее, информационного объема сообщения) основан на подсчета количества символов, из которых образовано сообщение. При этом не учитывается смысловое содержание сообщения. Например, многократное повторение одного и того же текста не несет новой информации, однако в результате занимает больший объем памяти, требует большего времени для передачи и т.п. Поэтому этот способ удобен в технических расчетах.

Мера К. Шеннона

Американский математик и инженер К. Шеннон в 1948 г. получил формулу для расчета количества информации, содержащейся в системе, обладающей произвольным набором неравновероятных (в общем случае) состояний

где n - число возможных состояний системы, pi - вероятность i-го состояния (причем pi = 1)

Чем меньше вероятность наступления события, тем большую информацию это событие несет.

Рассмотрим пример:

На книжном стеллаже восемь полок. Книга может быть поставлена на любую из них. Сколько информации содержит сообщение о том, где находится книга?

Применим метод половинного деления. Зададим несколько вопросов уменьшающих неопределенность знаний в два раза.

Задаем вопросы:

Книга лежит выше четвертой полки?

Книга лежит ниже третьей полки? -Да.

Книга - на второй полке?

Ну теперь все ясно! Книга лежит на первой полке! Каждый ответ уменьшал неопределенность в два раза.

Всего было задано три вопроса. Значит набрано 3 бита информации. И если бы сразу было сказано, что книга лежит на первой полке, то этим сообщением были бы переданы те же 3 бита информации.

Если обозначить возможное количество событий, или, другими словами, неопределенность знаний N, а буквой I количество информации в сообщении о том, что произошло одно из N событий, то можно записать формулу:

Количество информации, содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется из решения показательного уравнения:

А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.


Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.

В каждой очередной позиции текста может появиться любой из N символов. Тогда, согласно известной нам формуле, каждый такой символ несет I бит информации, которое можно определить из решения уравнения: 2I = 54. Получаем: I = 5.755 бит.

Вот сколько информации несет один символ в русском тексте! А теперь для того, чтобы найти количество информации во всем тексте, нужно посчитать число символов в нем и умножить на I.

Посчитаем количество информации на одной странице книги. Пусть страница содержит 50 строк. В каждой строке - 60 символов. Значит, на странице умещается 50x60=3000 знаков. Тогда объем информации будет равен: 5,755 х 3000 = 17265 бит.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице - 40 строк, в каждой строке - 60 символов. Значит страница содержит 40x60=2400 байт информации. Объем всей информации в книге: 2400 х 150 = 360 000 байт.

В любой системе единиц измерения существуют основные единицы и производные от них.

Для измерения больших объемов информации используются следующие производные от байта единицы:

1 килобайт = 1Кб = 210 байт = 1024 байта.

1 мегабайт = 1Мб = 210 Кб = 1024 Кб.

1 гигабайт = 1Гб = 210 Мб = 1024 Мб.

Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.

Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.

Вопросы для самопроверки

Вопросы для самопроверки

1. Формальная и неформальная постановка задачи.

2. Дайте определение «модель» и требования к моделированию.

3. Характеристика стадий построения информационной модели.

4. Классификация моделей.

5. Виды форм представления информационных моделей.

6. Этапы разработки компьютерных моделей.

7. Информация, классификация информации.

8. Методы получения и использования информации.

9. Носитель информации.

10. Способы измерения информации.

11. Алфавитный подход к измерения информации.

Материал разработан на 2 спаренных урока.

Цели уроков: Сформировать у учащихся понимание вероятности, равновероятных событий и событий с различными вероятностями. Научить находить количество информации, используя вероятностный подход. Создать в Excel информационную модель для автоматизации процесса вычислений в задачах на нахождение количества информации, используя формулу Шеннона.

Требования к знаниям и умениям:

Учащиеся должны знать:

  • какие события являются равновероятными, какие неравновероятными;
  • как найти вероятность события;
  • как найти количество информации в сообщении, что произошло одно из неравновероятных событий;
  • как найти количество информации в сообщении, когда возможные события имеют различные вероятности реализации.

Учащиеся должны уметь:

  • различать равновероятные и неравновероятные события;
  • находить количество информации в сообщении, что произошло одно из равновероятных событий или одно из не равновероятных событий;
  • создать информационную модель для автоматизации процесса решения задач на нахождение количества информации с помощью прикладных программ.

Оборудование: доска, компьютер, мультимедийный проектор, карточки с заданиями, карточки-памятки, справочный материал.

Урок 1. Вероятностный подход к определению количества информации. Формула Шеннона

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

III. Постановка цели урока.

Задача: Какое сообщение содержит большее количество информации?

  • Отв.: 3 бит.)
  • Вася получил за экзамен оценку 4 (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  • Отв.: 1 бит.)
  • Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок.

Первые три варианта учащиеся решают без затруднения. События равновероятны, поэтому можно применить для решения формулу Хартли. Но третье задание вызывает затруднение. Делаются различные предположения. Роль учителя: подвести учащихся к осмыслению, что в четвертом варианте мы сталкиваемся с ситуацией, когда события неравновероятны. Не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

Сегодня на уроке мы должны ответить на вопрос: как вычислить количество информации в сообщении о неравновероятном событии.

IV. Объяснение нового материала.

Для вычисления количества информации в сообщении о неравновероятном событии используют следующую формулу: I= log 2 (1/ p)

где I – это количество информации, р – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле: р= K/ N,

где К – величина, показывающая сколько раз произошло интересующее нас событие, N – общее число возможных исходов какого-то процесса.

Вернемся к нашей задаче.

Пусть К 1 – это количество пирожков с повидлом, К 1 =24

К 2 – количество пирожков с капустой, К 2 =8

N – общее количество пирожков, N = К 1 +К 2 =24+8=32

Вычислим вероятность выбора пирожка с разной начинкой и количество информации, которое при этом было получено.

Вероятность выбора пирожка с повидлом: р 1 =24/32=3/4=0,75.

Вероятность выбора пирожка с капустой: р 2 =8/32=1/4=0,25.

Обращаем внимание учащихся на то, что в сумме все вероятности дают 1.

Вычислим количество информации, содержащееся в сообщении, что Маша выбрала пирожок с повидлом: I 1 = log 2 (1/ p 1)= log 2 (1/0,75)= log 2 1,3=1,15470 бит.

Вычислим количество информации, содержащееся в сообщении, если был выбран пирожок с капустой: I 2 = log 2 (1/ p 2)= log 2 (1/0,25)= log 2 4=2 бит.

Пояснение: если учащиеся не умеют вычислять значение логарифмической функции, то можно использовать при решении задач этого урока следующие приемы:

  • Ответы давать примерные, задавая ученикам следующий вопрос: «В какую степень необходимо возвести число 2, чтобы получилось число, стоящее под знаком логарифма?».
  • Применить таблицу из задачника-практикума под редакцией Семакина И.Г. и др.

Приложение 1. «Количество информации в сообщении об одном из N равновероятных событий: I= log 2 N». (Приложение вы можете получить у автора статьи. )

При сравнении результатов вычислений получается следующая ситуация: вероятность выбора пирожка с повидлом больше, чем с капустой, а информации при этом получилось меньше. Это не случайность, а закономерность.

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить так: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Вернемся к нашей задаче с пирожками. Мы еще не ответили на вопрос: сколько получим информации при выборе пирожка любого вида?

Ответить на этот вопрос нам поможет формула вычисления количества информации для событий с различными вероятностями, которую предложил в 1948 г. американский инженер и математик К.Шеннон.

Если I -количество информации, N -количество возможных событий, р i - вероятности отдельных событий, где i принимает значения от 1 до N, то количество информации для событий с различными вероятностями можно определить по формуле:

можно расписать формулу в таком виде:

Рассмотрим формулу на нашем примере:

I = - (р 1 ∙log 2 p 1 + р 2 ∙log 2 p 2)= - (0,25∙ log 2 0,25+0,75∙ log 2 0,75)≈-(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

Теперь мы с вами можем ответить на вопрос задачи, которая была поставлена в начале урока. Какое сообщение содержит большее количество информации?

  1. В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)
  2. Вася получил за экзамен 3 балла (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  3. Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)
  4. Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок. (Отв.: 0,815 бит.)

Ответ : в 1 сообщении.

Обратите внимание на 3 и 4 задачу. Сравните количество информации.

Мы видим, что количество информации достигает максимального значения, если события равновероятны.

Интересно, что рассматриваемые нами формулы классической теории информации первоначально были разработаны для технических систем связи, призванных служить обмену информацией между людьми. Работа этих систем определяется законами физики т.е. законами материального мира. Задача оптимизации работы таких систем требовала, прежде всего, решить вопрос о количестве информации, передаваемой по каналам связи. Поэтому вполне естественно, что первые шаги в этом направлении сделали сотрудники Bell Telephon Companie – X. Найквист, Р. Хартли и К. Шеннон. Приведенные формулы послужили К. Шеннону основанием для исчисления пропускной способности каналов связи и энтропии источников сообщений, для улучшения методов кодирования и декодирования сообщений, для выбора помехоустойчивых кодов, а также для решения ряда других задач, связанных с оптимизацией работы технических систем связи. Совокупность этих представлений, названная К. Шенноном “математической теорией связи”, и явилась основой классической теории информации. (Дополнительный материал можно найти на сайте http://polbu.ru/korogodin_information или прочитав книгу В.И. Корогодин, В.Л. Корогодина. Информация как основа жизни. Формула Шеннона. )

Можно ли применить формулу К. Шеннона для равновероятных событий?

Если p 1 =p 2 =..=p n =1/N, тогда формула принимает вид:

Мы видим, что формула Хартли является частным случаем формулы Шеннона.

V . Закрепление изучаемого материала.

Задача: В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти.

Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?

Дано: К к =4;N=32

Найти: I к, I

Решение:

Ответ : I к =3 бит; I=0,547 бит

VI . Подведение итогов урока.

  • Объясните на конкретных примерах отличие равновероятного события от неравновероятного?
  • С помощью какой формулы вычисляется вероятность события.
  • Объясните качественную связь между вероятностью события и количеством информации в сообщении об этом событии.
  • В каких случаях применяется формула Шеннона для измерения количества информации.
  • В каком случае количество информации о событии достигает максимального значения.

Урок 2. Применение ЭТ Excel для решения задач на нахождение количества информации

Пояснение: При решении задач на нахождение количества информации учащиеся не вычисляли значение логарифма, т.к. не знакомы с логарифмической функцией. Урок строился таким образом: сначала решались однотипные задачи с составлением формул, затем разрабатывалась табличная модель в Excel, где учащиеся делали вычисления. В конце урока озвучивались ответы к задачам.

Ход урока

I . Постановка целей урока

На этом уроке мы будем решать задачи на нахождение количества информации в сообщении о неравновероятных событиях и автоматизируем процесс вычисления задач данного типа.

Для решения задач на нахождение вероятности и количества информации используем формулы, которые вывели на прошлом уроке:

р i =K i /N; I i =log 2 (1/p i);

II . Решение задач.

Ученикам дается список задач, которые они должны решить.

Задачи решаются только с выводами формул, без вычислений.

Задача №1

В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида. Сколько информации мы получим, когда поймаем какую-нибудь рыбу?

Дано: К о =12500; К п =25000; К к = К щ =6250

Найти: I о , I п , I к , I щ , I

Решение:

  1. Найдем общее количество рыбы: N = К о +К п +К к +К щ.
  2. Найдем вероятность ловли каждого вида рыбы: p о = К о / N ; p п = К п / N ; p к = p щ = К к / N .
  3. Найдем количество информации о ловле рыбы каждого вида: I о = log 2 (1/ p о ); I п = log 2 (1/ p п ); I к = I щ = log 2 (1/ p к )
  4. Найдем количество информации о ловле рыбы любого вида: I = p о log 2 p о + p п log 2 p п + p к log 2 p к + p щ log 2 p щ

III . Объяснение нового материала.

Задается вопрос ученикам:

1. Какие трудности возникают при решении задач данного типа? (Отв. : Вычисление логарифмов).

2. Нельзя ли автоматизировать процесс решения данных задач? (Отв. : можно, т.к. алгоритм вычислений в этих задачах один и тот же).

3. Какие программы используются для автоматизации вычислительного процесса? (Отв.: ЭТ Excel).

Давайте попробуем сделать табличную модель для вычисления задач данного типа.

Нам необходимо решить вопрос, что мы будем вычислять в таблице. Если вы внимательно присмотритесь к задачам, то увидите, что в одних задачах надо вычислить только вероятность событий, в других количество информации о происходящих событиях или вообще количество информации о событии.

Мы сделаем универсальную таблицу, где достаточно занести данные задачи, а вычисление результатов будет происходить автоматически.

Структура таблицы обсуждается с учениками. Роль учителя обобщить ответы учащихся.

При составлении таблицы мы должны учитывать:

  1. Ввод данных (что дано в условии).
  2. Подсчет общего количества числа возможных исходов (формула N=K 1 +K 2 +…+K i).
  3. Подсчет вероятности каждого события (формула p i = К i /N).
  4. Подсчет количества информации о каждом происходящем событии (формула I i = log 2 (1/p i)).
  5. Подсчет количества информации для событий с различными вероятностями (формула Шеннона).

Прежде чем демонстрировать заполнение таблицы, учитель повторяет правила ввода формул, функций, операцию копирования (домашнее задание к этому уроку).

При заполнении таблицы показывает как вводить логарифмическую функцию. Для экономии времени учитель демонстрирует уже готовую таблицу, а ученикам раздает карточки-памятки по заполнению таблицы.

Рассмотрим заполнение таблицы на примере задачи №1.

Рис. 1. Режим отображения формул

Рис. 2. Отображение результатов вычислений

Результаты вычислений занести в тетрадь.

Если в решаемых задачах количество событий больше или меньше, то можно добавить или удалить строчки в таблице.

VI . Практическая работа .

1 . Сделать табличную модель для вычисления количества информации.

2 . Используя табличную модель, сделать вычисления к задаче №2 (рис.3), результат вычисления занести в тетрадь.

Рис. 3

3 . Используя таблицу-шаблон, решить задачи №3,4 (рис.4, рис.5), решение оформить в тетради.

Рис. 4

Задача №2

В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

Задача№3

В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

Задача№4

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

VII . Подведение итогов урока.

Учитель оценивает работу каждого ученика. Оценивается не только практическая работа на компьютере, но и оформление решения задачи в тетради.

VIII. Домашняя работа.

1. Параграф учебника «Формула Шеннона», компьютерный практикум после параграфа.

2. Доказать, что формула Хартли – частный случай формулы Шеннона.

Литература:

  1. Соколова О.Л. «Универсальные поурочные разработки по информатике. 10-й класс.» – М.: ВАКО, 2007.
  2. Угринович Н.Д. «Информатика и ИКТ. Профильный уровень. 10 класс» - Бином, Лаборатория знаний, 2007 г.
  3. Семакин И.Г., Хеннер Е.К. «Информатика. Задачник – практикум.» 1 том, - Бином, Лаборатория знаний, 2008 г.

Количество информации как мера уменьшения неопределенности знаний. Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

Сообщения обычно содержат информацию о каких-либо событиях. Количество информации для событий с различными вероятностями определяется по формуле:

или из показательного уравнения:

Пример 2.1. После экзамена по информатике, который сдавали ваши друзья, объявляются оценки («2», «3», «4» или «5»). Какое количество информации будет нести сообщение об оценке учащегосяA, который выучил лишь половину билетов, и сообщение об оценке учащегосяB, который выучил все билеты.

Опыт показывает, что для учащегося Aвсе четыре оценки (события) равновероятны и тогда количество информации, которое несет сообщение об оценке можно вычислить по формуле 2.2:

I = log 2 4 = 2 бит

На основании опыта можно также предположить, что для учащегося Bнаиболее вероятной оценкой является «5» (p 1 = 1/2), вероятность оценки «4» в два раза меньше (p 2 = 1/4), а вероятности оценок «2» и «3» еще в два раза меньше (p 3 = p 4 = 1/8). Так как события неравновероятны, воспользуемся для подсчета количества информации в сообщении формулой 2.1:

I = -(1/2Elog 2 1/2 + 1/4Elog 2 1/4 + 1/8Elog 2 1/8 + 1/8Elog 2 1/8) бит = 1,75 бит

Вычисления показали, что при равновероятных событиях мы получаем большее количество информации, чем при неравновероятных событиях.

Пример 2.2. В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика.

Так как количество шариков различных цветов неодинаково, то зрительные сообщения о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета деленному на общее количество шариков:

p б = 0,1; p к = 0,2; p з = 0,3; p с = 0,4

События неравновероятны, поэтому для определения количества информации, содержащимся в сообщении о цвете шарика, воспользуемся формулой 2.1:

I = -(0,1·log 2 0,1+ 0,2·log 2 0,2 + 0,3·log 2 0,3 + 0,4·log 2 0,4) бит

Пример 2.3. Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить месяц, в котором он родился?

Будем рассматривать 12 месяцев как 12 возможных событий. Если спрашивать о конкретном месяце рождения, то, возможно, придется задать 11 вопросов (если на 11 первых вопросов был получен отрицательный ответ, то 12-й задавать не обязательно, так как он и будет правильным).

Правильно задавать «двоичные» вопросы, т.е. вопросы, на которые можно ответить только «Да» или «Нет». Например, «Вы родились во второй половине года?». Каждый такой вопрос разбивает множество вариантов на два подмножества: одно соответствует ответу «Да», а другое - ответу «Нет».

Правильная стратегия состоит в том, что вопросы нужно задавать так, чтобы количество возможных вариантов каждый раз уменьшалось вдвое. Тогда количество возможных событий в каждом из полученных подмножеств будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ («Да» или «Нет») будет нести максимальное количество информации (1 бит).

По формуле 2.2 и с помощью калькулятора получаем:

I = log 2 12 »3,6 бит

Количество полученных бит информации соответствует количеству заданных вопросов, однако количество вопросов не может быть нецелым числом. Округляем до большего целого числа и получаем ответ: при правильной стратегии необходимо задать не более 4 вопросов.

Единицы измерения количества информации

Единицы измерения количества информации. За единицу количества информации принят 1 бит - количество информации, содержащееся в сообщении, уменьшающем неопределенность знаний в два раза.

Принята следующая система единиц измерения количества информации:

1 байт = 8 бит

1 Кбайт = 2 10 байт

1 Мбайт = 2 10 Кбайт = 2 20 байт

1 Гбайт = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт

Определение количества информации, представленной с помощью знаковых систем

Если рассматривать символы алфавита как множество возможных сообщений (событий) N, то количество информации, которое несет один знак можно определить из формулы 2.1. Если считать появление каждого знака алфавита в тексте событиями равновероятными, то для определения количества информации можно воспользоваться формулой 2.2 или уравнением 2.3.

Количество информации, которое несет один знак алфавита тем больше, чем больше знаков входят в этот алфавит, т.е. чем больше мощность алфавита.

Количество информации, содержащейся в сообщении, закодированном с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

Пример 2.5. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1,25 Кбайта.

Перевести информационный объем сообщения в биты:

I = 10 240 бит

Определить количество бит, приходящееся на один символ:

10 240 бит: 2 048 = 5 бит

По формуле 2.3 определить количество символов в алфавите.

























































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: закрепление навыков решения задач с помощью алфавитного и содержательного подходов.

Задачи урока:

  • Воспитательная – формировать информационную культуру учащихся, внимательность, аккуратность, дисциплинированность, усидчивость, терпимость, умение работать в группе.
  • Образовательная – повторить алфавитный и содержательный подходы на нахождение количества информации, сформировать навыки решения задач с помощью формулы Хартли, решить несколько задач.
  • Развивающая – развивать логическое мышление, внимательность, самоконтроль.

Тип урока: Комбинированный урок. Работа в группах.

Формы учебной деятельности учащихся: индивидуальная, групповая.

Средства обучения: компьютерный класс, интерактивная доска.

План урока:

  • Мотивация (2 минуты).
  • Актуализация опорных знаний (5 минут).
  • Совместное решение задач по теме (10 минут).
  • Физминутка (3 минуты).
  • Организация групповой работы, определение групп (1 минута).
  • Решение задач в группах на оценку, самоконтроль (15 минут).
  • (5 минут).
  • (1 минута).
  • Домашнее задание (1 минута).
  • Рефлексия (2 минуты).

Ход урока

Мотивация. Определение цели и задач урока.

Здравствуйте!

В настоящее время на экзаменах по информатике, в том числе ЕГЭ (часть А, B) есть много заданий по теме “Определение количества информации”. Цель данного урока – закрепление навыков решения задач с помощью алфавитного и содержательного подходов .

Для того чтобы хорошо понять решение задач на нахождение количества информации, необходимо прорешать задачи разного типа. Для этого давайте вспомним…

Актуализация опорных знаний (повторение).

С помощью какой формулы мы определяем количество информации в различных сообщениях, событиях? (Используется одна и та же формула Хартли, выведенная из вероятностно-статистического подхода К.-Э. Шеннона N=2 i , i=log 2 N, где i – количество информации (в битах), N – количество информационных сообщений (событий). В одном случае рассматриваются равновероятностные события, в другом – мощность алфавита).

Чем отличается алфавитный и содержательный подходы для определения количества информации? (При алфавитном подходе рассматривается текст как совокупность символов, а при содержательном – содержание происходящих событий. Первый подход более объективен, так как позволяет избежать двусмысленности происходящих событий.). При содержательном подходе рассматриваются равновероятностные события, поэтому для решения задач необходимо знать количество всех возможных событий. Для нахождения количества информации с использованием алфавитного подхода необходимо знать мощность используемого алфавита. Так как определяем информационную емкость не одного символа, а нескольких взаимосвязанных символов в слове, предложении, тексте, то необходимо знать и количество символов в слове.

Совместное решение задач.

Давайте решим несколько задач по данной теме.

1. Сообщение, записанное буквами 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Решение:

Один символ алфавита несет в себе 6 бит информации (2^6=64),
Соответственно сообщение из 20 символов несет 6 х 20 = 120 бит.
Ответ: 120 бит.

2. Жители планеты Принтер используют алфавит из 256 знаков, а жители планеты Плоттер - из 128 знаков. Для жителей какой планеты сообщение из 10 знаков несет больше информации и на сколько?

Решение:

Один символ алфавита жителей планеты Принтер несет в себе 8 бит информации (2^8=256), а жителей планеты Плоттер - 7 бит информации (2^7=128). Соответственно сообщение из 10 знаков для жителей Принтер несет 10 х 8 = 80 бит, а для жителей Плоттер - 10 х 7 = 70 бит
80 - 70 = 10 бит.
Ответ: Больше для жителей Принтер на 10 бит.

3. Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?

Решение:

Каждая нота кодируется 3 битами (2^2=4<7<2^3=8).
Информационный объем сообщения равен 180 х 3 = 540 бит.
Ответ: 540 бит.

4. Цветное растровое графическое изображение, палитра которого включает в себя 65 536 цветов, имеет размер 100Х100 точек (пикселей). Какой объем видеопамяти компьютера (в Кбайтах) занимает это изображение в формате BMP?

Решение:

65536 =2^16, I = 16 бит на кодирование 1 цвета. Все изображение состоит из 10х10=10 000 точек. Следовательно, количество информации, необходимое для хранения изображения целиком 16*10 000=160 000 бит = 20 000 байт = 19,5 Кб.
Ответ: 19,5 килобайт.

5. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Решение:

N=119 (2^6=64<7<2^7=128), I ≈7 бит необходимо для кодирования одного спортсмена, поскольку была записана информация о 70 спортсменах, объем сообщения составил: 7 х 70 = 490 бит.
Ответ: 490 бит.

Сложная задача

6. Словарный запас некоторого языка составляет 256 слов, каждое из которых состоит точно из 4 букв. Сколько букв в алфавите языка?

Решение:

При алфавитном подходе к измерению количества информации известно, что если мощность алфавита N (количество букв в алфавите), а максимальное количество букв в слове, записанном с помощью этого алфавита – m, то максимально возможное количество слов определяется по формуле L=N m . Из условия задачи известно количество слов (L=256) и количество букв в каждом слове (m=4). Надо найти N из получившегося уравнения 256=N 4 . Следовательно, N=4.
Ответ: 4 буквы.

Физминутка

(дети сели ровно, расслабились, закрыли глаза, звучит спокойная музыка , учитель комментирует):

Более тысячи биологически активных точек на ухе известно в настоящее время, поэтому, массируя их, можно опосредованно воздействовать на весь организм. Нужно стараться так помассировать ушные раковины, чтобы уши «горели». Давайте выполним несколько массажных движений:

  1. потяните за мочки сверху вниз;
  2. потяните ушные раковины вверх;
  3. потяните ушные раковины к наружи;
  4. выполните круговые движения ушной раковины по часовой стрелке и против.

Далее массажируем определенные места на голове, что активизирует кровообращение в кончиках пальчиков, предотвращает застой крови не только в руках, но и во всем теле, так как кончики пальцев непосредственно связаны с мозгом. Массаж проводится в следующей последовательности:

  1. найдите точку на лбу между бровями («третий глаз») и помассируйте ее;
  2. далее парные точки по краям крыльев носа (помогает восстановить обоняние);
  3. точку посередине верхнего края подбородка;
  4. парные точки в височных ямках;
  5. три точки на затылке в углублениях;
  6. парные точки в области козелка уха.

Нужно помнить, что любое упражнение может принести пользу, не оказать никакого воздействия, принести вред. Поэтому нужно выполнять его очень старательно, обязательно в хорошем настроении.

Организация групповой работы, определение групп.

Размещение обучающихся за компьютеры, где у всех открыто задание (Презентация задач) не более 3 человек за каждый ПК. С собой дети берут только тетрадь и ручку для решения. Здесь необходимо объяснить, что в презентации нужно будет ориентироваться по ссылкам, в том числе и выбрав правильный вариант ответа, всего задач – 5 (по 3 минуты на задачу). В конце автоматически выйдет результат на экран монитора в виде отметки за урок. Детей можно ознакомить с критериями выставления отметок за решение данного типа задач:

1 верная задача – отметка «2»
2 верные задачи – отметка «3»
3 верные задачи – отметка «4»
4 верные задачи – отметка «4»
5 верных задач – отметка «5».

Совместное обсуждение типичных ошибок .

– проверка, разрешение вопросов по решению задач:

1. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

Решение:

811-684=128 (включая число 684), N=128, i=7 бит (2^7=128).
Ответ: 7 бит информации.

2. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Решение:

всего используется 26 букв + 10 цифр = 36 символов для кодирования 36 вариантов необходимо использовать 6 бит, так как 2^5=32<36<2^6=64, т.е. пяти бит не хватит (они позволяют кодировать только 32 варианта), а шести уже достаточно таким образом, на каждый символ нужно 6 бит (минимально возможное количество бит).
полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется 6 x 7 = 42 бита.
По условию каждый номер кодируется целым числом байт (в каждом байте – 8 бит), поэтому требуется 6 байт на номер (5x8=40<42<6x8=48), пяти байтов не хватает, а шесть – минимально возможное количество на 20 номеров нужно выделить 20x6=120 байт.
Ответ: 120 байт.

3. Каждая клетка поля 8×8 кодируется минимально возможным и одинаковым количеством бит. Решение задачи о прохождении "конем" поля записывается последовательностью кодов посещенных клеток. Каков объем информации после 11 сделанных ходов? (Запись решения начинается с начальной позиции коня).

Решение:

Всего клеток 8х8 = 64. Для кодирования 1 клетки необходимо 6 бит (2^6=64). В записи решения будет описано 12 клеток (11 ходов+начальная позиция). Объем информации записи 12х6 = 72 бита = 72:8 = 9 байт.
Ответ: 9 байт.

4. Информационное сообщение объемом 1,5 килобайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?

Решение:

1,5 Кбайта = 1,5*1024*8 = 12288 бит. 12288/3072 = 4 бита - информационный вес одного символа. Мощность алфавита равна 2^4=16 символов. Ответ: 16 символов.

5. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Решение:

Всего требуется сохранить 128 х 256 = 32768 символов.
Информационный вес 1 символа 6 бит (2^6=64). Чтобы сохранить весь текст, потребуется 32768 х 6 = 196608 бит = 196608: 8 =24576 байт = 24576: 1024 = 24 Кб.
Ответ: 24 Кб.

Подведение итогов, выставление отметок .

объявление оценок за урок.

Домашнее задание:

к следующему уроку составить 1 задачу на нахождение количества информации, используя алфавитный или содержательный подход и решить ее в тетради.

Рефлексия

(раздать заготовленные листочки – Приложение 1 )

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

(Синквейн – это способ на любом этапе урока, изучения темы, проверить, что находится у обучающихся на уровне ассоциаций).

1 строчка – одно слово – название стихотворения, тема, обычно существительное.
2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.
3 строчка – три слова (глаголы). Действия, относящиеся к теме.
4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.
5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Данный вид рефлексии будет полезен учителю для проведения самоанализа.

ВСЕМ СПАСИБО!

Задачи были взяты из разных источников сети Интернет.