Изучаем Java

  • 29.07.2019

Многомерные массивы в Java

Для примера рассмотрим двумерный массив в Java.

Двумерные массивы Java - это прямоугольная или не прямоугольная таблица чисел.

Двумерный массив Java состоит из рядов и столбцов.

Первый индекс двумерного массива Java - это число рядов.

Пример двумерного прямоугольного массива Java:

Int multyArr; multyArr = new int; /* * multyArr structure * | (0,0) | (0,1) | * | (1,0) | (1,1) | */

Здесь объявлен и определен двумерный массив, имеющий две строки и два столбца.

Загрузим массив элементами:

MultyArr = 1; multyArr = 2; multyArr = 3; multyArr = 4;

Вывод двумерного массива (перебираем массив):

System.out.println("multyArr"); for(int inn = 0; inn < 2; inn++) { for(int jnn = 0; jnn < 2; jnn++) { System.out.println("multyArr[" + inn + "][" + jnn + "] = " + multyArr ); } }

Получаем:

for(int inn = 0; inn < 2; inn++)

мы проходим по рядам, а в цикле

for(int jnn = 0; jnn < 2; jnn++)

по столбцам.

Можно объявить и определить многомерный массив одновременно:

int multyArr = {{1,2}, {3,4}};

Длина многомерного массива в Java

Int multyArr = {{1,2}, {3,4}, {5,6}}; /* * multyArr structure * | 1 | 2 | * | 3 | 4 | * | 5 | 6 | */ System.out.println("Array length = " + multyArr.length);

Array length = 3

Здесь три ряда по два элемента каждый. Первая размерность - три, это и есть длина двумерного массива.

Трехмерный массив в Java

Пример трехмерного массива в Java:

int triArray;
triArray = new int;

Здесь объявлен и определен трехмерный массив. Его можно представит как куб, состоящий из двух слоёв (layer), каждый слой состоит из двух рядов и двух столбцов, т.е. каждый слой - это двумерный массив.

Как заполнить трехмерный массив? Можно в цикле, но мы для примера вручную заполним:

//**************** //THE FIRST LAYER //**************** //the first row of the first layer triArray = 1; triArray = 2; //the second row of the first layer triArray = 3; triArray = 4; //**************** //THE SECOND LAYER //**************** //the first row of the second layer triArray = 5; triArray = 6; //the second row of the second layer triArray = 7; triArray = 8;

Как вывести трехмерный массив? Или как перебрать трехмерный массив? Так.

  • Tutorial

Думаю, мало кто из готовящихся к своему первому интервью, при приеме на первую работу в должности (pre)junior программиста, ответит на этот вопрос отрицательно. Или хотя бы усомнится в положительном ответе. Конечно, такая простая структура данных с прямым доступом по индексу - никаких подвохов! Нет, в некоторых языках типа JavaScript или PHP массивы, конечно, реализованы очень интересно и по сути являются много большим чем просто массив. Но речь не об этом, а о «традиционной» реализации массивов в виде «сплошного участка памяти». В этом случае на основании индексов и размера одного элемента просто вычисляется адрес и осуществляется доступ к соответствующему значению. Что тут сложного?
Давайте разберемся. Например, на Java. Просим ничего не подозревающего претендента создать массив целых чисел n x n . Человек уверено пишет что-то в духе:
int g = new int[n][n];
Отлично. Теперь просим инициализировать элементы массива чем-нибудь. Хоть единицами, хоть суммой индексов. Получаем:
for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } }
Даже чаще пишут
for(int i = 0; i < g.length; i++) { for(int j = 0; j < g[i].length; j++) { g[i][j] = i + j; } }
что тоже повод для беседы, но сейчас речь о другом. Мы ведь пытаемся выяснить, что человек знает и посмотреть, как он думает. По этому обращаем его внимание на тот факт, что значения расположены симметрично и просим сэкономить на итерациях циклов. Конечно, зачем пробегать все значения индексов, когда можно пройти только нижний треугольник? Испытуемый обычно легко соглашается и мудро выделяя главную диагональ старательно пишет что-то в духе:
for(int i = 0; i < n; i++) { g[i][i] = 2* i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } }
Вместо g[i][i] = 2* i; часто пишут g[i][i] = i + i; или g[i][i] = i << 1; и это тоже повод поговорить. Но мы идем дальше и задаем ключевой вопрос: На сколько быстрее станет работать программа? . Обычные рассуждения такие: почти в 2 раза меньше вычислений индексов; почти в 2 раза меньше вычислений значений (суммирование); столько же присваиваний. Значит быстрее процентов на 30. Если у человека за плечами хорошая математическая школа, то можно даже увидеть точное количество сэкономленных операций и более аргументированную оценку эффективности оптимизации.
Теперь самое время для главного удара. Запускаем оба варианта кода на каком-нибудь достаточно большом значении n (порядка нескольких тысяч), например, так .

Код с контролем времени

class A { public static void main(String args) { int n = 8000; int g = new int[n][n]; long st, en; // one st = System.nanoTime(); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nOne time " + (en - st)/1000000.d + " msc"); // two st = System.nanoTime(); for(int i = 0; i < n; i++) { g[i][i] = i + i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nTwo time " + (en - st)/1000000.d + " msc"); } }


Что же мы видим? Оптимизированный вариант работает в 10-100 раз медленнее! Теперь самое время понаблюдать за реакцией претендента на должность. Какая будет реакция на необычную (точнее обычную в практике разработчика) стрессовую ситуацию. Если на лице подзащитного изобразился азарт и он стал жать на кнопочки временно забыв о Вашем существовании, то это хороший признак. До определенной степени. Вы ведь не хотите взять на работу исследователя, которому плевать на результат проекта? Тогда не задавайте ему вопрос «Почему?». Попросите переделать второй вариант так, чтобы он действительно работал быстрее первого.
Теперь можно смело заниматься некоторое время своими делами. Через пол часа у Вас будет достаточно материала, для того, чтобы оценить основные личностные и профессиональные качества претендента.
Кстати, когда я коротко описал эту задачку на своем рабочем сайте, то наиболее популярный комментарий был «Вот такая эта Ваша Java кривая». Специально для них выкладываю код на Великом и Свободном. А счастливые обладатели Free Pascal под Windows могут заглянуть

под спойлер

program Time; uses Windows; var start, finish, res: int64; n, i, j: Integer; g: Array of Array of Integer; begin n:= 10000; SetLength(g, n, n); QueryPerformanceFrequency(res); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by rows:", (finish - start) / res, " sec"); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by cols:", (finish - start) / res, " sec"); end.


В приведенном коде на Паскале я убрал «запутывающие» моменты и оставил только суть проблемы. Если это можно назвать проблемой.
Какие мы в итоге получаем вопросы к подзащитному?
1. Почему стало работать медленнее? И поподробнее…
2. Как сделать инициализацию быстрее?

Если есть необходимость копнуть глубже именно в реализацию Java, то просим соискателя понаблюдать за временем выполнения для небольших значений n . Например, на ideone.com для n=117 «оптимизированный» вариант работает вдвое медленнее. Но для следующего значения n=118 он оказывается уже в 100 (сто) раз быстрее не оптимизированного! Предложите поэкспериментировать на локальной машине. Пусть поиграет с настройками.
Кстати, а всем понятно, что происходит?

Несколько слов в оправдание

Хочу сказать несколько слов в оправдание такого способа собеседования при найме. Да, я не проверяю знание синтаксиса языка и владение структурами данных. Возможно, при цивилизованном рынке труда это все работает. Но в наших условиях тотальной нехватки квалифицированных кадров, приходится оценивать скорее перспективную адекватность претендента той работе с которой он столкнется. Т.е. способность научиться, прорваться, разобраться, сделать.
По духу это похоже на «собеседованию» при наборе легионеров в древнем Риме. Будущего вояку сильно пугали и смотрели краснеет он или бледнеет. Если бледнеет, то в стрессовой ситуации у претендента кровь отливает от головы и он склонен к пассивной реакции. Например, упасть в обморок. Если же соискатель краснел, то кровь у него к голове приливает. Т.е. он склонен к активным действиям, бросаться в драку. Такой считался годным.
Ну и последнее. Почему я рассказал об этой задаче всем, а не продолжаю использовать её на собеседованиях? Просто, эту задачу уже «выучили» потенциальные соискатели и приходится использовать другие.
Собственно на этот эффект я обратил внимание именно в связи с реальной задачей обработки изображений. Ситуация была несколько запутанная и я не сразу понял почему у меня так просел fps после рефакторинга. А вообще таких чуднЫх моментов наверное много накопилось у каждого.

Пока лидирует версия, что «виноват» кэш процессора. Т.е. последовательный доступ в первом варианте работает в пределах хэша, который обновляется при переходе за определенную границу. При доступе по столбцам хэш вынужден постоянно обновляться и это занимает много времени. Давайте проверим эту версию в самом чистом виде. Заведем массив и сравним, что быстрее - обработать все элементы подряд или столько же раз обработать элементы массива со случайным номером? Вот эта программа - ideone.com/tMaR2S . Для 100000 элементов массива случайный доступ обычно оказывается заметно быстрее. Что же это означает?
Тут мне совершенно справедливо указали (Big_Lebowski), что перестановка циклов меняет результаты в пользу последовательного варианта. Пришлось для чистоты эксперимента поставить цикл для разогрева. Заодно сделал несколько повторов, чтобы вывести среднее время работы как советовал leventov. Получилось так ideone.com/yN1H4g . Т.е. случайный доступ к элементам большого массива на ~10% медленнее чем последовательный. Возможно и в правду какую-то роль может сыграть кэш. Однако, в исходной ситуации производительность проседала в разы. Значит есть еще что-то.

Постепенно в лидеры выходит версия про дополнительные действия при переходе от одной строки массива к другой. И это правильно. Осталось разобраться, что же именно там происходит.

Теги: Добавить метки

Представьте себе ячейки в камере хранения. Каждая из них имеет свой номер, и в каждой из них хранится какой-то объект “Багаж”. Или винная карта, в которой все виды вина пронумерованы и когда вы делаете заказ, вам достаточно назвать номер напитка. Или список студентов группы, в котором в первой ячейке будет записан студент “Андреев”, а в последней - “Яковлев”. Или список пассажиров самолёта, за каждым из которых закреплено место с определённым номером. В Java чтобы работать с подобными структурами, то есть множеством однородных данных, часто используют массивы.

Что такое массив?

Массив - это структура данных, в которой хранятся элементы одного типа. Его можно представить, как набор пронумерованных ячеек, в каждую из которых можно поместить какие-то данные (один элемент данных в одну ячейку). Доступ к конкретной ячейке осуществляется через её номер. Номер элемента в массиве также называют индексом . В случае с Java массив однороден , то есть во всех его ячейках будут храниться элементы одного типа. Так, массив целых чисел содержит только целые числа (например, типа int), массив строк - только строки, массив из элементов созданного нами класса Dog будет содержать только объекты Dog . То есть в Java мы не можем поместить в первую ячейку массива целое число, во вторую String , а в третью - “собаку”.

Объявление массива

Как объявить массив?

Как и любую переменную, массив в Java нужно объявить. Сделать это можно одним из двух способов. Они равноправны, но первый из них лучше соответствует стилю Java. Второй же - наследие языка Си (многие Си-программисты переходили на Java, и для их удобства был оставлен и альтернативный способ). В таблице приведены оба способа объявления массива в Java: В обоих случаях dataType - тип переменных в массиве. В примерах мы объявили два массива. В одном будут храниться целые числа типа int , в другом - объекты типа Object . Таким образом при объявлении массива у него появляется имя и тип (тип переменных массива). ArrayName - это имя массива.

Создание массива

Как создать массив?

Как и любой другой объект, создать массив Java, то есть зарезервировать под него место в памяти, можно с помощью оператора new . Делается это так: new typeOfArray [ length] ; Где typeOfArray - это тип массива, а length - его длина (то есть, количество ячеек), выраженная в целых числах (int). Однако здесь мы только выделили память под массив, но не связали созданный массив ни с какой объявленной ранее переменной. Обычно массив сначала объявляют, а потом создают, например: int myArray; // объявление массива myArray = new int [ 10 ] ; // создание, то есть, выделение памяти для массива на 10 элементов типа int Здесь мы объявили массив целых чисел по имени myArray , а затем сообщили, что он состоит из 10 ячеек (в каждой из которых будет храниться какое-то целое число). Однако гораздо чаще массив создают сразу после объявления с помощью такого сокращённого синтаксиса: int myArray = new int [ 10 ] ; // объявление и выделение памяти “в одном флаконе” Обратите внимание: После создания массива с помощью new , в его ячейках записаны значения по умолчанию. Для численных типов (как в нашем примере) это будет 0, для boolean - false , для ссылочных типов - null . Таким образом после операции int myArray = new int [ 10 ] ; мы получаем массив из десяти целых чисел, и, пока это не измениться в ходе программы, в каждой ячейке записан 0.

Длина массива в Java

Как мы уже говорили выше, длина массива - это количество элементов, под которое рассчитан массив. Длину массива нельзя изменить после его создания. Обратите внимание: в Java элементы массива нумеруются с нуля. То есть, если у нас есть массив на 10 элементов, то первый элемент массива будет иметь индекс 0, а последний - 9. Получить доступ к длине массива можно с помощью переменной length . Пример: int myArray = new int [ 10 ] ; // создали массив целых чисел на 10 элементов и присвоили ему имя myArray System. out. println (myArray. length) ; // вывели в консоль длину массива, то есть количество элементов, которые мы можем поместить в массив Вывод программы: 10

Инициализация массива и доступ к его элементам

Как создать массив в Java уже понятно. После этой процедуры мы получаем не пустой массив, а массив, заполненный значениями по умолчанию. Например, в случае int это будут 0, а если у нас массив с данными ссылочного типа, то по умолчанию в каждой ячейке записаны null . Получаем доступ к элементу массива (то есть записываем в него значение или выводим его на экран или проделываем с ним какую-либо операцию) мы по его индексу. Инициализация массива - это заполнение его конкретными данными (не по умолчанию). Пример: давайте создадим массив из 4 пор года и заполним его строковыми значениями - названиями этих пор года. String seasons = new String [ 4 ] ; /* объявили и создали массив. Java выделила память под массив из 4 строк, и сейчас в каждой ячейке записано значение null (поскольку строка - ссылочный тип)*/ seasons[ 0 ] = "Winter" ; /* в первую ячейку, то есть, в ячейку с нулевым номером мы записали строку Winter. Тут мы получаем доступ к нулевому элементу массива и записываем туда конкретное значение */ seasons[ 1 ] = "Spring" ; // проделываем ту же процедуру с ячейкой номер 1 (второй) seasons[ 2 ] = "Summer" ; // ...номер 2 seasons[ 3 ] = "Autumn" ; // и с последней, номер 3 Теперь во всех четырёх ячейках нашего массива записаны названия пор года. Инициализацию также можно провести по-другому, совместив с инициализацией и объявлением: String seasons = new String { "Winter" , "Spring" , "Summer" , "Autumn" } ; Более того, оператор new можно опустить: String seasons = { "Winter" , "Spring" , "Summer" , "Autumn" } ;

Как вывести массив в Java на экран?

Вывести элементы массива на экран (то есть, в консоль) можно, например, с помощью цикла for . Ещё один, более короткий способ вывода массива на экран будет рассмотрен в пункте “ . А пока рассмотрим пример с циклическим выводом массива: String seasons = new String { "Winter" , "Spring" , "Summer" , "Autumn" } ; for (int i = 0 ; i < 4 ; i++ ) { System. out. println (seasons[ i] ) ; } В результате программа выведет следующий результат: Winter Spring Summer Autumn

Одномерные и многомерные Java массивы

А что, если мы захотим создать не массив чисел, массив строк или массив каких-то объектов, а массив массивов? Java позволяет это сделать. Уже привычный нам массив int myArray = new int - так называемый одномерный массив. А массив массивов называется двумерным. Он похож на таблицу, у которой есть номер строки и номер столбца. Или, если вы учили начала линейной алгебры, - на матрицу. Для чего нужны нужны такие массивы? В частности, для программирования тех же матриц и таблиц, а также объектов, напоминающих их по структуре. Например, игровое поле для шахмат можно задать массивом 8х8. Многомерный массив объявляется и создается следующим образом: Int myTwoDimentionalArray = new int [ 8 ] [ 8 ] ; В этом массиве ровно 64 элемента: myTwoDimentionalArray , myTwoDimentionalArray , myTwoDimentionalArray , myTwoDimentionalArray и так далее вплоть до myTwoDimentionalArray . Так что если мы с его помощью представим шахматную доску, то клетку А1 будет представлять myTwoDimentionalArray , а E2 - myTwoDimentionalArray . Где два, там и три. В Java можно задать массив массивов… массив массивов массивов и так далее. Правда, трёхмерные и более массивы используются очень редко. Тем не менее, с помощью трёхмерного массива можно запрограммировать, например, кубик Рубика.

Полезные методы для работы с массивами

Для работы с массивами в Java есть класс java.util.Arrays (arrays на английском и означает “массивы”). В целом с массивами чаще всего проделывают следующие операции: заполнение элементами (инициализация), извлечение элемента (по номеру), сортировка и поиск. Поиск и сортировка массивов - тема отдельная. С одной стороны очень полезно потренироваться и написать несколько алгоритмов поиска и сортировки самостоятельно. С другой стороны, все лучшие способы уже написаны и включены в библиотеки Java, и ими можно законно пользоваться.

Статьи на поиск и сортировку:

Сортировка и поиск в курсе CS50:

Вот три полезных метода этого класса

Сортировка массива

Метод void sort(int myArray, int fromIndex, int toIndex) сортирует массив целых чисел или его подмассив по возрастанию.

Поиск в массиве нужного элемента

int binarySearch(int myArray, int fromIndex, int toIndex, int key) . Этот метод ищет элемент key в уже отсортированном массиве myArray или подмассиве, начиная с fromIndex и до toIndex . Если элемент не найден, возвращает номер элемента или fromIndex-1 .

Преобразование массива к строке

Метод String toString(int myArray) преобразовывает массив к строке. Дело в том, что в Java массивы не переопределяют toString() . Это значит, что если вы попытаетесь вывести целый массив (а не по элементам, как в пункте “ ”) на экран непосредственно (System.out.println(myArray)), вы получите имя класса и шестнадцатеричный хэш-код массива (это определено определено Object.toString()). Если вы - новичок, вам, возможно, непонятно пояснение к методу toString . На первом этапе это и не нужно, зато с помощью этого метода упрощается вывод массива. Java позволяет легко выводить массив на экран без использования цикла. Об этом - в примере ниже.

Пример на sort, binarySearch и toString

Давайте создадим массив целых чисел, выведем его на экран с помощью toString , отсортируем с помощью метода sort и найдём в нём какое-то число. class Main { public static void main (String args) { int array = { 1 , 5 , 4 , 3 , 7 } ; //объявляем и инициализируем массив System. out. println (array) ; //пытаемся вывести наш массив на экран без метода toString - получаем 16-ричное число //печатаем массив "правильно" Arrays. sort (array, 0 , 4 ) ; //сортируем весь массив от нулевого до четвёртого члена System. out. println (Arrays. toString (array) ) ; //выводим отсортированный массив на экран int key = Arrays. binarySearch (array, 5 ) ; // ищем key - число 5 в отсортированном массиве. //метод binarySearch выдаст индекс элемента остортированного массива, в котором "спрятано" искомое число System. out. println (key) ; //распечатываем индекс искомого числа System. out. println (Arrays. binarySearch (array, 0 ) ) ; //а теперь попробуем найти число, которого в массиве нет, // и сразу же выведем результат на экран } } Вывод программы: 3 -1 В первой строке - попытка вывода на экран массива без toString , во второй - вывод массива посредством toString , в третьей выведен отсортированный массив, в четвёртой - индекс искомого числа 5 в отсортированном массиве (помните, что считаем с нуля, поэтому четвёртый элемент массива имеет индекс 3). В пятой строке видем -1. Такого индекса у массива не бывает. Вывод сигнализирует о том, что искомого элемента (в данном случае, 0) в массиве нет.

Главное о массивах

    Главные характеристики массива: тип помещённых в него данных, имя и длина.
    Последнее решается при инициализации (выделении памяти под массив), первые два параметра определяются при объявлении массива.

    Размер массива (количество ячеек) нужно определять в int

    Изменить длину массива после его создания нельзя.

    Доступ к элементу массива можно получить по его индексу.

    В массивах, как и везде в Java, элементы нумеруются с нуля.

    После процедуры создания массива он наполнен значениями по умолчанию.

    Массив в языке Java значительно отличается от массива в языке C++. Однако он практически совпадает с указателем на динамический массив.

Полезные материалы о массивах

Хотите знать больше о массивах? Обратите внимание на статьи ниже. Там много интересного и полезного по этой теме.

    Кое-что о массивах - хорошая подробная статья о массивах

    Класс Arrays и его использование - в статье описаны некоторые методы класса Array

    Массивы первая лекция JavaRush, посвящённая массивам.

    Возвращайте массив нулевой длины, а не null - автор “Эффекктивного программирования” Джошуа Блох рассказывает о том, как лучше возвращать пустые массивы

Мы научились создавать одномерные массивы. Подобным образом в Java можно создать двумерный, трехмерный, четырехмерный… иначе говоря, многомерные массивы. Многомерный массив в Java по сути является массивом из массивов.

Популярным примером использования такого рода массивов, являются матрицы, для представления которых, используются двумерные массивы. Итак, что же такое матрица и как ее представить с помощью двумерного массива в Java.

Матрицы и двумерные массивы в Java

Матрица это прямоугольная таблица, состоящая из строк и столбцов на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают ее размер.

Общий вид матрицы размером m x n (m — количество строк, n — количество столбцов), выглядит следующим образом:

Каждый элемент матрицы имеет свой индекс, где первая цифра обозначает номер строки на которой находится элемент, а вторая — номер столбца.

Рассмотрим примеры конкретных матриц и создадим их с помощью Java.

Матрица A имеет размерность 2 на 3 (2 строки, 3 столбца). Создадим двухмерный массив этой размерности:

Int matrixA; matrixA = new int ;

Мы объявили двумерный массив целых чисел (поскольку матрица в данном случае содержит целые числа) и зарезервировали для него память. Для этого мы использовали 2 индекса: первый индекс определяет строку и ее размер, второй индекс определяет столбец и его размер.

Для доступа к элементам двумерного массива необходимо использовать 2 индекса: первый для строки, второй – для столбца. Как и в случае с одномерными массивами, индексы также начинаются с нуля. Поэтому нумерация строк и столбцов в таблице начинается с 0.

MatrixA = 1; matrixA = -2; matrixA = 3; matrixA = 4; matrixA = 1; matrixA = 7;

Для того, чтобы вывести матрицу на консоль, нужно пройти все элементы, используя два цикла. Количество циклов, при прохождении элементов массива, равно его размерности. В нашем случае первый цикл осуществляется по строкам, второй — по столбцам.

For (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { System.out.print(matrixA[i][j] + "\t"); } System.out.println(); }

То есть, сначала выводим все элементы первой строки, отделяя их символом табуляции "\t", переносим строку и выводим все элементы второй строки.

Полностью код для матрицы А выглядит следующим образом:

Public class Matrix { public static void main(String args) { int matrixA; matrixA = new int; matrixA = 1; matrixA = -2; matrixA = 3; matrixA = 4; matrixA = 1; matrixA = 7; for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { System.out.print(matrixA[i][j] + "\t"); } System.out.println(); } } }

Для матрицы B воспользуемся упрощенным способом инициализации — в момент объявления. По аналогии с одномерными массивами.

Int matrixB = { {-9,1,0}, {4,1,1}, {-2,2,-1} };

Каждую строку массива необходимо заключить в пару фигурных скобок и отделить друг от друга запятой.

Полностью код для матрицы B :

Public class Matrix { public static void main(String args) { int matrixB = { {-9,1,0}, {4,1,1}, {-2,2,-1} }; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { System.out.print(matrixB[i][j] + "\t"); } System.out.println(); } } }

Рассмотрим инициализацию в цикле для двумерного массива на примере таблицы умножения.

Public class Mult { public static void main(String args) { // создаем двумерный массив 10 на 10 int multiplyTab = new int; // цикл по первой размерности for (int i = 0; i < 10; i++) { // цикл по второй размерности for (int j = 0; j < 10; j++) { //инициализация элементов массива multiplyTab[i][j] = (i+1)*(j+1); //вывод элементов массива System.out.print(multiplyTab[i][j] + "\t"); } System.out.println(); } } }

Здесь инициализация элементов значениями таблицы умножения совмещена с их выводом на консоль в одном цикле.

Многомерные и несимметричные массивы.

Создаются многомерные массивы в Java аналогичным способом. Количество квадратных скобок указывает на размерность.
Примеры создания массивов фиксированной длины:

Int a = new int;// двумерный массив int b = new int;// трехмерный массив int c = new int;// четырехмерный массив // и т.д.

Однако, не обязательно изначально указывать размер на всех уровнях, можно указать размер только на первом уровне.

Int a1 = new int;// двумерный массив с 5 строками

В данном случае, пока неизвестно сколько будет элементов в каждой строке, это можно определить позже, причем, массив может содержать в каждой строке разное количество элементов, то есть быть несимметричным . Определим количество элементов в каждой строке для массива a1

A1 = new int ; a1 = new int ; a1 = new int ; a1 = new int ; a1 = new int ;

В результате, при выводе на экран,

For(int i = 0; i

массив будет иметь такой вид:

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

При создании массива его элементы автоматически инициализируются нулями, поэтому в это примере на экран выведены нули.

Упражнения на тему многомерные массивы в Java:

  1. Создайте массив размерностью 5 на 6 и заполните его случайными числами (в диапазоне от 0 до 99). Выведите на консоль третью строку
  2. Даны матрицы С и D размерностью 3 на 3 и заполненные случайными числами в диапазоне от 0 до 99. Выполните по отдельности сначала сложение, потом умножения матриц друг на друга. Выведете исходные матрицы и результат вычислений на консоль.
  3. Просуммируйте все элементы двумерного массива.
  4. Дан двумерный массив, содержащий отрицательные и положительные числа. Выведете на экран номера тех ячеек массива, которые содержат отрицательные числа.
  5. Отсортируйте элементы в строках двумерного массива по возрастанию

Массив (англ. array) представляет собой мощный инструмент, позволяющий работать с большим количеством данных. Очевидно, что если вам в процессе работы вашего кода где-то нужно сохранить, к примеру, 100 значений, то делать для этого такое же количество переменных как минимум неразумно. Массив позволяет хранить большое количество значений под одним именем и обращаться к ним по соответствующему индексу. Понятие массивов является краеугольным камнем в изучении курса Java для начинающих. Ведь они являются основой для многих структур данных.

Поскольку Java это, прежде всего, ООП, по сравнению с массивами в других языках программирования имеет одну отличительную особенность - они представляются в виде объектов. Помимо прочих преимуществ, это избавляет от нужды следить за очисткой памяти, поскольку она освобождается автоматически.

Создание и манипуляции одномерными массивами

Одномерный массив представляется собой классический и является совокупностью связанных общим именем элементов, каждому из которых соответствует определенный индекс. Способ объявления массива приведен на рисунке ниже.

Вначале объявляется тип Java array, который определяет тип значений, хранящихся в нем. Это может быть любой допустимый в Далее идут имя массива и квадратные скобки, сообщающие компилятору, что данная переменная является массивом. Обратите внимание на важный факт. можно ставить как после базового типа массива, так и после имени массива. После знака равенства указывается оператор new, инициирующий выделение памяти под массив (так же, как и в случае с объектами), тип элементов, которые будут храниться в нем (должен быть совместим с базовым типом, объявленным ранее), и, наконец, их количество, указанное в квадратных скобках.

Нумерация элементов в Java array начинается с 0. Так, индекс первого элемента в данном массиве будет равен 0, а шестого - 5. Чтобы обратиться к конкретному элементу массива, например, пятому, достаточно указать имя массива и индекс элемента в квадратных скобках рядом с именем. Таким образом можно как присваивать значение элементу, так и извлекать его. Однако следует быть внимательным, поскольку если передать индекс, по которому не существует элемента, то возникнет ошибка.

Многомерные массивы в Java

Многомерные массивы представляют собой ряды одномерных, на которые ссылаются элементы других массивов. Иными словами, Наиболее простыми среди них являются двумерные. На их примере мы и попытаемся разобраться с понятием. Для наглядности на рисунке ниже приведены синтаксис и схема, описывающая структуру двумерного массива.

Как видим, синтаксис не особо отличается от одномерных массивов. Давайте разберем структуру. В первых скобках мы выделили место под 5 элементов. Эти элементы являются ничем иным как ссылками на отдельные массивы. При этом размер каждого из них определен числом во вторых скобках. По сути, аналогом двумерных массивов в математике являются матрицы. Обратите внимание, что помимо элементов, в памяти выделяется отдельное место, где хранится значение длины массива (length). Как правило, работа с многомерными массивами осуществляется посредством вложенных циклов for.

Нерегулярные массивы

Двумерный массив является массивом массивов. Это мы уже выяснили. Но могут ли массивы, содержащиеся в нем, иметь разную длину? Ответ - да, могут. Для этого в Java предусмотрена возможность объявлять двумерный массив специальным образом. К примеру, мы хотим создать двумерный массив, который хранил бы в себе три одномерных массива длиной 2, 3 и 4 соответственно. Объявляется он следующим образом:

intarr = newint;

Обратите внимание, что мы не указали число во вторых скобках. Определение размера массивов в arr делается так:

Обращаясь к элементу под индексом 0, указывающему на первый массив, мы объявляем его с размерностью 2. Под элементом с индексом 1 будет храниться массив размерностью 3, и так далее. Все довольно просто.

Альтернативный синтаксис объявления java array

Инициализировать массивы можно и непосредственно при их создании. Это довольно просто.

Обратите внимание на объявление массивов jerseyNumber и playerName.

В случае с двумерными массивами данное объявление выглядит так:

Для этого вместо оператора new открываются фигурные скобки, в которых через запятую идет перечисление всех элементов. Java в этом случае автоматически выделяет память под них и индексирует их соответствующим образом.

Вспомогательный класс Arrays

Для работы с такими сущностями, как массивы в Java, в пакете java.util имеется специальный класс Arrays, который предоставляет множество статических методов, значительно облегчающих операции с ними. Перечень основных методов представлен на рисунке ниже.

Разберем некоторые самые полезные Java array методы:

CopyOf (массив, длина) - возвращает копию переданного массива соответствующей длины. Если переданная длина больше оригинального массива, то все «лишние» элементы заполняются значением по умолчанию (0, если простой тип, и null , если ссылочный).

CopyOfRange (массив, первый индекс, последний индекс) - не указанный на рисунке, но полезный метод. Он копирует часть переданного массива, определенную соответствующими индексами, начиная с первого и заканчивая последним.

Sort (массив) - сортирует элементы массива по возрастанию.

Fill (массив, значение) - заполняет переданный массив соответствующим значением.

BinarySearch (массив, значение) - возвращает индекс, под которым элемент с соответствующим значением находится в переданном отсортированном массиве. Если же такой элемент отсутствует, то возвращается отрицательное число.

Поскольку методы статические, то для их вызова не требуется создавать экземпляр класса Arrays. Они вызываются напрямую из него: Arrays.sort(arr).

Заключение

Мы рассмотрели наиболее важные аспекты относительно массивов, и для тех, кто только приступает к изучению Java для начинающих, этого хватит для базового понимания такой сущности, как массив, и основных приемов работы с ним. Конечно, практика даст больше понимания работы данного инструмента. Поэтом не поленитесь сделать несколько упражнений, манипулируя массивами различными способами.

Вспомогательный класс Array Java используется уже в «боевых» условиях, поэтому для начала рекомендуется учиться производить все основные операции с массивами вручную.